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Fig. 10: Total number of fuzzing executions of each tool in 24 hours. We take afl-gcc as a baseline, and report the ratio of
each tool to afl-gcc. In the legend, we additionally present the average number of fuzzing executions over the 24 programs.
Larger numbers indicate better performance.

TABLE III: Mean and standard deviation of time-to-discovery (in minutes) for bugs in Google FTS
Tool guetzli json llvm-libcxxabi pcre2 re2 woff2

afl-gcc 513.25± 114.84 0.85± 0.63 0.08± 0.00 763.61± 40.44 2.21± 2.14 12.89± 0.44
afl-clang-fast 539.56± 240.83 0.18± 0.17 0.08± 0.00 461.73± 219.89 3.08± 3.93 12.09± 4.91
afl-qemu +1 2.64± 3.56 0.23± 0.05 +1 +1 67.23± 26.94
ptfuzzer +1 49.08± 82.35 0.79± 0.25 +1 42.92± 68.08 29.18± 0.19
e9patch +1 21.87± 36.21 0.35± 0.00 +1 +1 30.73± 0.28
ddisasm 505.22± 93.45 N/A 0.08± 0.00 913.90± 495.42 N/A 14.60± 0.25
STOCHFUZZ 363.37± 120.14 0.67± 1.02 0.08± 0.00 768.91± 264.82 2.32± 0.54 7.43± 0.27

(FLAG), general purpose register reuse (GPR), and removing
instrumentation for single successors, respectively. For each
optimization, we report both the number (of applying these
optimizations) and the percentage. In the last column, we
present the slow-down when the optimizations are disabled.
Overall, FLAG is most effective, removing 99% of cases.
Intuitively, the use of flag registers has very strong locality.
We then conduct a study on the evaluated binaries and find
that almost all flag registers are defined and used within the
last three instructions of basic blocks, with the most common
instruction pattern being a cmp or test instruction followed
by a conditional jump. As such, they are mostly dead at the
instrumentation points. GPR can be applied in 82.2% cases
on average. The observation is that many basic blocks start
with instructions that write to at least one general purpose
register. STOCHFUZZ hence is able to reuse the register in the
instrumented code (Section III-D). The average percentage of
instrumentation removal for blocks with a single successor is
44.49%, which is not that significant but still helpful. The
slowdown is 22.45% on average when we disable these op-
timizations. The optimizations have negative effects on some

programs such as lcms. Further inspection seems to indicate
that the optimizations cause some tricky complications in
cache performance. It is worth pointing out that compiler
based fuzzers such as afl-gcc and afl-clang directly benefit
from built-in compiler optimizations, some of which have
similar nature to ours. Dynamic instrumentation engines such
as QEMU and PIN have their own optimizations although
they typically reallocate all registers. Performing optimizations
during unsound static rewriting is very risky. In contrast,
optimizations work well in our context as STOCHFUZZ can
fix disassembly and rewriting errors automatically.

B. Evaluation on Google FTS with Intential Data Inlining

Programs built by popular compilers (e.g., GCC and Clang)
with default settings may not contain (substantial) code and
data interleavings [10]. It is interesting to study the perfor-
mance of various tools when substantial interleavings are
present. We hence modify the compilation tool-chain of
Google FTS to force .rodata sections to be interleaved
with .text sections. We extract the ground-truth of data byte
locations from the debugging information and then strip the
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(a) Mean and standard deviation of time-to-discover (in minutes) for bugs in Google FTS 

(b) Evaluation on Google FTS w/ intentional data Inlining (by mixing .text and .rodata)stripped
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Fig. 5: Architecture

causing a segfault. The diagnosis and self-correction procedure
is hence invoked (steps 2 - 5 ). Specifically, the binary cleaning
step 2 removes all the rewritings at uncertain addresses (in
yellow or red shades) and re-executes the program (to the
right of 2 ). The crash at address 123 disappears, indicating
the crash must be induced by a rewriting error. STOCHFUZZ
uses delta debugging and generates two binaries, one with only
25 replaced (i.e., the snippet to the left of 4 ) and the other
with 38 replaced (i.e., the snippet to the left of 5 ). The former
crashes at the same address 123 whereas the latter crashes at
38 (and hence an intentional crash). As such, STOCHFUZZ
determines that the rewriting of address 25 is wrong and fixes
it by marking it as “certainly data” (i.e., with probability
1.0) in the version to the right of 5 . This new hint leads
to probability updates of other addresses (e.g., 29 and 32).
The procedure continues and eventually all addresses have
certain classification (i.e., all in green shade) and the program
is properly rewritten. ⇤

III. SYSTEM DESIGN

The architecture of STOCHFUZZ is shown in Fig. 5. It
consists of five components: the probability analyzer, the
incremental and stochastic rewriter, the program dispatcher,
the execution engine, and the crash analyzer. The probability
analyzer computes a probability for each address in the given
binary to indicate the likelihood of the address denoting a data
byte. The rewriter rewrites the binary in different forms by
sampling based on the computed probabilities. The program
dispatcher selects a rewritten version to execute, either ran-
domly for a normal execution request or strategically for root
cause diagnosis. The execution engine, a variant of AFL [3],
executes a given binary and monitors for crashes. The crash
analyzer triggers incremental rewriting when it determines a
crash is intentional; otherwise, it analyzes the root cause and
automatically repairs it if the cause is a rewriting error.

STOCHFUZZ has three typical workflows. Case one is the
most common. It is similar to the standard AFL. Specifically,
the execution engine sends a request to the program dispatcher
for a binary. The dispatcher randomly selects a rewritten binary
(from its pool), which is then executed by the engine. The
binary subsequently exits normally without any crash.

In case two, the execution is terminated by an intentional
crash (i.e., a hlt instruction). The crash is reported to

the crash analyzer, which identifies the new code coverage
indicated by the crash and analyzes the newly discovered code
to collect additional hints for distinguishing data and code. The
hints are passed on to the probability analyzer, which recom-
putes the probabilities and invokes the incremental rewriter to
generate new binaries.

In case three, the execution is terminated by an unintentional
crash (i.e., a crash not caused by hlt). To verify whether the
crash is triggered by some rewriting error, the crash analyzer
notifies the program dispatcher to send a binary that has all
uncertain rewritings removed for execution. If the previous
crash persists, it must be caused by a latent bug in the original
program. Otherwise, the crash is caused by rewriting error. The
crash analyzer further performs delta-debugging to locate the
root cause and repairs it. The repair is passed on as a hint to
the probability analyzer and triggers probabilities updates and
generation of new binaries. In the remainder of this section,
we discuss details of the components.

A. Probability Analyzer

This component computes the probabilities of each address
denoting data or code. Initially (before fuzzing starts), it
computes the probabilities based on the results of a simple
disassembler that we only use to disassemble at each address
in the binary. During fuzzing, with new observations (e.g.,
indirect call and jump targets) and exposed rewriting errors, it
continuously updates probabilities until convergence. It models
the challenge as a probabilistic inference problem [29]. Specif-
ically, random variables are introduced to denote individual
addresses’ likelihood of being data or code. Prior probabilities,
which are usually predefined constants as in the literature [30]–
[33], are associated with a subset of random variables in-
volved in observable features (e.g., definition-use relations
that suggest likely code). Random variables are correlated
due to program semantics. The correlations are modeled as
probabilistic inference rules. Prior probabilities are propagated
and aggregated through these rules until convergence using
probabilistic inference algorithms, yielding posterior probabil-
ities. In the following, we explain how we define the problem
and introduce our lightweight solution.

Definitions and Analysis Facts. As shown in the top of
Fig. 7, we use a to denote an address, c a constant, and r

a register. The bottom part of Fig. 7 presents the analysis
facts directly collected from the binary. These facts are deter-
ministic (not probabilistic). Inst(a, c) denotes that the c bytes
starting from address a can be encoded as a valid instruction.
ExplicitSucc(a1, a2) denotes the instruction at address a2 is
an explicit successor of the instruction at address a1 along
control flow. RegWrite(a, r) denotes the instruction at a writes
to register r. RegRead denotes the read operation. Str(a, c)
denotes the c bytes starting from address a constitute a
printable null-terminated string.

Initially, STOCHFUZZ disassembles at each address and
collects the analysis facts. It collects more facts than those
in Fig. 7. They are elided due to space limitations.
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causing a segfault. The diagnosis and self-correction procedure
is hence invoked (steps 2 - 5 ). Specifically, the binary cleaning
step 2 removes all the rewritings at uncertain addresses (in
yellow or red shades) and re-executes the program (to the
right of 2 ). The crash at address 123 disappears, indicating
the crash must be induced by a rewriting error. STOCHFUZZ
uses delta debugging and generates two binaries, one with only
25 replaced (i.e., the snippet to the left of 4 ) and the other
with 38 replaced (i.e., the snippet to the left of 5 ). The former
crashes at the same address 123 whereas the latter crashes at
38 (and hence an intentional crash). As such, STOCHFUZZ
determines that the rewriting of address 25 is wrong and fixes
it by marking it as “certainly data” (i.e., with probability
1.0) in the version to the right of 5 . This new hint leads
to probability updates of other addresses (e.g., 29 and 32).
The procedure continues and eventually all addresses have
certain classification (i.e., all in green shade) and the program
is properly rewritten. ⇤

III. SYSTEM DESIGN

The architecture of STOCHFUZZ is shown in Fig. 5. It
consists of five components: the probability analyzer, the
incremental and stochastic rewriter, the program dispatcher,
the execution engine, and the crash analyzer. The probability
analyzer computes a probability for each address in the given
binary to indicate the likelihood of the address denoting a data
byte. The rewriter rewrites the binary in different forms by
sampling based on the computed probabilities. The program
dispatcher selects a rewritten version to execute, either ran-
domly for a normal execution request or strategically for root
cause diagnosis. The execution engine, a variant of AFL [3],
executes a given binary and monitors for crashes. The crash
analyzer triggers incremental rewriting when it determines a
crash is intentional; otherwise, it analyzes the root cause and
automatically repairs it if the cause is a rewriting error.

STOCHFUZZ has three typical workflows. Case one is the
most common. It is similar to the standard AFL. Specifically,
the execution engine sends a request to the program dispatcher
for a binary. The dispatcher randomly selects a rewritten binary
(from its pool), which is then executed by the engine. The
binary subsequently exits normally without any crash.

In case two, the execution is terminated by an intentional
crash (i.e., a hlt instruction). The crash is reported to

the crash analyzer, which identifies the new code coverage
indicated by the crash and analyzes the newly discovered code
to collect additional hints for distinguishing data and code. The
hints are passed on to the probability analyzer, which recom-
putes the probabilities and invokes the incremental rewriter to
generate new binaries.

In case three, the execution is terminated by an unintentional
crash (i.e., a crash not caused by hlt). To verify whether the
crash is triggered by some rewriting error, the crash analyzer
notifies the program dispatcher to send a binary that has all
uncertain rewritings removed for execution. If the previous
crash persists, it must be caused by a latent bug in the original
program. Otherwise, the crash is caused by rewriting error. The
crash analyzer further performs delta-debugging to locate the
root cause and repairs it. The repair is passed on as a hint to
the probability analyzer and triggers probabilities updates and
generation of new binaries. In the remainder of this section,
we discuss details of the components.

A. Probability Analyzer

This component computes the probabilities of each address
denoting data or code. Initially (before fuzzing starts), it
computes the probabilities based on the results of a simple
disassembler that we only use to disassemble at each address
in the binary. During fuzzing, with new observations (e.g.,
indirect call and jump targets) and exposed rewriting errors, it
continuously updates probabilities until convergence. It models
the challenge as a probabilistic inference problem [29]. Specif-
ically, random variables are introduced to denote individual
addresses’ likelihood of being data or code. Prior probabilities,
which are usually predefined constants as in the literature [30]–
[33], are associated with a subset of random variables in-
volved in observable features (e.g., definition-use relations
that suggest likely code). Random variables are correlated
due to program semantics. The correlations are modeled as
probabilistic inference rules. Prior probabilities are propagated
and aggregated through these rules until convergence using
probabilistic inference algorithms, yielding posterior probabil-
ities. In the following, we explain how we define the problem
and introduce our lightweight solution.

Definitions and Analysis Facts. As shown in the top of
Fig. 7, we use a to denote an address, c a constant, and r

a register. The bottom part of Fig. 7 presents the analysis
facts directly collected from the binary. These facts are deter-
ministic (not probabilistic). Inst(a, c) denotes that the c bytes
starting from address a can be encoded as a valid instruction.
ExplicitSucc(a1, a2) denotes the instruction at address a2 is
an explicit successor of the instruction at address a1 along
control flow. RegWrite(a, r) denotes the instruction at a writes
to register r. RegRead denotes the read operation. Str(a, c)
denotes the c bytes starting from address a constitute a
printable null-terminated string.

Initially, STOCHFUZZ disassembles at each address and
collects the analysis facts. It collects more facts than those
in Fig. 7. They are elided due to space limitations.
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causing a segfault. The diagnosis and self-correction procedure
is hence invoked (steps 2 - 5 ). Specifically, the binary cleaning
step 2 removes all the rewritings at uncertain addresses (in
yellow or red shades) and re-executes the program (to the
right of 2 ). The crash at address 123 disappears, indicating
the crash must be induced by a rewriting error. STOCHFUZZ
uses delta debugging and generates two binaries, one with only
25 replaced (i.e., the snippet to the left of 4 ) and the other
with 38 replaced (i.e., the snippet to the left of 5 ). The former
crashes at the same address 123 whereas the latter crashes at
38 (and hence an intentional crash). As such, STOCHFUZZ
determines that the rewriting of address 25 is wrong and fixes
it by marking it as “certainly data” (i.e., with probability
1.0) in the version to the right of 5 . This new hint leads
to probability updates of other addresses (e.g., 29 and 32).
The procedure continues and eventually all addresses have
certain classification (i.e., all in green shade) and the program
is properly rewritten. ⇤

III. SYSTEM DESIGN

The architecture of STOCHFUZZ is shown in Fig. 5. It
consists of five components: the probability analyzer, the
incremental and stochastic rewriter, the program dispatcher,
the execution engine, and the crash analyzer. The probability
analyzer computes a probability for each address in the given
binary to indicate the likelihood of the address denoting a data
byte. The rewriter rewrites the binary in different forms by
sampling based on the computed probabilities. The program
dispatcher selects a rewritten version to execute, either ran-
domly for a normal execution request or strategically for root
cause diagnosis. The execution engine, a variant of AFL [3],
executes a given binary and monitors for crashes. The crash
analyzer triggers incremental rewriting when it determines a
crash is intentional; otherwise, it analyzes the root cause and
automatically repairs it if the cause is a rewriting error.

STOCHFUZZ has three typical workflows. Case one is the
most common. It is similar to the standard AFL. Specifically,
the execution engine sends a request to the program dispatcher
for a binary. The dispatcher randomly selects a rewritten binary
(from its pool), which is then executed by the engine. The
binary subsequently exits normally without any crash.

In case two, the execution is terminated by an intentional
crash (i.e., a hlt instruction). The crash is reported to

the crash analyzer, which identifies the new code coverage
indicated by the crash and analyzes the newly discovered code
to collect additional hints for distinguishing data and code. The
hints are passed on to the probability analyzer, which recom-
putes the probabilities and invokes the incremental rewriter to
generate new binaries.

In case three, the execution is terminated by an unintentional
crash (i.e., a crash not caused by hlt). To verify whether the
crash is triggered by some rewriting error, the crash analyzer
notifies the program dispatcher to send a binary that has all
uncertain rewritings removed for execution. If the previous
crash persists, it must be caused by a latent bug in the original
program. Otherwise, the crash is caused by rewriting error. The
crash analyzer further performs delta-debugging to locate the
root cause and repairs it. The repair is passed on as a hint to
the probability analyzer and triggers probabilities updates and
generation of new binaries. In the remainder of this section,
we discuss details of the components.

A. Probability Analyzer

This component computes the probabilities of each address
denoting data or code. Initially (before fuzzing starts), it
computes the probabilities based on the results of a simple
disassembler that we only use to disassemble at each address
in the binary. During fuzzing, with new observations (e.g.,
indirect call and jump targets) and exposed rewriting errors, it
continuously updates probabilities until convergence. It models
the challenge as a probabilistic inference problem [29]. Specif-
ically, random variables are introduced to denote individual
addresses’ likelihood of being data or code. Prior probabilities,
which are usually predefined constants as in the literature [30]–
[33], are associated with a subset of random variables in-
volved in observable features (e.g., definition-use relations
that suggest likely code). Random variables are correlated
due to program semantics. The correlations are modeled as
probabilistic inference rules. Prior probabilities are propagated
and aggregated through these rules until convergence using
probabilistic inference algorithms, yielding posterior probabil-
ities. In the following, we explain how we define the problem
and introduce our lightweight solution.

Definitions and Analysis Facts. As shown in the top of
Fig. 7, we use a to denote an address, c a constant, and r

a register. The bottom part of Fig. 7 presents the analysis
facts directly collected from the binary. These facts are deter-
ministic (not probabilistic). Inst(a, c) denotes that the c bytes
starting from address a can be encoded as a valid instruction.
ExplicitSucc(a1, a2) denotes the instruction at address a2 is
an explicit successor of the instruction at address a1 along
control flow. RegWrite(a, r) denotes the instruction at a writes
to register r. RegRead denotes the read operation. Str(a, c)
denotes the c bytes starting from address a constitute a
printable null-terminated string.

Initially, STOCHFUZZ disassembles at each address and
collects the analysis facts. It collects more facts than those
in Fig. 7. They are elided due to space limitations.
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Existing Solutions for Binary-only Fuzzing

Grey-box fuzzing found: 
• More than 21,000 bugs in the Chromium projects 
• More than 16,000 bugs in other open source projects 

What if the source code is not available (e.g., close-sourced programs)?  
STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

Dynamic Binary Translation: Translate a subject binary during its 
execution. It is sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support 
such as Intel PT to collect runtime traces that can be post-processed 
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to 
directly instrument binaries (cost-effective but usually unsound).

Dynamic Binary Translation (afl-qemu): translate a subject 
binary during its execution. It is sound but expensive (high 
overhead >600%). 

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

Dynamic Binary Translation: Translate a subject binary during its 
execution. It is sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support 
such as Intel PT to collect runtime traces that can be post-processed 
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to 
directly instrument binaries (cost-effective but usually unsound).

Hardware-Assisted Tracing (ptfuzzer): make use of 
advanced hardware support such as Intel PT to collect 
runtime traces that can be post-processed (relatively high 
overhead and only coverage-based feedback). 

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

Dynamic Binary Translation: Translate a subject binary during its 
execution. It is sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support 
such as Intel PT to collect runtime traces that can be post-processed 
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to 
directly instrument binaries (cost-effective but usually unsound).

Static Binary Instrumentation (e9patch and ddisasm): 
leverage advanced binary analysis to directly instrument 
binaries (cost-effective but usually unsound). 

Observation

Fuzzing is a highly repetitive process that provides a large number of 
opportunities for trial-and-error.  
We can try different data and code separations, which lead to different 
instrumented executables, in different fuzzing runs. 

Static Binary Instrumentation with Error Awareness

0 :  mov rbx, [14] // rbx=14 
8 :  add rbx, 14   // rbx=22 
12:  jmp rbx 
14:  .qword 8 
22:  syscall

original space
0 :  jmp 90 
8 :  hlt 
12:  hlt 
14:  .qword 8 
22:  jmp 114

90 :  [AFL Tracing] 
100:  mov rbx, [14] 
108:  add rbx, 14 
112:  jmp rbx 
114:  [AFL Tracing] 
124:  syscall

original space shadow space

0  :  jmp 90 
8  :  hlt 
12 :  hlt 
14 :  .qword 8 
22 :  hlt 
. . .  
90 :  [AFL Tracing] 
100:  mov rbx, [14] 
108:  add rbx, 14 
112:  jmp rbx

FNs are 
detected by 
intentional 
crashes 
which are 
triggered by 
inserted 
hlt 
instructions.

0  :  jmp 90 
8  :  hlt 
12 :  hlt 
14 :  hlt 
22 :  hlt 
. . .  
90 :  [AFL Tracing] 
100:  mov rbx, [14] 
108:  add rbx, 14 
112:  jmp rbx 
114:  [AFL Tracing] 
124:  syscall

FPs are 
detected by 
unintentional 
crashes 
which are not 
triggered by 
inserted hlt 
instructions.

(a) example code (b) ideal case

(c) false negative (regarding code as data) (d) false positive (regarding data as code)

Architecture of STOCHFUZZ

Over time, an increasing 
number of samples can be 
collected, allowing us to 
achieve the precise 
separation and correct 
rewriting. 
Observe the rewriting 
process converges quickly. 

Progress of Incremental and Stochastic Rewriting

(c) Zero-day 
vulnerabilities in close-
sourced softwares
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Fig. 14: Total Number of Fuzzing Executions in 24 hours. We
use afl-gcc as the baseline, and report the ratio of STOCHFUZZ
to afl-gcc. In the legend, we present the average number of
fuzzing executions over the 24 programs.

TABLE IX: Zero-day vulnerabilities disclosed by
STOCHFUZZ

Program Size MD5 Status

CUDA 33M EDAF12B5 Bug ID 3190151 (FIXED)
PNGOUT 89K 64F6899D CVE-2020-29384

jdump, nvdisasm, cu++filt, and nvprune), PNGOUT, RAR
(rar and unrar) for a week. It discloses two zero-day vul-
nerabilities, as listed in Table IX. The first column presents
the programs, and columns 2-5 present the release date of
subject programs, the size, the first 4 bytes of MD5 Hash,
and current bug status, respectively. CUDA Binary Utilities,
developped by NVIDIA, are a set of utilities which can extract
information from CUDA binary files [45]. The bug has been
Fixed in CUDA 11.3 [65]. PNGOUT is a closed-source PNG
file compressors, which is adopted by multiple commercial or
non-commercial image optimizers [46], [47]. These optimizers
are further used by thousands of website to speed up image
uploading. The PNGOUT vulnerability has been assigned a
CVE ID.

G. Collect Other Runtime Feedback Than Coverage

We follow the exact same setup in IJON, with two maze
sizes (large and small) and two sets of rules. With the easy
rule, a game is terminated once an incorrect step is taken.
With the hard one, the player is allowed to backtrack. Note
that in the later case, the state space is much larger. We
experiment with 4 tools, afl-clang-fast without IJON plugin,
afl-clang-fast with IJON plugin, binary-only afl-qemu with
ported IJON plugin, and binary-only STOCHFUZZ with ported
IJON plugin. We run each tool three times with a 12-hour
timeout. Table X shows the overall effectiveness. The first
column presents the different mazes under different rules.
Columns 2-5 denote whether the maze is solved by the 4
different tools, respectively. Afl-clang-fast solves the small
maze with the easy rule 2 out of 3 trials, and the small maze
with the hard rule 1 out of 3 trials. The other tools successfully
solve all the mazes. Table XI shows the average time (in
minutes) needed to solve the mazes and the standard deviation.

TABLE X: Maze Solving by Different Approaches. Three runs
are performed, each with a timeout of 12 hours, according to
the setting of the original paper. Symbol 7 denotes no solution
was found in any run, 3 denotes that all runs solved the maze.

Maze
Plain IJON-Source IJON-Binary

afl-clang-fast afl-clang-fast afl-qemu STOCHFUZZ

Sm
al

l

Easy 2/3 3 3 3

Hard 1/3 3 3 3

La
rg

e Easy 7 3 3 3

Hard 7 3 3 3

TABLE XI: Different approaches are solving the small / large
maze. The tables shows the average time-to-solve in minutes
± the standard deviation.

Maze
Plain IJON-Source IJON-Binary

afl-clang-fast afl-clang-fast afl-qemu STOCHFUZZ

Sm
al

l Easy 95.42± 40.47 1.52± 0.45 20.96± 10.56 1.64± 0.51
Hard 149.78± 0.0 0.46± 0.09 3.85± 1.90 0.52± 0.06

La
rg

e Easy - 20.66± 9.19 150.28± 30.27 22.94± 14.49
Hard - 5.31± 1.59 96.85± 16.61 5.12± 1.89

Observe that although afl-clang-fast can solve some small
mazes, it takes the longest time. Regarding the two binary-only
approaches, STOCHFUZZ is around 8⇥ faster than afl-qemu.
Additionally, STOCHFUZZ only has around 8% slowdown
compared with afl-clang-fast plus IJON, which demonstrates
the capabilities of STOCHFUZZ.

H. One-step Sum-product Algorithm
Algorithm 2 describes the one-step sum-product inference

procedure. Ocode and Odata denote the aggregated code and
data observation values for each address, respectively. Note
that a small value means strong belief. Line 3 performs the
deterministic inference. Line 9 identifies SCCs and transforms
UCFG to a DAG of SCCs. Step 1 in lines 13-20 propagates
code observations. Step 2 in lines 22-33 propagates data
observations. The formula in line 28 is derived from a simple
factor graph involving three variables (i.e., addresses i, iprev,
and j), and three factors (for Odata[iprev], Odata[i], and rule
7 ). Details are elided. Step 3 in lines 35-39 performs the one-

step sum-product for each address. Lines 36 and 37 assign
observation value 0.5 if there is no belief propagated to the
address. The formula in line 38 is derived from that in Fig. 10.

18

stripped
binary

p
binary w/

analysis result

Program
Dispatcher

Incremental
& Stochastic

Rewriter

Execution
Engine (AFL)

Probability
Analyzer

STOCHFUZZ

random 
rewritten binary

crash

Crash Analyzer

execution request

hint

analysis request

rewritten
binaries

an
al

ys
is

 re
qu

es
t

12
1.

8M

21
.8

M

17
5.

4M

65
.3

M

29
.9

M

22
4.

0M

24
.5

M

12
1.

4M

45
.7

M

17
8.

1M

75
.8

M

26
.9

M

21
8.

3M

24
.9

M

0.0K
50.0M

100.0M
150.0M
200.0M
250.0M

bi
nu

til
s

bz
ip

2

fil
e

lib
ar

ch
iv

e

lib
pn

g

lib
tif

f

tc
pd

um
p

RetroWrite (94.7M) StochFuzz (98.7M)

Fig. 13: The number of total fuzzing executions in 24 hours
on RetroWrite’s fuzzing benchmarks

TABLE VI: Path Coverage on RetroWrite’s benchmarks
Tools binutils bzip2 file libarchive libpng libtiff tcpdump Average

RetroWrite 6200 636 29 2706 977 969 3673 2170
STOCHFUZZ 6392 1416 29 2384 928 969 3344 2209

D. Analysis and Rewriting Overhead on Google FTS.

Different from techniques leveraging hardware features
or dynamic translation, techniques based on static rewriting
incur analysis and rewriting cost. We further study such
overhead on the standard Google FTS for e9patch, ddisasm,
and STOCHFUZZ. Table VII shows the results (measured by
total CPU time). The second column shows the overhead of
e9patch. The third and fourth columns show the overhead
of ddisasm using different reassembly flags, and the last two
columns show the overhead of STOCHFUZZ which is broken
down to rewriting and probability analysis overhead. Note
that ddisasm uses all 48 cores by default. However, after
communicating with the developers, we were notified that
there are some parallelism issues with the default setting. As
such, running with -j8 (for using 8 cores) produces much better
results. E9patch does not distinguish code and data, as it as-
sumes exclusion of such interleavings. Hence, it has the lowest
cost. Although the aggregated overheads of STOCHFUZZ are
not trivial, they are amortized over the 24 hours period. Also
observe that STOCHFUZZ’s overhead is comparable to ddisasm
(-j8).

E. Evaluation on Google FTS with Intential Data Inlining

Table VIII presents the overall effectiveness results for the
experiment on Google FTS with intentional data inlining. The
numbers of inlined data bytes are presented in the second
column (i.e., data bytes in between two code sections), and
whether the binaries instrumented by e9patch, ddisasm, and
STOCHFUZZ can be successfully fuzzed are presented in the
next three columns, respectively. E9patch fails on 22 out of
the 24 programs, due to its assumption of no inlined data.
It succeeds on two programs because they do not contain
static data sections. Ddisasm fails on 21 programs due to
three reasons. Specifically, 71 denotes a recompilation error
that a byte value is larger than 256. It happens when ddisasm
mis-classifies a data byte as an offset of two labels. Hence,
when instrumentation code is inserted, the offset increases,
making the data byte larger than 256. Symbol 72 denotes a

TABLE VII: Analysis and Rewriting Overhead

Program e9patch
ddisasm ddisasm STOCHFUZZ

default (-j48) -j8 rewriting prob. anly.

boringssl - 67h 43m 20s 126.90s 9.77s 67.35s
c-ares 0.02s 0h 47m 22s 1.17s 0.05s 0.02s
freetype2 0.76s 28h 57m 28s 96.24s 21.39s 91.59s
guetzli 0.38s 8h 51m 19s 76.05s 5.47s 95.84s
harfbuzz 0.51s 8h 02m 28s 70.89s 5.33s 64.17s
json 0.10s 4h 44m 48s 12.93s 1.30s 8.33s
lcms 0.34s 10h 39m 50s 36.58s 3.56s 13.19s
libarchive 0.51s 11h 53m 49s 61.67s 4.09s 34.29
libjpeg-turbo 0.45s 30h 16m 04s 108.79s 10.49s 24.33s
libpng 0.13s 3h 29m 24s 10.87s 1.48s 3.54s
libssh 0.36s 54h 03m 58s 50.22s 2.74s 23.98s
libxml2 2.03s 23h 52m 25s 188.59s 19.86s 177.20s
llvm-libcxxabi 0.19s 4h 33m 28s 15.57s 1.90s 19.78s
openssl-1.0.1f - 83h 57m 03s 209.57s 22.95s 153.62s
openssl-1.0.2d - 25h 05m 28s 37.91s 2.55s 4.82s
openssl-1.1.0c - 117h 15m 42s 354.86s 31.57s 229.91s
openthread 0.70s 20h 24m 43s 57.96s 6.10s 13.33s
pcre2 0.33s 26h 35m 04s 481.04s 4.38s 24.38s
proj4 0.42s 10h 43m 34s 39.25s 4.69s 20.62s
re2 0.40s 17h 12m 33s 41.62s 4.60s 84.82s
sqlite 1.02s 16h 49m 43s 117.92s 14.38s 233.97s
vorbis 0.22s 16h 07m 57s 32.29s 2.26s 12.61s
woff2 0.49s 39h 09m 27s 123.50s 6.34s 21.11s
wpantund 1.58s 33h 08m 02s 176.65s 14.55s 579.94s

Average 0.55s 27h 41m 02s 105.38s 8.41s 83.41s

TABLE VIII: Effectiveness on Google FTS w/ Intentional Data
Inlining

Program # Data Bytes e9patch ddisasm STOCHFUZZ

boringssl 263,539 7 7 3
c-ares 7 7 3
freetype2 91,960 7 7 3
guetzli 18,543 7 7 3
harfbuzz 63,061 7 7 3
json 0 3
lcms 22,576 7 7 3
libarchive 55,698 7 7 3
libjpeg-turbo 79,329 7 7 3
libpng 9,054 7 7 3
libssh 141,943 7 7 3
libxml2 128,007 7 7 3
llvm-libcxxabi 0 3
openssl-1.0.1f 169,787 7 7 3
openssl-1.0.2d 43,796 7 7 3
openssl-1.1.0c 369,397 7 7 3
openthread 32,691 7 7 3
pcre2 95,763 7 7 3
proj4 30,978 7 7 3
re2 35,336 7 7 3
sqlite 35,467 7 7 3
vorbis 59,986 7 7 3
woff2 494,994 7 7 3
wpantund 89,203 7 7 3

recompilation error that the target of a jump instruction is an
integer (instead of a symbol). It happens when ddisasm mis-
classifies some data bytes as a jump instruction whose target
cannot be symbolized. Symbol 73 denotes that instrumentation
code crashes on seed inputs (due to some recompilation error).
In contrast, STOCHFUZZ successfully instruments and fuzzes
all the programs.

F. Finding Zero-days in Closed-source Programs

In this experiment, we demonstrate STOCHFUZZ’s applica-
bility in closed-source or COTS binaries. We run STOCHFUZZ
on a set of 7 such binaries including CUDA Toolkit (cuob-
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