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Abstract—Fuzzing stripped binaries poses many hard chal-
lenges as fuzzers require instrumenting binaries to collect
runtime feedback for guiding input mutation. However, due
to the lack of symbol information, correct instrumentation is
difficult on stripped binaries. Existing techniques either rely on
hardware and expensive dynamic binary translation engines such
as QEMU, or make impractical assumptions such as binaries
do not have inlined data. We observe that fuzzing is a highly
repetitive procedure providing a large number of trial-and-error
opportunities. As such, we propose a novel incremental and
stochastic rewriting technique STOCHFUZZ that piggy-backs on
the fuzzing procedure. It generates many different versions of
rewritten binaries whose validity can be approved/disapproved by
numerous fuzzing runs. Probabilistic analysis is used to aggregate
evidence collected through the sample runs and improve rewrit-
ing. The process eventually converges on a correctly rewritten
binary. We evaluate STOCHFUZZ on two sets of real-world
programs and compare with five other baselines. The results
show that STOCHFUZZ outperforms state-of-the-art binary-only
fuzzers (e.g., e9patch, ddisasm, and RetroWrite) in terms of sound-
ness and cost-effectiveness and achieves performance comparable
to source-based fuzzers. STOCHFUZZ is publicly available [1].

I. INTRODUCTION

Grey-box fuzzing [2]-[5] is a widely used security testing
technique that generates inputs for a target program to ex-
pose vulnerabilities. Starting from some seed inputs, a fuzzer
repetitively executes the program while mutating the inputs.
The mutation is usually guided by coverage information. For
instance, a popular strategy is that input mutations leading to
coverage improvement are considered important and subject
to further mutations. As such, existing fuzzing engines rely
on instrumentation to track code coverage. Typically, they
leverage compilers to conduct instrumentation before fuzzing
when source code is available. However in many cases, only
binary executables are available. Various techniques have been
developed to support fuzzing applications without source code.
We call them binary-only fuzzing techniques.

Existing binary-only solutions fall into three categories:
(1) leveraging hardware support, (2) leveraging on-the-fly dy-
namic binary rewriting, and (3) relying on offline static binary
rewriting. The first category makes use of advanced hardware
support such as Intel PT [6] to collect runtime traces that can
be post-processed to acquire coverage information. Such traces
record individual executed basic blocks, which are generated
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at a very high rate, and hence require substantial efforts to
process. In addition, it is difficult to collect runtime infor-
mation other than control-flow traces. The second kind uses
dynamic rewriting engines such as QEMU [7] and PIN [8],
which instrument a subject binary during its execution. They
trap execution of each new basic block and rewrite it on the
fly. The rewritten basic block is then executed. The method
is sound but expensive due to the heavyweight machinery (4-
5 times slower than source based fuzzing according to our
experiment in Section VI). The third kind instruments the
binary just once before the whole fuzzing process. However,
sound static binary rewriting is an undecidable problem [9]
due to the lack of symbol information. It entails addressing
a number of hard challenges such as separating code and
data, especially inlined data [10], [11], and identifying indirect
jump and call targets [12], [13]. Existing solutions are either
based on heuristics and hence unsound [12], [14], or based on
restricted assumptions such as no inlined data is allowed [15]
and relocation information must be available [16]. However,
these assumptions are often not satisfied in practice. According
to our experiment in Section VI, a number of state-of-the-art
solutions, such as e9patch [15] and ddisasm [12] fail on real-
world binaries.

We observe that fuzzing is a highly repetitive process in
which a program is executed for many times. As such, it
provides a large number of chances for trial-and-error, allow-
ing rewriting to be incremental and progress with increasing
accuracy over time. We hence propose a novel incremental and
stochastic rewriter that piggy-backs on the fuzzing procedure.
It uses probabilities to model the uncertainty in solving the
aforementioned challenges such as separating data and code.
In other words, it does not require the binary analysis to
acquire sound results to begin with. Instead, it performs initial
rewriting based on the uncertain results. The rewritten binary is
very likely problematic. However, through a number of fuzzing
runs, the technique automatically identifies the problematic
places and repairs them. The process is stochastic. It does
not use a uniform rewritten binary. Instead, it may rewrite the
binary differently for each fuzzing run by drawing samples
from the computed probabilities. It randomly determines if
bytes at some addresses ought to be rewritten based on the
likelihood that the addresses denote an instruction. As such,
the problematic rewritings are distributed and diluted among



many versions, allowing easy fault localization / repair and
ensuring fuzzing progress. Note that if a binary contains too
many rewriting problems, the fuzzer may not even make rea-
sonable progress, significantly slowing down the convergence
to precise rewriting. In contrast, during stochastic rewriting,
while some versions fail at a particular place, many other
versions can get through the place (e.g., as they do not rewrite
the place), which in turn provides strong hints to fix the prob-
lem. The probabilities are updated continuously across fuzzing
runs as our technique sees more code coverage and fixes more
rewriting problems, affecting the randomly rewritten versions.
At the end, the uncertainty is excluded when enough samples
have been seen, and the process converges on a stable and
precisely rewritten binary.

Our contributions are summarized as follows.

o We propose a novel incremental and stochastic rewriting
technique that is particularly suitable for binary-only
fuzzing. It piggy-backs on fuzzing and leverages the
numerous fuzzing runs to perform trial-and-error until
achieving precise rewriting.

o The technique is facilitated by a lightweight approach that
determines the likelihood of each address denoting a data
byte. We formally define the challenge as a probabilistic
inference problem. However, standard inference algo-
rithms are too heavyweight and not sufficiently scalable
in our context, which requires recomputing probabilities
and drawing samples during fuzzing. We hence develop
a lightweight approximate algorithm.

« We develop a number of additional primitives to support
the process, which include techniques to automatically
locate and repair rewriting problems.

e« We develop a prototype STOCHFUZZ and evaluate it
on the Google Fuzzer Test Suite [17], the benchmarks
from RetroWrite [16], and a few commercial binaries.
We compare it with state-of-the-art binary-only fuzzers
e9patch [15], ptfuzzer [18], ddisam [12], afl-gemu [19]
and RetroWrite [16] and also with source based fuzzers
afl-gcc [3] and afi-clang-fast [20]. Our results show that
SToCHFUZZ outperforms these binary-only fuzzers in
terms of soundness and efficiency, and has comparable
performance to source based fuzzers. For example, it is
7 times faster than afl-gemu, and successfully handles
all the test programs while other static binary rewriting
fuzzers fail on 12.5 — 37.5% of the programs. Our fuzzer
also identifies zero-days in commercial binaries without
any symbol information. We have conducted a case study
in which we port a very recent source based fuzzing
technique IJON [21] that tracks state feedback in addition
to coverage feedback, to support binary-only fuzzing.
It demonstrates the applicability of STOCHFUZZ. Our
system and benchmark corpora are publicly available [1].

II. MOTIVATION

In this section, we use an example to illustrate the limita-
tions of existing binary-only fuzzing techniques and motivate
ours. Fig. 1 presents a piece of assembly code for illustration

.CODEO:

Inst Var Val Note
0 : mov rbx,
7 : mov [rax], rbx 0 : mov rbx, 13 rbx 13 .CODE2- .DATA
10: lea r8, [rip+8] 7 : mov [rax], rbx [rax] 13 .CODE2-.DATA
17: mov edx, [r8] 10: lea r8, [rip+8] r8 25 .DATA
20: add rdx, r8
23: jmp rdx 17: mov edx, [r8] rdx 4 .CODE1-.DATA
.DATA: 20: add rdx, r8 rdx 29 .CODE1
25: .int 4 23: jmp rdx jmp | .CODEL -
.CODEL: —
29:" mov r9, [rax] 29: mov r9, [rax] r9 13 .CODE2-.DATA
32: add r8, r9 32: add r8, r9 r8 38 .CODE2
35: Jjmp r8 35: jmp r8 jmp | .CODE2 -
.CODE2: —_—
38:" mov rax, 60 38: mov rax, 60 rax 60 -
45: syscall 45: syscall - - -

Fig. 1: Motivation example

purpose (its functionality is irrelevant). The right side of the
figure depicts its execution trace - where the executed instruc-
tions, destination registers, and evaluation results are listed in
the first three columns, respectively. The last column presents
the related section(s) if the evaluated result is address relevant.
For example, the value 25 generated by the instruction at
address 10 denotes an address in the . DATA section while the
value 29 generated by the instruction at address 20 denotes an
address in .CODE1L.

As shown, the snippet consists of three code sections (i.e.,
.CODEO, .CODE1, and .CODE2) and an interleaved data
section .DATA. The first two instructions (at addresses 0 and
7) in .CODEO load a constant 13 to rbx, and then store
it in a memory location denoted by [rax]. The constant
13 denotes the offset between the .CODE2 section and the
.DATA section, i.e., 38-25=13, and will be used later in
addressing. The three instructions at addresses 10, 17, and 20
calculate the address of label . CODE1. Specifically, r8 is first
set to the address of . DATA via a PC-related 1ea instruction.
At address 17, an integer 4 representing the offset between
labels .CODE1 and .DATA is loaded from the memory
address denoted by [r8] (i.e., address 25) to edx, which
consequently updates rdx. Next, r8 is added to rdx. The
resulting rdx denotes the address of . CODE1. The subsequent
instruction at 23 triggers an indirect jump to label . CODEL.
The next two instructions at addresses 29 and 32 determine
the target of the indirect jump at address 35 (i.e., . CODE2) by
loading the offset 13 from [rax] and adding it to the address
of .DATA stored in r8. A syscall is invoked subsequently
once the indirect jump is triggered. Observe that the code
snippet has inlined data, indirect jumps, and complex address
computation, which pose substantial challenges to existing
binary-only fuzzers.

A. Limitations of Existing Technique

Recall that fuzzers need to collect runtime feedback such
as code coverage to guide input mutation. For binary-only
fuzzers, such feedback can be captured by a technique in
one of the following three categories: (1) hardware-assisted
tracing, (2) dynamic binary instrumentation, and (3) static
binary rewriting. In Table I, we summarize the characteristics
of existing techniques. Column 1 lists these techniques, with
the first two being source-based AFL fuzzers using gcc and
clang compilers, ptfuzzer using hardware-assisted tracing, afl-
gemu using dynamic instrumentation, and the others including



TABLE I: Summary of different binary-only fuzzing instru-
mentation techniques, along with compiler instrumentation
(afl-gcc and afil-clang-fast). Al denotes that the binary has
symbol and relocation information, A2 denotes that the bi-
nary is Position Independent, A3 denotes that all instruction
boundaries are correctly identified by upstream disassembler,
and A4 denotes that the binary does not contain any inlined
data. S1 denotes that the tool supports binaries compiled
from C++ programs, and S2 denotes that the tool supports
collecting other runtime information than coverage. Note that
the soundness of STOCHFUZZ can be guaranteed when there
is no inlined data, and probabilisticly guaranteed otherwise.

Prerequisite Support
Tool Soundness  Efficiency

Al A2 A3 A4 S1 82
afl-gce Require Source Code Sound A
afl-clang-fast Require Source Code Sound A+
ptfuzzer [18] - - - - Y N Sound C
afl-qemu - - - - Y Y Sound D
afl-dyninst [14] - - v - Y Y Unsound A
e9patch [15] - - v vV Y Y Sound B
RetroWrite [16] v v Vv v N Y  Unsound A
ddisasm [12] - - - - Y Y Unsound A
- - - vV Y Y Sound A
StocuFuzz - - - Y Y Probsound A

ours using static binary rewriting. Columns 2-5 are the as-
sumptions made by these tools, where v denotes that a specific
precondition is required. Columns 6 and 7 show whether
C++ programs and other runtime feedback beyond coverage
are supported, respectively. Column 8 denotes the soundness
guarantee which means if the technique guarantees to rewrite
the binary properly and collect the right feedback, and column
9 denotes fuzzing efficiency with A+ the best.

Hardware-assisted Tracing. Modern processors offer a mech-
anism that captures software execution information using
dedicated hardware [6]. PTFuzzer [18] leverages this feature
to collect code coverage for binary-only fuzzing. For instance,
after executing the code in Fig. 1, two control transfers are
recorded, i.e., from 23 to 29 and from 35 to 38. Based on
the information, PTfuzzer subsequently recovers the execu-
tion path and hence the coverage. Other hardware-assisted
fuzzers operate similarly [22], [23]. The performance of these
approaches is limited by the costly trace post-processing
(4x slower than afl-clang-fast according to our experiments).
Additionally, hardware-assisted fuzzing cannot capture other
runtime feedback than coverage [4], [21].

Dynamic Instrumentation. Dynamic instrumentation trans-
lates and instruments the binary during execution [7], [8].
Although it is an attractive solution due to its sound instrumen-
tation, the on-the-fly translation/instrumentation incurs rela-
tively higher runtime overhead compared to other approaches.
Afl-gemu, to the best of our knowledge, is among the best-
performing binary-only fuzzers based on dynamic instrumen-
tation. It still incurs significant overhead (5x slower than afl-
clang-fast according to our experiments). Other approaches in
this category, including afl-pin [24] and afl-dynamorio [25],

0 : mov rbx, 13 0 : mov rbx, 13
7 : mov [rax], rbx 7 : mov [rax], rbx
10: 1lea r8, [rip+8] 10: 1lea r8, [rip+8]
17: mov edx, [r8] 17: mov edx, [r8]
20: add rdx, r8 20: add rdx, r8 Pl
23: Jjmp rdx 23: jmp rdx ———
DATA: DATA:
25: .int 4 FP 25: .int 4
CODE1: CODE1:
29: mov r9, [rax] 29: mov r9, [rax]
32: add r8, r9 32: add r8, r9
35: Jjmp r8 35: Jjmp r8
CODE2: CODE2:
38: mov rax, 60 38: mov rax, 60
45: syscall 45: syscall FN

Linear Disassembly
Fig. 2: Limitations of disassembly methods. The red box
shows corrupted code, and the yellow box shows missing code.

Recursive Disassembly

0 : [afl trampoline]
0 : mov rbx,@ 10: mov rbx, 13

7 : mov [rax], rbx 17: mov [rax], rbx

10: lea r8, [rip+8] 20: 1lea r8, [L25] # r8=35(.125)

17: mov edx, [r8] 27: mov edx, [r8] # rdx=.L29-.L25

20: add rdx, r8 30: add rdx, r8 # rdx=.L29

23: Jjmp rdx 33: jmp rdx # correct(.L29)
DATA: L25:

25: .int 4 % 35: .int .129-.125
CODE1: L29:

29: mov r9, [rax] 39: [afl trampoline] + —

32: add r8, r9 49: mov r9, [rax] # r9=13

35: Jjmp r8 52: add r8, r9 # r8=45 ’,/
CODE2: 55: Jmp r8 ————

38: mov rax, 60 58: mov rax, 60

45: syscall 65: syscall

Fig. 3: Reassembly in RetroWrite. It crashes as the constant
13 in red circle is not properly symbolized.

induce even higher overhead.

Static Binary Rewriting. Static rewriting utilizes binary anal-
ysis to disassemble and rewrite the binary before execution.
Unfortunately, it is still a hard challenge to rewrite stripped
binary with soundness guarantee. Existing solutions often
make unsound assumptions about the target binary which may
lead to runtime failures.

Afl-dyninst [14], a trampoline-based approach built upon
traditional disassembly techniques, assumes the upstream dis-
assemblers can correctly identify all the instructions. However,
such assumption may not hold in practice due to code and
data interleavings [15], [16]. Fig. 2 demonstrates how the
code example in Fig. 1 breaks its assumption. The left of
Fig. 2 shows that a linear disassembly, which decodes all bytes
consecutively, is confused by address 25, the inlined data byte.
Recursive disassembly, on the other hand, avoids this problem
by disassembling instructions following control flow. But it
fails to resolve the target of the indirect jump at address 23,
missing the code from address 29 to 45.

E9patch [15] makes the same assumption as afl-dyninst,
and additionally assumes there is no inlined data. With these
assumptions, e9patch specially engineers jumps that can safely
overlap with other instructions. As such, it can insert tram-
polines without sacrificing the correctness of rewriting. In
addition, it uses a sophisticated virtual address space layout
for the instrumented binary, which on the other hand might
make it susceptible to a large number of cache misses and
additional overhead in process forking [26].

RetroWrite [16] is a reassembly technique for Position
Independent Code (PIC). It converts address related immediate
values in the binary to symbols (called symbolization) such



that they can be easily relocated after instrumentation. For
example in Fig. 3, the “lea r8, [rip+8]” instruction
at address 10 is translated as “lea r8, [L25]”, because
RetroWrite recognizes that rip+8 denotes a reference in the
code space and needs to be symbolized. As such, it could
be properly relocated after instrumentation. However, sound
static symbolization is provably undecidable [9] in general.
RetroWrite consequently makes strong assumptions such as
the requirement of relocation information and the exclusion of
C++ exception handlers. However, even if these requirements
were satisfied, the soundness of RetroWrite still could not be
guaranteed due to the need of sound memory access reasoning.
In the right side of Fig. 3, recognizing that the constant
13 in the first instruction “mov rbx, 13”7 is an address
offset (and needs symbolization) is challenging, due to the
long sequence of complex memory operations between this
instruction and the final address de-reference at 55, which
ultimately discloses constant 13 is an address offset. In the
example, RetroWrite misclassifies 13 as a regular value. As a
result, it is not symbolized. Ideally, it should be symbolized to
.L38-.L25, which would be concretized to 58-35=23 after
instrumentation. As a result, RetroWrite crashes on the binary.
A recent study [12] shares the same concern.

Ddisasm [12] is a state-of-the-art reassembly technique.
Rather than making assumptions about target programs, it
relies on a large set of reassembly heuristics such as instruc-
tion patterns. These heuristics, although comprehensive, have
inherent uncertainty and may fail in many cases.

B. Our Technique

Our technique is inspired by two important insights.
First insight: while grey-box fuzzers continuously mutate in-
puts across test runs, they may as well be enhanced to mutate
the program on-the-fly. As such, disassembly and static rewrit-
ing (which are difficult due to the lack of symbol information
and difficulties in resolving indirect jumps/calls offline) can be
incrementally performed over time.

Example. We use case A in the first row of Fig. 4 to
demonstrate how our technique leverages the first insight. The
workflow consists of four steps, an initial patching step prior to
fuzzing (step (1) and three incremental rewriting steps during
fuzzing (steps 2), 3), and (@)).

In the snippet to the left of (1), the code sections are filled
with a special one-byte hlt instruction , which will cause
a segfault upon execution. A segfault by a hlt instruction
indicates that the system has just discovered a code region
that has not been properly disassembled or rewritten such that
incremental rewriting should be performed. We will explain
later how we separate code and data in the first place (as only
code is replaced with h1t in the snippet). The separation of
the two does not have to be precise initially and our stochastic
rewriting (discussed later) can gradually improve precision
over the numerous fuzzing runs. For instance, the execution
of initial patched code is terminated by the h1t at address
0, indicating a new code region. For easy description, we call
such segfaults intentional crashes.

The next step (incrementally) rewrites all the addresses that
can be reached along direct control flow from the address
where the intentional crash happens. Specifically, STOCHFUZZ
places the rewritten code in a new address space, called the
shadow space; it further redirects all the direct jumps and calls
to their new targets in the shadow space by patching immediate
offsets; and since data sections are retained in their original
space, any PC-dependent data references need to be properly
patched too. At last, STOCHFUZZ inserts a jump instruction
at the crash address to direct the control flow to the shadow
space. In the code snippet in between (1) and (2), given the
crash address 0, STOCHFUZZ disassembles the instructions
from addresses 0 to 23 (highlighted in green shade). These
instructions are then rewritten in the shadow space starting
from address 90. Specifically, an afl trampoline is in-
serted at the beginning to collect coverage information, and
the original “lea r8, [rip+8]” instruction (at address
10) is rewritten to “lea r8, [rip-92]” (at address 110)
to ensure the data reference occurs at the original address.
STOCHFUZZ inserts a “jmp 907 instruction at 0 to transfer
the control flow. Then, the fuzzer continues fuzzing with the
new binary and the incremental rewriting is invoked again if
other intentional crashes occur (e.g., steps (2) and (3)). U

A prominent challenge is to separate code and data in
executables, especially when inlined data are present. Due to
the lack of symbol information, it is in general an undecidable
problem [9]. Heuristics or learning based solutions [12], [27]
are inevitably unsound. Data may be recognized as instructions
and replaced with h1t. As a result, the program may execute
with corrupted data which may or may not manifest them-
selves as crashes. Corrupted states may lead to bogus coverage
and problematic test results. On the other hand, instructions
may be recognized as data and hence not replaced with h1t.
Consequently, these instructions are invisible to our system
and not instrumented.

The following second insight allows us to address the
aforementioned problem. Second insight: fuzzing is a highly
repetitive process that provides a large number of opportu-
nities for trial-and-error. That is, we can try different data
and code separations, which lead to different instrumented
executables, in different fuzzing runs. Over time, an increasing
number of samples can be collected, allowing us to achieve
the precise separation and correct rewriting. There are two
challenges that we need to overcome in order to leverage
the insight. First, we need to distinguish exceptions caused
by rewriting errors (introduced by our trial-and-error) and by
latent bugs in the subject program. We call both unintentional
crashes (to distinguish from intentional crashes by h1lt). We
also need to pinpoint and repair rewriting errors, i.e., data bytes
misclassified as code (and undesirably replaced with h1lt),
and vice versa. We call it the self-correction requirement.
Second, an executable cannot contain too many rewriting
errors. Otherwise, the fuzzing runs of the executable can hardly
make progress (as it continues to crash on these errors one
after another). Note that we rely on the fuzzer’s progress to
collect more and more samples to correct our rewritings. We
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29: mov r9, [rax] M 25: .int 25: .int 4 25: .int 4 125: [afl trampoline] 25: .int 4 125: [afl trampoline] h
32 add :8' o \ 29: hlt 29: hlt 29: jmp 125 135: mov r9, [rax] 29: jmp 125 135: mov r9, [rax] h
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1
| Prob 90 : [afl trampoline] Prob 90 : [afl trampoline] Prob 90 : [afl trampoline] !
1 0.0 0: jmp 90 100: mov rbx, 13 0.0 0 jmp 90 100: mov rbx, 13 0.0 0 : jmp 90 100: mov rbx, 13 :
1 0.0 |7: hlt 107: mov [rax], rbx 0.0 | 7 : hit 107: mov [rax], rbx 0.0 | 7 : hlt 107: mov [rax], rbx h
I 0.0 | 10: nit 110: lea r8, [rip-92] 0.0 | 10: hilt 110: lea r8, [rip-92] 0.0 | 10: hilt 110: lea r8, [rip-92] |
: 0.0 | 17: hlt 117: mov edx, [r8] 0.0 | 17: hilt 117: mov edx, [r8] 0.0 | 17: hlt 117: mov edx, [r8] |
} 0.0 | 20: nhit 120: add rdx, r8 0.0 | 20: hilt 120: add rdx, r8 0.0 | 20: hlt 120: add rdx, r8 1
| 0.0 23 mit 123: jmp rdx Probability Recalculation & 0-0 | 23: hlt 123: jmp rdx ~ Probability Recalculation & 0.0 | 23: hlt 123: jmp rdx _ 1
| 0.1 | 25: .int4 Incremental Rewriting  1+0_| 25¢ .int 4 125: [afl trampoline] Incremental Rewriting 1.0 | 25: .int 4 125: [afl trampoline] !
| 0.1 | 29: mov r9, [rax] 0.07| 29: hilt 135: mov rax, 60 ——— 0.0 | 29: jmp 144 135: mov rax, 60 !
I 0.05 32: add r8, r9 0.02| 32: hlt 142: syscall 0.0 | 32: hit 142: syscall :
I 0.01| 35: jmp r8 0.01| 35: jmp r8 0.0 | 35: hilt 144: [afl trampoline] h
I 0.07 38: hit b ¢ 0.0 | 38: Jmp 125 X 0.0 | 38: Jmp 125 154: mov r9, [rax] H
: 0.02| 45: syscall Intentional crash at address 38 @ 0.0 | 45: hlt Intentional crash at address 29 @ 0.0145: hie 1:;: - ::' = ®:
jmp

Fig. 4: How STOCHFUZZ handles the motivation example

call it the progress requirement.

We therefore propose a novel stochastic rewriting tech-
nique that piggy-backs on the fuzzing procedure. At first,
the technique performs probabilistic inference to compute the
likelihood of individual bytes in the original address space
belonging to data (or code). Such probabilities are computed
based on various hints, such as register definition-use relations
that often indicate instructions and consecutive printable bytes
that often suggest data. Details of the probabilistic inference
can be found in Section III-A. Since these hints are inher-
ently uncertain (e.g., printable bytes may not be data), we
use probabilities to model such uncertainty. Based on the
computed probabilities, STOCHFUZZ randomly generates a
rewritten version for each fuzzing run. In a random version, the
bytes replaced with h1t are determined by sampling based on
their computed probabilities. For instance, a byte with a high
probability of being code is more likely replaced with hlt.
When a segfault is observed, STOCHFUZZ determines if it is
caused by a rewriting error, by running the failure inducing
input on a binary with all the uncertain rewritings removed and
observing if the crash disappears. If so, delta debugging [28],
a binary-search like debugging technique, is used to determine
the root cause rewriting. Over time, the corrected rewritings,
together with the new coverage achieved during fuzzing,
provide accumulating hints to improve probabilistic inference
and hence rewriting. Note that the proposed solution satisfies
the two aforementioned requirements: the rewriting errors are
distributed in many random versions such that the fuzzer can
make progress in at least some of them; and they can be
automatically located and repaired.

Example Continued. We use case B (the lower box) in
Fig. 4 to illustrate stochastic rewriting. At the beginning (the
snippet to the left of () in case B), STOCHFUZZ computes
the initial probabilities (of being data bytes) as shown to the
left of the individual addresses. For example, a definition-use
relation between addresses 0 and 7 caused by rbx decreases
their probability of being data. Assume in a random binary
version the addresses with color shades are replaced by hlt,
with the yellow ones being the correct replacements as they
denote instructions and the red one erroneous since a data
byte is replaced with a hlt. The binary is executed and
then an intentional crash is encountered at address 0. In the
snippet to the right of (1), besides the incremental rewriting
mentioned in case A, STOCHFUZzZ also performs probability
recalculation which updates the probabilities based on the new
hints from the execution. Intuitively, as address O is code, all
addresses (in green shade) reachable from the instruction along
control flow must be code. We say that they are “certainly
code” and their probabilities are set to 0. The probabilities of
remaining addresses are updated and new random binaries are
generated. In practice, many of the misclassified bytes such
as 25 are proactively fixed by these new hints and updated
probabilities, without causing any crashes or even being
executed. This illustrates the importance of the aforementioned
progress requirement.

However to make our discussion interesting, we assume
25 (i.e., the data byte) and 38 are still replaced in the new
version (i.e., the snippet to the right of (1)). During execution,
since the data at 25 is corrupted, a wrong target address
value is computed for rdx in the jump instruction at 123,
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Fig. 5: Architecture

causing a segfault. The diagnosis and self-correction procedure
is hence invoked (steps (2)-(3)). Specifically, the binary cleaning
step (@ removes all the rewritings at uncertain addresses (in
yellow or red shades) and re-executes the program (to the
right of 2)). The crash at address 123 disappears, indicating
the crash must be induced by a rewriting error. STOCHFUZZ
uses delta debugging and generates two binaries, one with only
25 replaced (i.e., the snippet to the left of (4)) and the other
with 38 replaced (i.e., the snippet to the left of (5)). The former
crashes at the same address 123 whereas the latter crashes at
38 (and hence an intentional crash). As such, STOCHFUZZ
determines that the rewriting of address 25 is wrong and fixes
it by marking it as “certainly data” (i.e., with probability
1.0) in the version to the right of (5). This new hint leads
to probability updates of other addresses (e.g., 29 and 32).
The procedure continues and eventually all addresses have
certain classification (i.e., all in green shade) and the program
is properly rewritten. [

III. SYSTEM DESIGN

The architecture of STOCHFUZZ is shown in Fig. 5. It
consists of five components: the probability analyzer, the
incremental and stochastic rewriter, the program dispatcher,
the execution engine, and the crash analyzer. The probability
analyzer computes a probability for each address in the given
binary to indicate the likelihood of the address denoting a data
byte. The rewriter rewrites the binary in different forms by
sampling based on the computed probabilities. The program
dispatcher selects a rewritten version to execute, either ran-
domly for a normal execution request or strategically for root
cause diagnosis. The execution engine, a variant of AFL [3],
executes a given binary and monitors for crashes. The crash
analyzer triggers incremental rewriting when it determines a
crash is intentional; otherwise, it analyzes the root cause and
automatically repairs it if the cause is a rewriting error.

STOCHFUZZ has three typical workflows. Case one is the
most common. It is similar to the standard AFL. Specifically,
the execution engine sends a request to the program dispatcher
for a binary. The dispatcher randomly selects a rewritten binary
(from its pool), which is then executed by the engine. The
binary subsequently exits normally without any crash.

In case two, the execution is terminated by an intentional
crash (i.e., a hlt instruction). The crash is reported to

the crash analyzer, which identifies the new code coverage
indicated by the crash and analyzes the newly discovered code
to collect additional hints for distinguishing data and code. The
hints are passed on to the probability analyzer, which recom-
putes the probabilities and invokes the incremental rewriter to
generate new binaries.

In case three, the execution is terminated by an unintentional
crash (i.e., a crash not caused by h1t). To verify whether the
crash is triggered by some rewriting error, the crash analyzer
notifies the program dispatcher to send a binary that has all
uncertain rewritings removed for execution. If the previous
crash persists, it must be caused by a latent bug in the original
program. Otherwise, the crash is caused by rewriting error. The
crash analyzer further performs delta-debugging to locate the
root cause and repairs it. The repair is passed on as a hint to
the probability analyzer and triggers probabilities updates and
generation of new binaries. In the remainder of this section,
we discuss details of the components.

A. Probability Analyzer

This component computes the probabilities of each address
denoting data or code. Initially (before fuzzing starts), it
computes the probabilities based on the results of a simple
disassembler that we only use to disassemble at each address
in the binary. During fuzzing, with new observations (e.g.,
indirect call and jump targets) and exposed rewriting errors, it
continuously updates probabilities until convergence. It models
the challenge as a probabilistic inference problem [29]. Specif-
ically, random variables are introduced to denote individual
addresses’ likelihood of being data or code. Prior probabilities,
which are usually predefined constants as in the literature [30]—
[33], are associated with a subset of random variables in-
volved in observable features (e.g., definition-use relations
that suggest likely code). Random variables are correlated
due to program semantics. The correlations are modeled as
probabilistic inference rules. Prior probabilities are propagated
and aggregated through these rules until convergence using
probabilistic inference algorithms, yielding posterior probabil-
ities. In the following, we explain how we define the problem
and introduce our lightweight solution.

Definitions and Analysis Facts. As shown in the top of
Fig. 7, we use a to denote an address, ¢ a constant, and r
a register. The bottom part of Fig. 7 presents the analysis
facts directly collected from the binary. These facts are deter-
ministic (not probabilistic). Inst(a, ) denotes that the ¢ bytes
starting from address a can be encoded as a valid instruction.
ExplicitSucc(ay, as) denotes the instruction at address as is
an explicit successor of the instruction at address a; along
control flow. RegWrite(a, ) denotes the instruction at a writes
to register 7. RegRead denotes the read operation. Str(a, c)
denotes the c bytes starting from address a constitute a
printable null-terminated string.

Initially, STOCHFUZZ disassembles at each address and
collects the analysis facts. It collects more facts than those
in Fig. 7. They are elided due to space limitations.



Addr_Byte | [Len] Decoded Instruction

0 : 48 | [3] xor rcx, rcx Inst(0, 3)

1 : 31 | [2] xor ecx, ecx Inst(1, 2)

2 : c9 | [1] leave l Inst(2, 1)

3 48 | [4] cmp rcx, 5 Inst(3, 4)

4 83 | [3] cmp ecx, 5 Inst(4, 3)

5 : £9 | [1] stc Elnst(il)

6 : 05 | [5] add eax, Oxff480874 Inst(6, 5)

7 74 | [2] je 17 Inst(7, 2) —

8 : 08 | [3] or [rax-1], cl ' Inst(8, 3)

9 : 48 | [3] inc rex Inst(9, 3) l

10: ££ | [2] inc ecx l Inst(10, 2)

11: el | [3] shr ebx, 245 Inst(11, 3)
12: eb | [2] jmp 3 Inst(12, 2) | [

13: £5 | [1] ecmc Insy(13, )

14: 4f | [1] rex.WRXB (0) |—>1nst(14,1)j
15: 4b | [3] rex.WXB add rllb, al (K) Inst(15, 3)
16: 00 | [2] add bl, al (\0) , Inst(16, 2)

17: e¢3 | [1] ret Inst(17, 1)

Fig. 6: Universal Control-flow Graph (UCFG) Example. On
the left, each address is disassembled (with the real in-

structions in green shade and the real data in yellow). The
corresponding UCFG is in the right.

a € (Address) := Integer c € (Constant) ::= Integer
r € (Register) u= {rax, rbx, rcx, rdx, - - - }

Inst(a, c) : the c bytes starting from address a can be disassembled as an inst
ExplicitSucc(ay, a2)/ : the inst at ao is an explicit successor of the one at ay
RegWrite(a, r)/RegRead(a, r) : the inst at a writes/reads data into/from reg r
Str(a, c) : the ¢ bytes starting from addr a can be interpreted as a printable string

Fig. 7: Definitions for Variables and Analysis Facts

Example. In the left of Fig. 6, STOCHFUZz disassembles
starting from each (consecutive) address of a binary, with the
first column showing the addresses, the second column the
byte value at the address, the third column the instruction size,
and the last column the instruction. For example, the first three
bytes “48 31 c¢9” are disassembled to an xor instruction
and the four bytes starting from address 3 are disassembled
to a cmp instruction. We highlight the true instructions in
green shade, and the true data, an “OK” string, in yellow
shade, for discussion convenience. Note that STOCHFUZZ
does not assume such separation a priori. A simple sound
binary analysis yields the following facts: Inst(7,2) because
the instruction at 7 is “je 17” whose instruction size is
2, ExplicitSucc(7,17) as the instruction at 7 jumps to 17,
RegWrite(9, rcx), RegRead(9, rcx), and Str(14,3). O

Predicates. Next, we introduce a set of predicates that de-
scribe inference results. Different from facts that are deter-
ministic, predicates may be uncertain. A random variable is
hence associated with each uncertain predicate, denoting the
likelihood of it being true. A subset of the predicates we use
are presented in the top of Fig. 8 with those having overline
uncertain. ExplicitReach(a1,as) denotes that address a; can
reach a9 along control flow. In Fig. 6, the path 0 — 3 — 7 leads
to ExplicitReach(0, 7). RegLive(a1, az,r) denotes that register
r written by address a; is live before the instruction at as. As
such, we have RegLive(9,12, rcx) in Fig. 6. Isnst(a) denotes
the likelihood of address a being code. IsData(a) is similar.

(Probabilistic) Inference Rules. In the bottom of Fig. 8,
we present a subset of our inference rules. Some of them
are probabilistic (i.e., those involving uncertain predicates
and having probability on the implication operator). Here,

ExplicitReach (a1, a2) : ay can explicitly reach ao along control flow
RegLive(a1, az, ) : register r written by address a1 is live before address a2
IsInst(a) /IsData(a) : the content at address a is an inst/data byte

@ ExplicitSucc(a1, az) — ExplicitReach (a1, as)

@ ExplicitReach(a1, az) N ExplicitSucc(az, ag) — ExplicitReach(a1, as)

® RegWrite(a1, r) A ExplicitSucc(a1, a2) — RegLive(ay, a2, 1)

@ RegLive(a1,az,r) A —“RegWrite(ax, r) N ExplicitSucc(az, az) —
RegLive(a1,as,r)

® RegLive(ai, a2, r) A RegRead (a2, ) PinseT, IsInst(a1) A IsInst(az)

® IsInst(a1) A ExplicitReach(a , a2) 10, IsInst(az)

@ Str(a1,¢) A (a1 < az < ai +¢) Daatal, IsData(az)

® IsData(a1) A IsData(az) A (a1 < ag < a2 < a1 + D)

PpropT
prop

IsData(as)

© IsInst(a) JLECA IsData(a)

Fig. 8: Predicates and (Probabilistic) Inference Rules. The
predicates with overline are uncertain and rules with proba-
bility on top of — denote probabilistic inference.

1.0, 0.0, pinst, Paata> and Py o, denote prior probabilities
that are predefined constants. Rules (1) and (2) derive control
flow relations. Intuitively, an instruction can always reach its
explicit successor (rule (D), and if a; can reach as, it can
reach the successors of as (rule (2)). Rules 3), (4, and (5) are
to derive definition-use relations. Specifically, rule (3) denotes
that if an instruction writes/defines a register, the register is live
before the successor. Rule (4) denotes propagation of register
liveness, that is, if a register is live before an instruction and
the instruction does not overwrite the register, it remains live
after the instruction. Rule (5) states that if there is a definition-
use relation between aq and as, both addresses are likely code,
with a prior probability p;,s:. Rule (6) states that if an address
is likely code, all the addresses reachable from the instruction
(at the address) have at least the same likelihood of being code.
Rule (7) states that all bytes in a printable null-terminated string
are likely data. Rule leverages the continuity property of
data and states that if two data addresses are close enough, the
addresses in between are likely data too. Rule (9) states that
an address cannot be code and data at the same time.

Incremental Fact and Rule Updates. New information can be
derived during fuzzing and allows facts and rules to be
updated. Specifically, new code coverage would allow deriving
new facts such ExplicitSucc(...) (e.g., newly discovered indirect
control flow). When a rewriting error that replaces a data byte
a with h1t is located, the corresponding predicate IsData(a)
is set to a 1.0 prior probability, meaning “certainly data”.
IsInst(a) can be similarly updated. These updates will be
leveraged by probabilistic inference to update other random
variables and eventually affect stochastic rewriting.

Probabilistic Inference by One-step Sum-product. The
essence of probabilistic inference is to derive posterior prob-
abilities for random variables by propagating and aggregating
prior probabilities (or observations) following inference rules.
A popular inference method is belief propagation [34] which
transforms the random variables (i.e., the uncertain predicates)
and probabilistic inference rules to a factor graph [29], [35],
which is bipartite graph containing two kinds of nodes, a



variable node for each random variable and a factor node for
each probabilistic inference rule. A factor can be considered a
function over variables such that edges are introduced between
a factor node to the variables involved in the rule. Prior
probabilities are then propagated and aggregated through the
factor graph by an algorithm like sum-product [35], which is
an iterative message-passing based algorithm. In each iteration,
each variable node receives messages about its distribution
from the factors connected to the variable, aggregates them
through a product operation and forwards the resulted dis-
tribution through outgoing messages to the connected factor
nodes. Each factor receives messages from its variables and
performs a marginalization operation, or the sum operation.
The posterior probabilities of random variables can be derived
by normalizing the converged variable values.

However, belief propagation is known to be very expensive,
especially when loops are present [36]. Most existing applica-
tions handle graphs with at most hundreds of random variables
and factors [30]-[33]. However in our context, we have tens
of thousands of random variables and factors (proportional
to the number of bytes in the binary). Resolving the proba-
bilities may take hours. We observe that the factor graph is
constructed from program that has a highly regular structure.
The rounds of sum and product operations in the factor graph
can be simplified to non-loopy explicit operations along the
program structure. We hence propose a one-step sum-product
algorithm that has linear complexity. The algorithm constructs
a universal control flow graph (UCFG) that captures the
control flow relations between the instructions disassembled
at all addresses. Note that the binary’s real control flow
graph is just a sub-graph of the UCFG. Observations (i.e.,
deterministic facts and predicates that suggest data or code)
are explicitly propagated and aggregated along the UCFG,
instead of the factor graph. In the last step, a simplest factor
graph is constructed for each address to conduct a one-
step normalization (from the observations propagated to this
address) to derive the posterior probability (of the address
holding a data byte). The factor graphs of different addresses
are independent, precluding unnecessary interference.

Universal Control Flow Graph. In UCFG, a node is intro-
duced for each address in the binary regardless of code or
data, denoting the one instruction disassembled from that
address. Edges are introduced between nodes if there is
explicit control flow between them. UCFG is formally defined
as G = (V,E), where V. = {a | e s.t. Inst(a,c)} and
E={(a1,a2) | ExplicitSucc(a1, a2)}. The right side of Fig. 6
presents the UCFG for the binary on the left. Note that only
the shaded sub-graph is the traditional CFG. After UCFG
construction, STOCHFUZzZ identifies the strongly connected
components (SCCs) in the UCFG (i.e., nodes involved in
loops). A node not in any loop is an SCC itself. For example
in Fig. 6, Inst(0,3) itself is a SCC. Inst(3,4), Inst(7,2),
Inst(9,3), and Inst(12,2) form another SCC. [J

One-step Sum-product. The overall inference procedure is
described as follows. STOCHFUZZ first performs deterministic

inference (following deterministic rules such as rules (D-®3)).
The resulted deterministic predicates such as the antecedents
in rules (5 and (7) are called observations, with the former a
code observation (due to the definition-use relation) and the
latter a data observation. Prior probabilities p;,s: and pygtq
are associated with them, respectively.

STOCHFUZZ starts to propagate and aggregate these obser-
vations using UCFG. Specifically, it uses a product operation
to aggregate all the observations in an SCC (i.e., multiplying
their prior probabilities), inspired by the sum-product algo-
rithm that uses a product operation to aggregate information
across factors. All the addresses within the SCC are assigned
the same aggregated value. Intuitively, we consider all the
addresses in an SCC have the same likelihood of being code
because any observation within an SCC can be propagated to
any other nodes in the SCC (through loop). The lower the
aggregated value, the more likely the address being code. We
say the belief is stronger. The aggregated observations are
further propagated across SCCs along control flow, until all
addresses have been reached.

Data observations are separately propagated, mainly follow-
ing rule (8). Specifically, STOCHFUZZ scans through the entire
address space in order, if any two data observations are close to
each other (less than distance D), the addresses in between are
associated with a value computed from the prior probabilities
of the two bounding observations.

After propagation, each address a has two values denoting
the aggregated code observation and the aggregated data
observation, respectively. A simple factor graph is constructed
for a as shown in Fig. 9. The circled node a is the variable
node, representing the likelihood of a being data. It has two
factor nodes F.oqc and Fy,tq, denoting the aforementioned
two values. According to the sum-product algorithm [35], the
posterior probability of a is the normalized product of the
two factors as shown in the bottom of the figure. The detailed
algorithm and its explanation can be found in Appendix X-H.

Comparison with Probabilistic Disassembly. In probabilistic
disassembly [37], researchers use probabilistic analysis to dis-
assemble stripped binaries. It computes probabilities for each
address to denote the likelihood of the address belonging to
an instruction. However, its problem definition and probability
computation are ad-hoc. Its algorithm is iterative and takes tens
of minutes to compute probabilities for a medium-sized binary.
It has a lot of false positives (around 8%), i.e., recognizing
data bytes as instructions. These make it unsuitable for our
purpose. In contrast, we formulate the problem as probabilistic
inference and propose an algorithm with linear complexity.
Piggy-backing on fuzzing, STOCHFUZZ can achieve precise
disassembly and rewriting with probabilistic guarantees.

B. Incremental and Stochastic Rewriting

The rewriter is triggered initially and then repetitively when
new code is discovered or rewriting errors are fixed. It rewrites
instructions in the shadow space (for better instrumentation
flexibility) and retains data in the original space. And the
original code is replaced with hlt. Its rewriting ensures a



Tc'ude f;\ Tdata dee Tdata
u : 0 1- Oneg Opas
@ address a holding
a data byte 1 Oﬂeg 1- Opos
P((l _ 1) code(l) ']:data(l)

- fcode( ) fdata(l) + ]:code(o) : ‘Fdata(o)
1- Opm)
+ Opos * (

_ Oneg * (
Oneg * (1 ) Oneg)

Fig. 9: Factor Graph for Each Address

— Opos

critical property: a rewritten instruction should evaluate to
the same value(s) as its original version. This ensures all data
accesses (to the original space) are not broken. For example, a
rewritten read of rip must be patched with an offset such that
the read yields the corresponding value in the original space
as the rewritten read must be executed in the shadow space.

Specifically, it performs the following code transforma-

tions. It directly patches direct jump instructions by an offset
statically computed based on the offset between the shadow
and original address spaces and the instrumentations. The
computation of such offset is standard and elided [38]. It
instruments all indirect jumps to perform a runtime address
lookup that translates the target to the shadow space. It may
throw an intentional segfault if it detects the target is not in the
shadow space, meaning the corresponding code has not been
rewritten. Client analysis instrumentation such as coverage
tracking code is inserted in the shadow space.
Handling Call Instructions to Support Data Accesses
through Return Addresses. There are programs that access
data using addresses computed from some return address on
the stack. As such, we need to ensure return addresses saved
on the stack must be those in the original space. Therefore,
STOCHFUZZ rewrites a call instruction to a push instruc-
tion which pushes a patched return address (pointing to the
original address) to the stack, followed by a jmp instruction
to the callee in the shadow space. We then instrument ret
instructions to conduct on-the-fly lookup just like in handling
indirect jumps.

Our design allows keeping the control flow in the shadow
space as much as possible, which can improve instruction
cache performance. An exception is callbacks from external
libraries, which cause control flow to the original space, even
though it quickly jumps back to the shadow space.
Generating Random Binary Versions. Besides the afore-
mentioned transformations, STOCHFUZZ also performs the
following stochastic rewriting to generate a pool of N different
binaries (every time the rewriter is invoked). Specifically, for
addresses whose their probabilities of being data are smaller
than a threshold py but not 0 (i.e., not “certainly code” but
“likely code”), they have a chance of 1 — pg to be replaced
with h1t. In our setting, we have N = 10 and pg = 0.01.

C. Crash Analyzer

Recall that the crash analyzer needs to decide if a crash
is due to a rewriting error. If so, it needs to locate and

repair the crash inducing rewriting error. Let S be a set of
uncertain addresses (that may be replaced with hlt), and
R(S) the execution result of a rewritten binary where all
the addresses in S are replaced with h1t. Assume R(S;)
yields an unintentional crash. To determine whether the crash
is caused by a rewriting error, the analyzer compares the results
of R(S1) and R(0). If R(S1) = R(0), the crash is caused by
a latent bug in the subject program, and vice versa.

Then, locating the crash inducing rewriting error can be
formalized as finding a I-minimal subset Sy C S7, which
satisfies R(S2) = R(S1) and V a; € So : R(S2 \ {a;}) #
R(Sy) [28]. Intuitively, all the addresses in S must be erro-
neously replaced with h1t. It can be proved by contradiction.
Assuming a; € Sy is a code byte (and hence its rewriting
is correct), not replacing address a; (with hlt) should not
influence the execution result, that is R(S2 \ {a;}) = R(S2).
As R(S2) = R(S1), R(S2 \ {a;}) = R(S1), directly con-
tradicting with the 1-minimal property. Delta debugging [28]
is an efficient debugging technique that guarantees to find 1-
minimal errors. It operates in a way similar to binary search.
Details are elided.

D. Optimizations

We develop three optimizations for STOCHFUZZ, which are
directly performed on rewritten binaries without lifting to IR.
They are reusing dead registers, removing flag register savings,
and removing redundant instrumentation. Details can be found
in Appendix X-A.

IV. PROBABILISTIC GUARANTEES

In this section, we study the probabilistic guarantees of
StocHFUzz. We focus on two aspects. The first is the
likelihood of rewriting errors (i.e., data bytes are mistakenly
replaced with h1lt) corrupting coverage information without
triggering a crash. Note that if it triggers a crash, STOCHFUZZ
can locate and repair the error. The second is the likelihood
of instruction bytes not being replaced with h1t so that we
miss coverage information. Note there is no crash in this case
but rather some instructions are invisible to our system and
not rewritten. Our theoretical analysis shows that the former
likelihood is 0.05% and the latter is 0.01% (with a number
of conservative assumptions). They are also validated by our
experiments. Details can be found in Appendix X-B.

V. PRACTICAL CHALLENGES

We have addressed a number of practical challenges such as
supporting exception handling in C++, reducing process set up
cost, safeguarding non-crashing rewriting errors, and handling
occluded rewriting. Details can be found in Appendix X-C.

VI. EVALUATION

SToCHFUZZ is implemented from scratch with over 10, 000
lines of C code, leveraging Capstone [39] and Keystone [40]
that provide basic disassembling and assembling functionali-
ties, respectively. Our evaluation takes more than 5000 CPU
hours and is conducted on three benchmark sets, including



TABLE II: Soundness on Google FTS (X means failure)

Program afl-qemu ptfuzzer e9patch ddisasm STOCHFUZZ
boringssl X X v
freetype2 X X v
guetzli X v
harfbuzz X v
lcms X 4
libarchive X v
libxml12 X X v
openssl-1.0.1f X X v
openssl-1.0.2d X v
openssl-1.1.0c X X v
openthread X v
sqlite X v
wpantund X v

the Google Fuzzer Test Suite (Google FTS) [17], a variant
of Google FTS which is compiled with inlined data, and
the fuzzing benchmarks from RetroWrite [16]. We compare
SToCcHFUZZ with the state-of-the-art binary-only fuzzers, in-
cluding ptfuzzer, afl-gemu, RetroWrite, e9patch, and ddisasm.
In addition, we use STOCHFUZZ on 7 commercial binaries
and find 2 zero-days. We port a recent work IJON [21] on
state-based fuzzing to support stripped binaries, demonstrating
STOCHFUZZ can collect other feedback than coverage.

All the benchmarks are compiled by Clang 6.0 with their
default compilation flags (-O2” in most cases). For e9path, as
it cannot recover CFG from a stripped binary, we instrument
all the control flow transfer instructions (e.g., jmp) to trace
the execution paths. For ddisasm, the version we use is 1.0.1,
and the reassembly flags we use are “--no-cfi-directives” and
“--asm”. The reassembly of ddisasm is performed on a server
equipped with a 48-cores CPU (Intel(R) Xeon(R) Silver 4214
CPU @ 2.20GHz) and 188G main memory. All others are
conducted on a server equipped with a 12-cores CPU (Intel(R)
Core(TM) i17-8700 CPU @ 3.20GHz) and 16G main memory.

A. Evaluation on Google FTS

Google FTS is a standard benchmark widely used to evalu-
ate fuzzing techniques [4], [41], [42], consisting of 24 complex
real-world programs. We compare STOCHFUZZ with ptfuzzer,
afl-gemu, e9patch, and ddisasm. We additionally compare
with two compiler-based baselines (afl-gcc and afl-clang-fast).
However, we cannot compare with RetroWrite on Google
FTS as RetroWrite cannot instrument stripped binaries and it
requires the binaries not written in C++, while all the binaries
are stripped in this experiment and 1/3 of them are C++ ones.

Soundness. Table II presents the overall soundness of binary-
only fuzzing solutions. The first column shows the programs.
Columns 2-6 show whether afl-gemu, ptfuzzer, e9patch, ddis-
asm, and STOCHFUZZ successfully generate binaries that the
fuzzer can execute, respectively. Note that we only present the
programs which at least one tool fails to instrument (due to
the space limitations). Specifically, afl-gemu fails on libxmli2
due to a known implementation bug [43], ptfuzzer fails on
4 out of the 24 programs due to unsolved issues in their
implementation [44], e9patch fails on 4 programs as these
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TABLE III: Mean and standard deviation of time-to-discovery
(in minutes) for bugs in Google FTS

Tool guetzli json Ilvm-libcxxabi
afl-gcc 513.25 £ 114.84 0.85+0.63 0.08 £ 0.00
afl-clang-fast ~ 539.56 £ 240.83 0.18+£0.17 0.08 £ 0.00
afl-gemu 400 2.64 4+ 3.56 0.23 £ 0.05
ptfuzzer +oo  49.08 + 82.35 0.79 £ 0.25
e9patch 400 21.87+£36.21 0.35 £ 0.00
ddisasm 505.22 £ 93.45 N/A 0.08 £ 0.00
StocHFUzzZ  363.37 £ 120.14 0.67 +1.02 0.08 £ 0.00
Tool pere2 re2 woff2

afl-gcc 763.61 £ 40.44 2.21+2.14 12.89 +0.44
afl-clang-fast ~ 461.73 £ 219.89 3.08 +3.93 12.09 £4.91
afl-gemu 400 +oo  67.23 £26.94
pifuzzer +oo  42.92 £68.08 29.18 £0.19
e9patch 400 400 30.73 +0.28
ddisasm 913.90 £ 495.42 N/A 14.60 £ 0.25
STOCHFUZZ  768.91 £ 264.82 2.32+£0.54 7.43+£0.27

programs contain hand-written assembly code interleaved with
data, ddisasm fails on 9 programs which crash on the seed
inputs after reassembly due to uncertainty in their heuristics',
and STOCHFUZZ succeeds on all the 24 programs.

Fuzzing Efficiency. To assess the fuzzing efficiency achieved
by STOCHFUZZ, we run AFL to fuzz the instrumented binaries
for 24 hours. Fig. 10 presents the total number of fuzzing
executions, where we take afl-gcc as a baseline and report the
ratio of each tool to afl-gcc. Larger numbers indicate better
performance. The average numbers of fuzzing executions over
the 24 programs are presented in the legend (on the top)
associated with the tools. STOCHFUZzZ outperforms afl-gcc
in 13 out of 24 programs. For the remaining 11 programs,
SToCcHFUZZ also achieves comparable performance with afl-
gec. Afl-clang-fast achieves the best performance among all
the tools, as it does instrumentation at the IR level. Compared
with it, STOCHFUZZ has 11.77% slowdown on average due to
the additional overhead of extra control flow transfers (from
the original space to the shadow space) and switching between
binary versions. Ddisasm also achieves good performance.
However, due to its inherent soundness issues, it fails on 9
out of the 24 programs. Other tools have relatively higher
overhead.

Bug Finding. As Time-to-discovery (TTD) (of bugs) directly
reflects fuzzing effectiveness, and hence suggests instrumen-
tation effectiveness and fuzzing throughput, we additionally
conduct an experiment to show the time needed to find the
first bug for each tool. We run each tool three times with a
24-hour timeout. Table III shows the average TTD (in minutes)
and the standard deviation. We only report the programs for
which at least one tool can report a bug within the time bound.
The first column presents the tools. Columns 2-4 show the
TTDs for different programs. The symbol +-oco denotes the tool
cannot discover any bug within the time bound. N/A denotes
the crash(es)’ discovered by the tool cannot be reproduced

! After being reported to the developers of ddisasm, 6 out of 9 test failures
got fixed in the latest release (via strengthening heuristics). Details can be
found at https://github.com/GrammaTech/ddisasm/issues/20.

2The latest ddisasm can correctly reassemble all N/A programs.
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each tool to afl-gcc. In the legend, we additionally present the average number of fuzzing executions over the 24 programs.

Larger numbers indicate better performance.

by executing the non-instrumented binary. Due to their high
overhead, afl-gemu, ptfuzzer, and e9patch cannot discover bugs
in multiple programs. Although ddisasm achieves good per-
formance in the programs that it can instrument, it generates
invalid crashes for some programs due to its soundness issues.
STOCHFUZZ has a similar TTD to afl-gcc. This shows the
soundness and effectiveness of STOCHFUZZ.

We also collect the path coverage in 24 hours. The average
coverage for afl-gcc, afl-clang-fast, and STOCHFUZZ is 2572,
2239, and 2493, respectively. As other tools do not work on
all the programs, their numbers are not comparable, and hence
elided. We also omit the details due to the page limitations.

Optimization Effectiveness. Table IV presents the effects
of optimizations. The second column presents the number
of executed blocks during fuzzing. Columns 3-4, 5-6, and
7-8 present the results for removing flag register savings
(FLAG), general purpose register reuse (GPR), and removing
instrumentation for single successors, respectively. For each
optimization, we report both the number (of applying these
optimizations) and the percentage. In the last column, we
present the slow-down when the optimizations are disabled.
Overall, FLAG is most effective, removing 99% of cases.
Intuitively, the use of flag registers has very strong locality.
We then conduct a study on the evaluated binaries and find
that almost all flag registers are defined and used within the
last three instructions of basic blocks, with the most common
instruction pattern being a cmp or test instruction followed
by a conditional jump. As such, they are mostly dead at the
instrumentation points. GPR can be applied in 82.2% cases
on average. The observation is that many basic blocks start
with instructions that write to at least one general purpose
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TABLE IV: Effects of Optimizations. #B denotes the number
of basic blocks instrumented by STOCHFUZZ, #O denotes
the number of blocks where an optimization is applied at
least once, %R denotes the percentage, and %S denotes the
slowdown when disabling the optimizations

FLAG GPR Single-Succ
Program #B %S
#O %R #0 %R #0 %R
boringssl 5112 5,068 99.1 4294 840 2225 4353 3781
c-ares 98 96 98.0 83 847 48 4898 422
freetype2 13,500 13,508 99.4 11,422 84.0 6,126 45.08 1.86
guetzli 10,680 10,621 99.4 8230 77.1 5312 49.74 3.49
harfbuzz 10,365 10,208 985 8,679 83.7 4256 41.06 28.39
json 2,308 2296 99.5 1,886 81.7 1,125 4874 3048
Iems 4256 4,181 982 3,341 785 1,712 4023 -16.58
libarchive 7,134 7,046 98.8 5862 822 2,540 3560 33.25
libjpeg-turbo 2,953 2,927 99.1 2,609 884 1362 46.12 3548
libpng 2,815 2,797 994 2,173 772 1,153 4096 18.07
libssh 4441 4393 989 3,578 80.6 1,816 40.89 3043
libxmlI2 13,546 13,487 99.6 10,786 79.6 5531 40.83 15.96
llvm-libcxxabi 4,257 4,244 99.7 3314 778 2,171 51.00 28.77
openssl-1.0.1f 15912 15,750 99.0 13,595 854 7,028 44.17 43.88
openssl-1.0.2d 2,347 2285 97.4 2,036 86.7 961 4095 64.24
openssl-1.1.0c 6,964 6902 99.1 5856 841 1970 42.66 16.03
openthread 6,074 6,048 99.6 4,878 803 2,387 3930 14.27
pere2 6,880 6,798 98.7 5863 851 3292 4779 4586
proj4 1,983 1915 96.6 1443 728 984  49.62 3.58
re2 6,693 6,655 994 5140 768 3,382 50.53 31.05
sqlite 24264 24,128 99.4 20,541 847 11314 46.63 38.87
vorbis 3297 3263 99.0 2,539 77.0 1,375 41.70 16.95
woff2 2,406 2374 987 1,990 827 1,191 49.50 30.92
wpantund 27,549 27,146 985 22,765 82.6 11,587 42.06 2.10
Average 7,747 7,672 99.0 6,371 822 3410 4449 2245

register. STOCHFUZZ hence is able to reuse the register in the
instrumented code (Section III-D). The average percentage of
instrumentation removal for blocks with a single successor is
44.49%, which is not that significant but still helpful. The
slowdown is 22.45% on average when we disable these op-
timizations. The optimizations have negative effects on some
programs such as Icms. Further inspection seems to indicate
that the optimizations cause some tricky complications in



cache performance. It is worth pointing out that compiler
based fuzzers such as afl-gcc and afl-clang directly benefit
from built-in compiler optimizations, some of which have
similar nature to ours. Dynamic instrumentation engines such
as QEMU and PIN have their own optimizations although
they typically reallocate all registers. Performing optimizations
during unsound static rewriting is very risky. In contrast,
optimizations work well in our context as STOCHFUZZ can
fix disassembly and rewriting errors automatically.

B. Evaluation on Google FTS with Intential Data Inlining

Programs built by popular compilers (e.g., GCC and Clang)
with default settings may not contain (substantial) code and
data interleavings [10]. It is interesting to study the perfor-
mance of various tools when substantial interleavings are
present. We hence modify the compilation tool-chain of
Google FTS to force .rodata sections to be interleaved
with . text sections. We extract the ground-truth of data byte
locations from the debugging information and then strip the
binaries. E9patch fails on 22 out of the 24 programs, due to
its assumption of no inlined data. It succeeds on two programs
because they do not contain static data sections. Ddisasm fails
on 21 programs. In contrast, STOCHFUZZ succeeds on all the
programs. Details can be found in Appendix X-E.

Fuzzing Efficiency. We run the tools for 24 hours on each
program. Fig. 13 (in Appendix) presents the number of fuzzing
executions by our tool and its ratio over afl-gcc. We omit
the results for other tools as inlined data do not impact
their efficiency in theory. The results show that STOCHFUZZ
still has comparable performance as afl-gcc. Moreover, our
tool’s efficiency has a slight degradation compared to without
intentional data inlining (124.7M v/s 129.3M), due to the extra
time needed to fix more rewriting errors.

Progress of Incremental and Stochastic Rewriting. We
study how the numbers of false positives (FPs) (i.e., a data
byte is replaced with h1t) and false negatives (FNs) (i.e., a
code byte is not replaced with h1t) change over the proce-
dure. Here, we use debugging information and the aggregated
coverage information (over 24-hour fuzzing) to extract the
ground-truth. In other words, we do not consider data bytes
that are not accessed in the 24 hours and code bytes that
are not covered in the 24 hours. Note that they have no
influence on the fuzzing results and hence rewriting errors
in them are irrelevant to our purpose. And as long as they
are covered/accessed, STOCHFUZZ can expose and repair their
rewriting errors. The results are presented in Table V. The sec-
ond column presents the number of instrumented basic blocks.
Columns 3-6 present the numbers of intentional crashes caused
by hlt (indicating discovery of new code), unintentional
crashes caused by rewriting errors, and unintentional crashes
caused by program bugs, and their sum, respectively. The
last four columns show the percentage of FN and FP at the
beginning and the end of fuzzing process. Observe that at
the beginning, with the initial probability analysis results,
STOoCHFUZZ has 11.74% FNs and 1.48% FPs on average.
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TABLE V: Incremental and Stochastic Rewriting. #IC, #UCE,
#UCB, and Sum denote the number of intentional crashes,
unintentional crashes caused by rewriting errors, unintentional
crashes caused by real bugs, and their sum, respectively. FN
and FP denote false negative and false positive, respectively.
“Begin” and “End” denote the beginning and end of fuzzing.

Crashes Rewriting
Program Begin End
#IC #UCE #UCB Sum

%FN  %FP %FN %FP
boringssl 114 98 0 212 1259 6.18 0.09 0.08
c-ares 2 0 0 2 1749 0.00 0.00 0.00
freetype2 335 10 0 461 1058 247 0.03 0.05
guetzli 200 1 0 201 846 0.16 0.01 0.00
harfbuzz 448 5 0 453 925 464 0.04 0.14
json 80 0 0 80 1440 0.00 0.02 0.00
lems 137 0 0 137 1690 0.04 0.06 0.01
libarchive 215 0 0 215 1135 0.00 0.04 0.00
libjpeg-turbo 77 4 0 81 9.11 291 0.03 026
libpng 32 0 0 32 817 0.00 0.01 0.00
libssh 123 1 0 124 1956 0.09 0.04 0.00
libxml2 315 2 0 317 880 0.05 0.04 0.00
llvm-libcxxabi 304 0 7258 7,562 1286 0.00 0.00 0.00
openssl-1.0.1f 166 45 0 211 1229 050 0.18 0.01
openssl-1.0.2d 25 3 0 28 9.74 0.00 0.03 0.00
openssl-1.1.0c 183 186 0 369 I1.11 261 0.13 0.08
openthread 19 7 0 26 1377 037 0.06 0.00
pere2 398 2 37 437 564 097 0.00 0.00
proj4 46 1 0 47 13.16 0.14 0.02 0.00
re2 133 2 0 135 1880 0.37 0.09 0.02
sqlite 693 7 0 700 9.03 031 0.02 0.00
vorbis 51 7 0 58 874 325 0.04 0.10
woff2 33 19 0 52 531 1045 0.02 0.04
wpantund 893 1 0 894 1453 0.00 0.05 0.00
Average 209 17 304 535 11.74 148 0.04 0.03

At the end, they are reduced to almost non-existent (0.04%
and 0.03%, respectively). These results are consistent with
our theoretical bounds developed in Section IV. We randomly
inspect some of the FPs and find that all of them are data
bytes that have no effect on execution path (and hence have
no negative impact on fuzzing results). Neither do they cause
crashes. Also note that the FNs are at the byte level. If we look
at the basic block level, STOCHFUZZ does not miss any basic
blocks. In other words, in very rare cases (0.04%), it may miss
the first one or two bytes in a basic block, but recognizes and
instruments the following instructions. These FNs hence have
no impact on fuzzing results. Also observe that the number
of crashes by rewriting errors is very small (17) compared
to that of intentional crashes (209). The former entails the
relatively more expensive error diagnosis and repair process.
It implies that most rewriting errors are fixed by observing
new coverage, without triggering unintentional crashes. Fig. 11
shows how these numbers change over time for freetype2.
Observe that they stabilize/converge quickly. The results for
others are similar and elided.

C. Comparison with RetroWrite

Different from other techniques, RetroWrite has a number
of strong prerequisites about target binaries. The binary has
to contain symbols and relocation information, should not
be written in C++, should not contain inlined data, and is
position independent. Hence, RetroWrite cannot be used in
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the Google FTS experiments. To compare with RetroWrite,
we use their benchmarks that satisfy all the above conditions.
Fig. 12 (in Appendix) and Table VI (in Appendix) show
the numbers of fuzzing executions and the path coverage in
24 hours, respectively. STOCHFUZZ led to 98.7M executions
and RetroWrite led to 94.7M executions, on average. The
results show STOCHFUZzzZ achieves similar performance to
RetroWrite.

VII. CASE STUDIES
A. Finding Zero-days in Closed-source Programs

We further run STOCHFUZZ on a set of 7 closed-source
or Commercial Off-The-Shelf (COTS) binaries and find two
zero-day vulnerabilities in a week. One is in CUDA Binary
Utilities (by NVIDIA), a set of utilities that can extract
information from CUDA binary files [45] and the other is
in PNGOUT, a closed-source PNG file compressor adopted
by multiple commercial or non-commercial image optimizers
used in thousands of websites [46], [47]. We have reported the
bugs to the vendors. The former has been fixed by NVIDIA
and the latter has been assigned a CVE ID. Details can be
found in Appendix X-F.

B. Collect Other Runtime Feedback Than Coverage

We conduct a case study in which we use STOCHFUZZ to
collect other runtime feedback than coverage. IJON [21], a
state-aware fuzzing technique, increases fuzzing effectiveness
by observing how the values of given variables change.
Specifically, the tester annotates important variables in source
code and the compiler instruments accesses to these variables
to track their runtime changes. The changes, together with
code coverage, guide input mutation. As reported in [21], it
substantially improves fuzzer performance for specific kinds
of programs such as complex format parsers. We port [JON
to support binary-only fuzzing based on STOCHFUZZ, and
conduct the same maze experiment in the IJON paper, which
was used to show the effectiveness of state-aware fuzzing.
In the experiment, the target programs are games where the
player has to walk through an ASCII art maze. Fuzzers instead
of a human player are used to walk the mazes. IJON has
advantages over vanilla fuzzers as it observes maze states
and uses them to guide input mutation. The ported IJON
can resolve the mazes as fast and as effective as the original
source-based version, and much more effective than running
IJON on afl-gemu. Details can be found in Appendix X-G.
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VIII. RELATED WORK

Binary-only Fuzzing. Closely related to STOCHFUZZ is
binary-only fuzzing that targets on closed-source software
which has only binary executables available [12], [14]-[16],
[18], [22]-[25]. As aforementioned, these works either reply
on expensive operations or make impractical assumptions,
limiting their wide adoption on real-world stripped binaries.

Probabilistic Analysis. Probabilistic techniques have been
increasingly used in program analysis in recent years. Suc-
cessful cases include symbolic execution [48], [49], model
checking [50]-[52], type inference [32], etc. By introducing
stochastic algorithms, those hard-to-solve problems using tra-
ditional program analysis techniques can be (partially) solved
in a light-weight manner, whose correctness has probabilistic
guarantees under practical assumptions. STOCHFUZZ lever-
ages probabilistic analysis to aggregate evidence through many
sample runs and improve rewriting on-the-fly.

N-version Programming. N-version programming [53] is a
software fault-tolerance technique, in which multiple variants
of a program are executed in parallel and the results of
individual executions are aggregated to reduce the likelihood
of errors. It has been adopted to ensure memory safety [54],
[55], concurrency security [56], [57], and computing cor-
rectness [58], [59], etc. UnTracer [60] continuously modi-
fies target programs on the fly during fuzzing using source
instrumentation so that they self-report when a test case
causes new coverage, in order to improve fuzzing efficiency.
Inspired by these works, STOCHFUZZ also uses many versions
of rewritten binaries whose validity can be approved/disap-
proved by numerous fuzzing runs. The difference lies that our
versioning is driven by a rigorous probability analysis that
updates probabilities on-the-fly. Our idea of disassembling at
all addresses is inspired by Superset Disassembly [38], which
however does not leverage probabilities.

IX. CONCLUSION

We develop a new fuzzing technique for stripped binaries. It
features a novel incremental and stochastic rewriting technique
that piggy-backs on the fuzzing procedure. It leverages the
large number of trial-and-error chances provided by the nu-
merous fuzzing runs to improve rewriting accuracy over time.
It has probabilistic guarantees on soundness. The empirical
results show that it outperforms state-of-the-art binary-only
fuzzers that are either not sound or having higher overhead.
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X. APPENDIX

A. Details of Optimizations

Register Reuse. Instrumentation may need to use registers. To
avoid breaking program semantics, inside each instrumentation
code block, registers need to be saved at the beginning and
restored at the end. These context savings become performance
bottleneck. We perform a register liveness analysis such that
dead registers, which hold some value that will never be
used in the future, can be reused in instrumentation. The
difference between our liveness analysis and a traditional
liveness analysis is that ours is performed on the UCFG.

Algorithm 1 presents the analysis. It takes a binary and
outputs a mapping from an address 7 to a set of registers
which are dead at i. The algorithm traverses all addresses in
a descendent order (line 3). For each address 4, the algorithm
first collects the explicit successors of ¢+ in UCFG (line 4). If
there is at least one successor whose address is smaller than
1, which indicates the successor has not been analyzed (line
5), the algorithm conservatively assumes all the registers are
not dead after ¢ (line 6). Otherwise, the registers that are dead
at all successors are marked as dead after ¢ (line 8). At last,
the dead registers ar ¢ are computed from the dead registers
after © and the ¢ instruction itself (line 10). Specifically, the
registers written by ¢ become dead (as the original values in
those registers are no longer used beyond 7); the ones read by
1 are marked live and removed from the dead set as ¢ needs
their values. Upon instrumentation, STOCHFUZZ reuses the
dead registers at the instrumentation point.

Removing Flag Register Savings. Saving and restoring flag
registers has around 10x more overhead compared with
general purpose registers [61]. We perform the same register
liveness analysis on flag registers and avoid saving/restoring
the dead ones.

Removing Redundant Instrumentation. If a basic block has
only one successor, its successor is guaranteed to be covered
once the block is covered [62]. We hence avoid instrumenting
these single successors.

B. Theoretical Analysis of Probabilistic Guarantees

Likelihood of Rewriting Error Not Causing Crash But
Corrupting Coverage Feedback. If the rewriting error does
not change execution path, it does not corrupt coverage
feedback. In this case, we are not worried about the rewriting
error even if it does not cause a crash. In other words, we
are only interested in knowing the likelihood of a rewriting
error changes program path but does not induce crash over all
the fuzzing runs. Note that as long as it causes crash in one
fuzzing run, STOCHFUZZ can catch and repair it. This is the
strength of having a stochastic solution. In our study, we use
the following definitions.

e M: the number of fuzzing executions

e pep: the likelihood that a data byte is classified as code
and subject to replacement (with h1t), we call it a false
positive (FP).
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Algorithm 1 Register Liveness Analysis on UCFG

INPUT: B binary indexed by address
OUTPUT: D[i]C{ry,r2,...} dead registers at address %

function ANALYZEDEADREG(B)
D = CREATEEMPTYMAPPING()
for each address ¢ of B in decreasing order do
Suce = {j | ExplicitSucc(i, j)} > Succ = @ if 4 is an indirect jump/call
if 35 € Succ, s.t. j < i then
dasier = {} > Assume there is no dead variable after executing address 4

else
dafer = ﬂ j € Suce D [-7 ]
10: DIi] = (datier U {rw | RegWrite(i,7)}) \ {r7 | RegRead(i, )}

end if
11: end for
12: end function

1:
2.
3
4:
5:
6:
7
8

9:

e Ppatcn = 1 — po: how likely a code byte (classified by
STOCHFUZZ) is selected for replacement in a rewritten
binary.

e Dcrasn: the likelihood that a mistakenly replaced data byte
changes program path and crashes in a single execution.

From the above definitions, the likelihood of a data byte is
mistakenly patched is pe, X Pparcn. The likelihood of a data
byte being patched and triggering a crash (hence STOCHFUZZ
observes and repairs it) iS Pry X Ppatch X Perash-

The likelihood of the error escapes STOCHFUZZ in M
executions is hence the following.

(1 — Prp X Ppatch X pcrash)N[

With a conservative setting of pr, = 0.015, the average
initial FP rate according to our experiment (Section VI-B,
Ppatch = 0.99, pcrasn = 0.0005 (a very conservative setting as
in practice it is over 90%), and M = 1,000, 000, SToCHFUZZ
has 0.05% chance missing the error. We want to point out that
if perasn 18 0, meaning the error always changes path without
crashing, STOCHFUZZ can never detect it. We haven’t seen
such cases in practice. One way to mitigate the issue is to use
other instructions similar to h1lt in patching.

Likelihood of Missing Coverage Due to Code Bytes Not
Being Patched. Intuitively, the likelihood is low for two rea-
sons. First, coverage information is collected at the basic block
level. Missing coverage only happens when STOCHFUZZ mis-
classifies all the code bytes in a basic block to data. Second,
even if STOCHFUZZ considers a code byte is likely data, there
is still a chance it is chosen for patching during stochastic
rewriting. Over a large number of fuzzing runs, STOCHFUZZ
can expose it through an intentional crash.

To simplify our discussion, we only consider the second
reasoning. In other words, we consider missing coverage at
the byte level (not basic block level). We use the following
definitions in addition to the previous ones.

e pen: the likelihood STOCHFUZZ mis-classifies a code
byte to data, called a false negative (FN).

e Dexe: the likelihood a code byte is covered in an execu-
tion.

The likelihood of a code byte being chosen for patching
in a binary version is (1 — pen) X Ppaccn. The likelihood of
a code byte being patched and covered in an execution (and
hence STOCHFUZZ detects it) is (1 — pen) X Ppatch X Dexe-



The likelihood that the rewriting error escapes from
STOCHFUZZ in M runs is hence the following.

(1 - (1 - pfn) X Ppatch X pexe)]\l

With a practical setting of prs, = 0.12 (the average ini-
tial FN rate of STOCHFUZZ according to our experiment),
DPpatch = 0.99, pexe = le—5 (a very conservative setting),
M = 1,000,000, STocHFUZZ has 0.01% chance missing the
error. We want to point out that if p.,. is 0, meaning the code
byte is never executed in any runs, STOCHFUZZ can never
detect it. However, in such cases, the error has no effect on
fuzzing and hence unimportant. Also note that if we consider
coverage at basic block level, the bound can be lower.

C. Details of Practical Challenges

Supporting Exception Handling in C++. Exception handling
in C++ poses additional challenges for static rewriting [16].
Specifically, when handling exceptions, the program needs to
acquire the return addresses pushed by previous call instruc-
tions to unwind stack frames. To support this, STOCHFUZZ
additionally intercepts calls to external library functions and
replace their return addresses (in the shadow space) with the
corresponding addresses in the original space. Note that this
is different from our transformation of call instructions to a
push followed by a jump. As such, when execution returns
from external libraries, it goes to the original space instead of
the shadow space, incurring additional control flow transfers.
To reduce the overhead, a white-list of widely-used library
functions, for which we do not need to intercept the calls,
is used. We argue it is a one-time effort and can be done
even for closed-source programs, as the symbols of external
library functions are always exposed. To understand the worst-
case performance of STOCHFUZZ, we disable the white-list
optimization during evaluation.

Efficient Process Set Up. Setting up a process (e.g., linking
and library initialization) has a relatively high overhead. To
avoid it, a fork server, which communicates with the fuzzer
through Linux pipe and forks the subject process once re-
quested, is instrumented into the subject program by AFL [63]
In STOCHFUZZ, the dispatcher is a component of AFL, which
sets up N fork servers prior to fuzzing and randomly selects
one to communicate with when requesting an execution in-
stance. Additionally, for each rewritten binary, its original and
shadow spaces are both re-mmaped as shared memory with the
incremental rewriter. As such, during fuzzing, the incremental
and stochastic rewriting does not trigger any process set up
cost.

Safeguarding Non-crashing Rewriting Errors. During
fuzzing, AFL automatically monitors an input stability metric
which measures the consistency of observed traces [64]. That
is, if the subject program always behaves the same for the
same input data, the fuzzing stability earns a score of 100%.
A low score suggests low input consistency. This metric can
help STOCHFUZZ detect rewriting error which does not trigger
a crash but changes execution trace. Specifically, once this
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Fig. 12: The number of total fuzzing executions in 24 hours
on RetroWrite’s fuzzing benchmarks

TABLE VI: Path Coverage on RetroWrite’s benchmarks

Tools binutils bzip2 file libarchive libpng libtiff tcpdump Average
RetroWrite 6200 636 29 2706 977 969 3673 2170
StocHFuzz 6392 1416 29 2384 928 969 3344 2209

metric becomes smaller than a given threshold, the rewriting
error localization procedure is triggered. As such, the sound-
ness guarantee of STOCHFUZZ can be stronger than the one
calculated in Section IV in practice. In our evaluation, we turn
it off to measure worst-case performance.

Handling Occluded Rewriting. Another practical challenge
is to handle the case in which h1t is mistakenly placed inside
a true instruction (e.g., replacing address 1 inside the true mov
instruction at 0 in Fig. 6). As such, the address which triggers
a crash may not be the address of the inserted h1t. Although
it is highly unlikely in practice, our crash analyzer could
not repair the error properly when it happens. To handle the
problem, we design a set of advanced rewriting rules, which
guarantees control flow will be terminated at a set of pre-
selected addresses once an occluded instruction gets executed.
As such, we can infer there is an occluded rewriting error.
Specifically, for a given address a with Inst(a, c), we use the
following rules to rewrite it:

1) Check whether a is occluded with any control flow
transfer instruction (starting at an earlier address). If so,
avoid replacing it;

Replace all addresses between a and a,, where a,,
max({a; + ¢; | Inst(ai,c;) A (a; < a < a; + ¢;)}),
meaning the maximum end address of an instruction
occluded with a.

2)

As such, any execution that encounters an instruction oc-
cluded with some injected hlt must be terminated at an
address in S, = {a; | Inst(a;, c;)\(a; < a < a;+¢;) }U[a, am).
The proof of soundness is elided due to the space limitations.

D. Analysis and Rewriting Overhead on Google FTS.

Different from techniques leveraging hardware features
or dynamic translation, techniques based on static rewriting
incur analysis and rewriting cost. We further study such
overhead on the standard Google FTS for e9parch, ddisasm,
and STOCHFUZZ. Table VII shows the results (measured by
total CPU time). The second column shows the overhead of
e9patch. The third and fourth columns show the overhead



TABLE VII: Analysis and Rewriting Overhead TABLE VIII: Effectiveness on Google FTS w/ Intentional Data
ddisasm ddisasm StocHFUzZ Inlining
Program e9patch
default (-j48) -j8  rewriting  prob. anly. Program # Inlined Data Bytes e9patch ddisasm STOCHFUZZ
boringssl - 67h 43m 20s 126.90s 9.77s 67.35s boringssl 263,539 X X3 v
c-ares 0.02s Oh 47m 22s 1.17s 0.05s 0.02s c-ares 7 X v
freetype2 0.76s 28h 57m 28s 96.24s 21.39s 91.59s freetype2 91.960 X X v
guetzli 0.38s 8h 51m 19s 76.05s 5.47s 95.84s vetzli 18’543 X X v/
harfbuzz 0.51s 8h 02m 28s 70.89s 5.33s 64.17s ﬁ b 63’061 3 v
json 0.10s 4h 44m 48s  12.93s 1.30s 8.33s hartbuzz ’ X X3
lems 0.34s 10h 39m 50s 36.58s 3.56s 13.19s json 0 v
libarchive 0.51s  11h53m49s  61.67s 4.09s 34.29 lems 22,576 X X2 4
libjpeg-turbo 0.45s 30h 16m 04s  108.79s 10.49s 24.33s libarchive 55,698 X X3 v
libpng 0.13s 3h 29m 24s 10.87s 1.48s 3.54s libjpeg-turbo 79,329 X X3 4
libssh 0.36s  54h 03m 585  50.22s 2.74s 23.98s libpng 9,054 X X2 v
libxml2 203s  23h52m25s  188.59s 19.86s 177.20s libssh 141943 X P v
1lvm-libcxxabi 0.19s 4h 33m 28s 15.57s 1.90s 19.78s . ?
openssl-1.0.1 - 83h57mO03s  209.57s  22.95s 153.62s beml]% b 128’008 X X3 ;
openssl-1.0.2d 25h 05m 28s  37.91s 2.55s 4.82s Vm-lIbCXXabl
openssl-1.1.0¢c 117h 15m 425 354.86s  31.57s 229915 openssl-1.0.1f 169,787 X X3 v
openthread 0.70s  20h 24m 43s  57.96s 6.10s 13.33s openssl-1.0.2d 43796 X X2 v/
pere2 0.33s 26h 35m 04s  481.04s 4.38s 24.38s openssl-1.1.0c 369,397 X X2 v
proj4 0.42s 10h 43m 34s 39.25s 4.69s 20.62s openthread 32,691 X X3 v
re2 040s  17h 12m 33s  41.62s 4.60s 84.82s pere2 95,763 X X1 v
sqht(i 1.02s 16h 49m 43s 117.92s 14.38s 233.97s proj4 30,978 X X v
vorbis 0.22s 16h 07m 57s 32.29s 2.26s 12.61s re2 35.336 X X 4
woff2 0.49s 39%h 09m 27s 123.50s 6.34s 21.11s sqlite 35’467 X X§ v
d 1585 33h08m 02s  176.65 14.55 579.94 ’
pantun : mo ° - - vorbis 59986 X X v
Average 0.55s 27h 41m 02s  105.38s 8.41s 83.41s woff2 494,994 X X2 v
. . . wpantund 89,203 X X v
of ddisasm using different reassembly flags, and the last two P 2
columns show the overhead of STOCHFUZZ which is broken
down to rewriting and probability analysis overhead. Note 7 afl-gec (121.2M)  StochFuzz (124.7M)
hat ddi 1l 48 by default. H f - %
that ddisasm uses a cores by default. However, after % w
o - " . 1
communicating with the developers, we were notified that %% é % % %;//1 0
b7 .
there are some parallelism issues with the default setting. As Wé—éz—?—é-'/z—%—y-y-y—y/—?%%
. e . 277777 22%72%%77.%777 77
such, running with -j8§ (for using 8 cores) produces much better Z z é g % ’é % % g é Z Z Z % z é z é g Z ’é % Z Z
istinoui stase G424 745574555555 5%
results. E9pa.tch does nolt dlstlngplsh code anq data, as it as 1 é % é 2777 é/: ///j é 2777 % é %77
sumes exclusion of such interleavings. Hence, it has the lowest e e 22527
cost. Although the aggregated overheads of STOCHFUZZ are - - 2SS S RS SRS nSnomnm
not trivial, they are amortized over the 24 hours period. Also R RS § Sg28 2% % z =28 % Q %?ﬁ L E2QE
. . Mg g 2252228 8css < 52 -"35% 0o
observe that STOCHFUZZ’s overhead is comparable to ddisasm 2 & z 2% TR EAE 2L SSCZE2E g8 g
. 5 5] S @7 EZ8gLLE
(78). 5 & = =2 227z 2 3
2 ISR IR
= Z &858

E. Evaluation on Google FTS with Intential Data Inlining

Table VIII presents the overall effectiveness results for the
experiment on Google FTS with intentional data inlining. The
numbers of inlined data bytes are presented in the second
column (i.e., data bytes in between two code sections), and
whether the binaries instrumented by e9patch, ddisasm, and
STOCHFUZZ can be successfully fuzzed are presented in the
next three columns, respectively. E9patch fails on 22 out of
the 24 programs, due to its assumption of no inlined data.
It succeeds on two programs because they do not contain
static data sections. Ddisasm fails on 21 programs due to
three reasons. Specifically, X; denotes a recompilation error
that a byte value is larger than 256. It happens when ddisasm
mis-classifies a data byte as an offset of two labels. Hence,
when instrumentation code is inserted, the offset increases,
making the data byte larger than 256. Symbol X, denotes a
recompilation error that the target of a jump instruction is an
integer (instead of a symbol). It happens when ddisasm mis-
classifies some data bytes as a jump instruction whose target
cannot be symbolized. Symbol X3 denotes that instrumentation
code crashes on seed inputs (due to some recompilation error).

17

Fig. 13: Total Number of Fuzzing Executions in 24 hours. We
use afl-gcc as the baseline, and report the ratio of STOCHFUZZ
to afl-gcc. In the legend, we present the average number of
fuzzing executions over the 24 programs.

In contrast, STOCHFUZZ successfully instruments and fuzzes
all the programs.

F. Finding Zero-days in Closed-source Programs

In this experiment, we demonstrate STOCHFUZZ’s applica-
bility in closed-source or COTS binaries. We run STOCHFUZZ
on a set of 7 such binaries including CUDA Toolkit (cuob-
jdump, nvdisasm, cu++filt, and nvprune), PNGOUT, RAR
(rar and unrar) for a week. It discloses two zero-day vul-
nerabilities, as listed in Table IX. The first column presents
the programs, and columns 2-5 present the release date of
subject programs, the size, the first 4 bytes of MDS5 Hash,
and current bug status, respectively. CUDA Binary Utilities,
developped by NVIDIA, are a set of utilities which can extract
information from CUDA binary files [45]. The bug has been
Fixed in CUDA 11.3 [65]. PNGOUT is a closed-source PNG



TABLE IX: Zero-day vulnerabilities disclosed by
StocHFuUzz
Program Released Date  Size MD5 Status
CUDA Binary Utilities 2020-09-20 33M  edaf12b5 Fixed
PNGOUT 2020-01-15 89K  64f6899d  CVE-2020-29384

TABLE X: Maze Solving by Different Approaches. Three runs
are performed, each with a timeout of 12 hours, according to
the setting of the original paper. Symbol X denotes no solution
was found in any run, v denotes that all runs solved the maze.

TABLE XI: Different approaches are solving the small / large
maze. The tables shows the average time-to-solve in minutes
=+ the standard deviation.

M Plain IJON-Source IJON-Binary
azi

afl-clang-fast  afl-clang-fast afl-qemu StocHFuUzz
= Easy 95.42+40.47 1.5240.45 20.96+10.56 1.64 +0.51
:/E) Hard 149.78 £0.0 0.46£0.09 3.85+1.90 0.52 +0.06
gﬁ Easy - 20.66 +9.19 150.28 4+ 30.27 22.94 + 14.49
S Hard - 5.31+£1.59 96.85+16.61 5.12+1.89

Algorithm 2 One-step Sum-product

Plain IJON-Source IJON-Binary
Maze
afl-clang-fast  afl-clang-fast  afl-qemu  STOCHFUZZ
?é Easy 2/3 v v v
»v»  Hard 1/3 v v v
§  Easy X v/ 4 v
3 Hard X v v v

file compressors, which is adopted by multiple commercial or
non-commercial image optimizers [46], [47]. These optimizers
are further used by thousands of website to speed up image
uploading. The PNGOUT vulnerability has been assigned a
CVE ID.

G. Collect Other Runtime Feedback Than Coverage

We follow the exact same setup in IJON, with two maze
sizes (large and small) and two sets of rules. With the easy
rule, a game is terminated once an incorrect step is taken.
With the hard one, the player is allowed to backtrack. Note
that in the later case, the state space is much larger. We
experiment with 4 tools, afl-clang-fast without IJON plugin,
afl-clang-fast with IJON plugin, binary-only afl-gemu with
ported IJON plugin, and binary-only STOCHFUZZ with ported
IJON plugin. We run each tool three times with a 12-hour
timeout. Table X shows the overall effectiveness. The first
column presents the different mazes under different rules.
Columns 2-5 denote whether the maze is solved by the 4
different tools, respectively. Afl-clang-fast solves the small
maze with the easy rule 2 out of 3 trials, and the small maze
with the hard rule 1 out of 3 trials. The other tools successfully
solve all the mazes. Table XI shows the average time (in
minutes) needed to solve the mazes and the standard deviation.
Observe that although afil-clang-fast can solve some small
mazes, it takes the longest time. Regarding the two binary-only
approaches, STOCHFUZZ is around 8x faster than afl-gemu.
Additionally, STOCHFUZZ only has around 8% slowdown
compared with afl-clang-fast plus IJON, which demonstrates
the capabilities of STOCHFUZZ.

H. One-step Sum-product Algorithm

Algorithm 2 describes the one-step sum-product inference
procedure. O.oq. and Og,y, denote the aggregated code and
data observation values for each address, respectively. Note
that a small value means strong belief. Line 3 performs the
deterministic inference. Line 9 identifies SCCs and transforms
UCFG to a DAG of SCCs. Step 1 in lines 13-20 propagates

INPUT: B binary indexed by address
OuTtpuT:  Pla]€]0,1] probability of address a holding a data byte
LocaL: G=(V,E V={a | 3c st Inst(a,c)}
E={(a1,a2) | ExplicitSucc(a1,a2)}
Ocodela) €[0,1]  aggregated code observations on address a
Ouaala] €10,1] aggregated data observations on address a

: function CALCPROBABILITY(B)

G = BUILDUCFG(B)

Ocodes Odata = COLLECTOBSERVATIONS(B)
P = ONESTEPSUMPRODUCT(G, Ocode s Odata)
return P

: end function

: function ONESTEPSUMPRODUCT(G, Ocode ; Odata)

Gpac = TRANSFROMINTODAG(G) > Transform G into a
Directed Acyclic Graph (DAG) via collapsing each Strongly Connected Component
(SCC) into a vertex

R A el

10: ObAG_code = CREATEEMPTYMAPPING() > DAG-related mapping, initialized
as empty

11:

12: > Step 1: Aggregate code observation values

13: for each SCC z in topological order of Gpag do

14: 01 = PRODUCT({ Opac_code[y] | SCC v is a predecessor of SCC x)

15: 02 = PRODUCT({ Ocoge[?] | address ¢ belongs to SCC z})

16: ODAG_code[®] = 01 X 02

17: for each address ¢ in all addresses belonging to SCC = do

18: Ocode ['L] = OD/\G_code [:E]

19: end for

20: end for

21: > Step 2: Aggregate data observation values

22: Lprey = 0O > The last address whose Oy > 0

23: for each address i of B in increasing order do

24 if Ouaa[i] # L then

25: if 1 < i— ipey < D then

26: 01,02 = Odata [iL Odu/u[iprev]

27: for each address j € (iprev, ) do Y

28: Ouaralj] = 1 — 2pdam+(1—01)(1—°2§[£H2Pdam(1—01)(1—02)

29: end for

30: end if

31: Tprey = 1

32: end if

33: end for

34: > Step 3: one-step sum-product for each address

35: for each address ¢ of B in increasing order do

36: Oneg = (Ocode[t] = L 7 0.5 : Ocoqe|i])

37: 0pos = (Ouarat] = L 7 0.5 1 Ouarali])

38: P[i] = 0peg - (1 — 0pos) / (Opos + (1 — Oneg) + Oneg + (1 — 0pos))

39: end for

40: return P
41: end function

code observations. Step 2 in lines 22-33 propagates data
observations. The formula in line 28 is derived from a simple
factor graph involving three variables (i.e., addresses %, iprey,
and j), and three factors (for Ogqgtaliprev], Odatali], and rule
(@). Details are elided. Step 3 in lines 35-39 performs the one-
step sum-product for each address. Lines 36 and 37 assign
observation value 0.5 if there is no belief propagated to the
address. The formula in line 38 is derived from that in Fig. 9.
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