
PMP: Cost-effective Forced
Execution with Probabilistic
Memory Pre-planning

Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer,
Fei Peng, Yu Shi, Carson Harmon, Xiangyu Zhang

Background

• Difficulties in Malware Behavior Analysis
• the needed environment or setup may not present

• recent malware makes use of time-bomb and logic-bomb to hide payload

• sophisticated malware even use cloaking technique to anti-analysis

• Forced Execution
• penetrate malware self-protection mechanisms and various trigger conditions

• works by force-setting branch outcomes of some conditional instructions

• challenge: maintain crash-free execution

X-Force v.s. PMP

• X-Force: heavy-weight
• track individual instructions

• reason about pointer alias relations on-the-fly

• repair invalid pointers by on-demand memory allocation

• PMP: light-weight
• no tracking individual instructions

• no on-demand memory allocation and pointer repair

• pre-allocate a large memory buffer

• fill the buffer and variables with carefully crafted random values before execution

Example
01 typedef struct{double *f1; long *f2;} T;

02 void foo() {

03 long **a = malloc(...);

04 T *b;

05 if (cond1()) init(b);

06 if (cond2()) {

07 long *c = b->f2;

08 *(b->f2) = **a; // [0x0008] = [0x0010]

09 *(b->f1) = 0.1; // [0xffd0] = 0.1

10 long tmp = *c;

11 }

12 }

b->f2

b

takes the false branch
is forced to take the true branch

c: 0x08

b: 0x20

Architecture of PMP

Path Explorer Dispatcher

Executor 1 Executor n

40492b:T | 404aec:T |

404e07:T | 401f3f:F |

401ee3:T | 404fdc:F |

404fea:T | 405118:F |

40513a:F | 405144:F |

40517b:F | 40517f:F |

path scheme
memory scheme 1

memory scheme n

execution result 1

execution result n

Memory Pre-planning

During Execution Program Loading

program entry

call instruction

memory allocation

Global Variables Init

Local Variables Init

Heap Variables Init

PAMA Preparation

crafted file

PAMA

address space

PAMA Preparation

Executor

Variable Initialization

• Global Variables
• read the offset and size information of the .bss segment from the ELF header

• set .bss segment with random values indicating word-aligned PAMA addresses

• Heap Variables
• intercept all memory allocations

• set the allocated regions to contain random word-aligned PAMA addresses

• Local Variables
• initialize the entire stack region like a heap region during program loading

• intercept each function invocation to reinitialize the overwritten stack regions

SCMB and SDMB Properties

• SCMB (Self-Contained Memory Behavior)
• if the filling values are interpreted as memory address, the corresponding

accesses still fall into PAMA

• violations of SCMB lead to memory access exceptions

• SDMB (Self-Disambiguated Memory Behavior)
• it is highly unlikely that two semantically unrelated memory operations access

the same random address

• violations of SDMB lead to bogus dependences and corrupted variable values

Example
01 typedef struct{double *f1; long *f2;} T;

02 void foo() {

03 long **a = malloc(...);

04 T *b;

05 if (cond1()) init(b);

06 if (cond2()) {

07 long *alias = b->f2;

08 *(b->f2) = **a; // [0x0008] = [0x0010]

09 *(b->f1) = 0.1; // [0xffd0] = 0.1

10 long tmp = *alias;

11 }

10 }

b->f2

b->f1

*a

a

b

takes the false branch
is forced to take the true branch

a: 0x01ed7010

b: 0x20

Implementation

• Based on QEMU User-Mode Emulator
• instrument conditional jumps and indirect jumps to enforce path scheme

• currently supports ELF binary on x86_64 platform

• Practical Challenges
• handling file and network I/O, infinite loop and recursion

• allocation of large PAMA

• misaligned memory access

Probability Analysis

• Definition
• PA: set of all possible addresses within PAMA

• WA: word-aligned subset of PA, FV: random subset of WA

• S=|PA|=|WA|×8: size of PAMA, d=|FV|/|WA|: diversity of filling values

• Probabilistic Guarantee of SCMB

• Probabilistic Guarantee of SDMB

（1）

（2）

（3）

error1: out-of-bound access

error2: coincidental address collision

error3: coincidental address overlap

Probabilities of Errors in a Typical Setting

• Typical Setting
• 4-MB pre-allocated memory area (S = 0x400000)

• 2 executors (n = 2)

• diversity of filling values d is set to be 1

• α = 8, β = 0x1000, γ = 0x1000

• Probabilities of Errors
• Perr1 = 1.9073e-06

• Perr2 = 1.9073e-06

• Perr3 = 0.00195

Evaluation Settings

• Subjects:

• Computing Resources
• 8-core CPU (Intel®CoreTM i7-8700@ 3.20GHz)

• 16G main memory

• Time budget
• no time limit for Spec2000

• 5 minutes for each malware sample

Evaluation on

• SPEC2000: a well-known benchmark set
• 12 real-world programs

• some of them are large (e.g., 176.gcc)

• Comparison
• execution outcomes

• code coverage

• memory dependence

Evaluation on

• Execution Outcomes
• PMP is 84 times faster than X-Force

• the failure rate is similar

• Code Coverage
• PMP has comparable code coverage with X-Force (83.8% v.s. 82.7%)

• PMP achieves 100% code coverage for some programs while X-Force does not

• Memory Dependence
• X-Force has 6.5 times more false positives than PMP

• X-Force has 10% more false negatives than PMP

Evaluation on

• 400 Malware Samples
• half of them are from VirusTotal

• half of them are from Padawan

++

system time fast-forwarding
anti-virtualization-detection

Evaluation on

 (a) number of exposed syscall sequences

• PMP reports more than twice syscall sequences of that of other tools

• PMP is 9.8 times faster than X-Force

• PMP yields 1.5 times longer path schemes than X-Force

(b) executions per second (c) length of path scheme

Case Study: C&C Bot Malware Sample

• Simplified Code Snippet

• Comparison of Different Tools
Tools Cuckoo Habo Padawan Cuckoo++ X-Force PMP

syscall sequences 153 169 292 221 274 705

01 char *data = read_file("/sys/class/dmi/id/product_name");

02 if (contains(data, "VirtualBox", "VMware"))

03 remove_self_and_exit();

04 while (1) {

05 char *ip = select_intranet_ip(ip_list);

06 char *vuln = select_known_vuln(vuln_list);

07 if (connect_and_check(ip, vuln)) {

08 send_info_to_server(ip, vuln);

09 send_payload(ip, vuln);

10 }

11 }

VM detector

communication to the
selected IP address

sending host info
and payload

Availability

Experimental version of PMP:

https://github.com/pmp-tool/PMP

https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP

Thank you!

Q & A

