PMP: Cost-effective Forced
-xecution with Probabilistic
Memory Pre-planning

Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer,
Fei Peng, Yu Shi, Carson Harmon, Xiangyu Zhang

PURDUE fillE RSTTY

Background

e Difficulties in Malware Behavior Analysis
* the needed environment or setup may not present
* recent malware makes use of time-bomb and logic-bomb to hide payload
* sophisticated malware even use cloaking technique to anti-analysis

* Forced Execution
* penetrate malware self-protection mechanisms and various trigger conditions
» works by force-setting branch outcomes of some conditional instructions
* challenge: maintain crash-free execution

X-Force v.s. PMP

e X-Force: heavy-weight
* track individual instructions
* reason about pointer alias relations on-the-fly
* repair invalid pointers by on-demand memory allocation

* PMP: light-weight
* no tracking individual instructions
* no on-demand memory allocation and pointer repair
* pre-allocate a large memory buffer
* fill the buffer and variables with carefully crafted random values before execution

01 typedef struct{double *fl; long *f2;} T;
02 wvoid foo () {
Example 03 long **a = malloc(...);
04 T *b;
takes the false branchmp 05 if (condl()) init (b);
is forced to take the true branchm o6 if (cond2()) {
07 long pc|=|b1>f2;
08 *(b->f2) = **a; // [0x0008] = [0x0010]
09 *(b->f1) = 0.1; // [0xffd0] = 0.1
10 long tmp = |*c}
11 }
12}
Local Variables
c: 0x08
b: 0x20 l
b PAMA
@ 1 2 3 4 5 6 7 8 9 a b ¢ d e f
PX0000 80' fe' 00! ' 90' 00'00' 00 ' 00| 50' 38! 00' 0D'00'00'00' 00
ex0010 48 74 e@ @e ee ee 0@ 00 fs ©4,00 00,00 00,00, 00
____ 50x0020 |dO' ff! 00 ' 00' 00! 00! 0000|0800 00 0O 0O 0O 0O 00
oxffdo 88,19, 00,00, 00,00, 00,00(30,30,00,00,00,00,00,00
exffee |40'fc' 00' 00'00'00' 00' 00| 98'20' 00 00 00' 00 00' 00O
exfffo 201 50,00, 00 00,00, 00,00|e8 a7,00,00,00 0000, 00

b->f2

Architecture of PMP

Y

Path Explorer

path scheme

40492Db:
404e07:
401ee3:
404fea:
40513a:
40517b:

R I R R

404aec:
401£3f:
404fdc:
405118:
405144:
40517f:

I I

Dispatcher

execution result 1

Executor 1

execution result n

memory scheme n

Executor n

Memory Pre-planning

crafted file

Program Loading

PAMA Preparation

\ PAMA

address space

During Execution

—> program entry

—> call instruction

—>

—>

——> memory allocation —»

Global Variables Init

Local Variables Init

Heap Variables Init

PAMA Preparation

80 ife 100 100 100 100 100 100

50138100100100100:00100

48,74 ,00 ,00 ,00 ,00,00 ,00

£8,04,00,00,00,00,00,00

do 'ff'oo'co'00'00'00'00

08 '00 o0 '00'00'00'00' 00

| | | | | | |
88 ,19 00 ,00 ,00 00,00 ,00

| | | | | | |
30,30 ,00,00,00,00,00,00

40 'fc !oo0'00 0000 0000

98 '!20!00'00'00!00'00! 00

20'50'00'00'00'00'00'00

e8!a7'00'00'00'00'00'00

<

Executor

high address
(O eiiiiiiiii]

end of PAMA

low address
(0x0)

Variable Initialization

 Global Variables

* read the offset and size information of the .bss segment from the ELF header
* set .bss segment with random values indicating word-aligned PAMA addresses

* Heap Variables
* intercept all memory allocations
* set the allocated regions to contain random word-aligned PAMA addresses

e Local Variables

* initialize the entire stack region like a heap region during program loading
* intercept each function invocation to reinitialize the overwritten stack regions

SCMB and SDMB Properties

 SCMB (Self-Contained Memory Behavior)

* if the filling values are interpreted as memory address, the corresponding
accesses still fall into PAMA

* violations of SCMB lead to memory access exceptions

 SDMB (Self-Disambiguated Memory Behavior)

* it is highly unlikely that two semantically unrelated memory operations access
the same random address

* violations of SDMB lead to bogus dependences and corrupted variable values

Example

takes the false branchmp 05
is forced to take the true branchm o6

Local Variables

a: 0x01ed7010

b: 0x20

>0xled7010

*a

Ox0000
0x0010

—>0X0020
b->f1
oxffdo

Oxffeo
oxfffo

01 typedef struct{double *fl; long *f2;} T;
02 wvoid foo () {
03 long **a = malloc(...);
04 T *b;
if (condl()) init (b);
if (cond2()) {
07 long *alias = b->f2;
08 *(b->£2) | =| **a; |// [0x0008] = [0x0010]
09 *(b->f1)|= 0.1; // [0xffd0] = 0.1
10 long tmp = *alias;
11 }
10}
Heap Region
10,00 00,00.00:00.00!; 00
PAMA
@ 1 2 3 4 5 6 7 8 9 a b ¢ d e f
80! fe! 00' 00'00'00' 00 ' 0O 50'38 '90' 00' 00' 00 ' 00 ' 0O
> 48 74 e@ ee 0. 00,0000 fs ©4,00 00,00 00,00, 00
de'! ff 00! 00'00'00' 00 ' 00|08 00 00 80! 00! 00 00 0O
88,19, 00,00, 00,00, 00,00(30,30,00,00,00,00,00,00
40' fc'00' 00' 00'00' 00'00|98'20'00' 00'00' 00! 00 00
201 50,00, 00 00,00, 00,00|e8 a7,00,00,00 0000, 00

b->f2

Implementation

e Based on QEMU User-Mode Emulator

* instrument conditional jumps and indirect jumps to enforce path scheme
e currently supports ELF binary on x86_64 platform

* Practical Challenges
* handling file and network I/O, infinite loop and recursion
* allocation of large PAMA
* misaligned memory access

Probability Analysis

* Definition
e PA: set of all possible addresses within PAMA
 WA: word-aligned subset of PA, FV:random subset of WA
e S=|PA|=|WA| x8:size of PAMA, d=|FV |/ |WA|: diversity of filling values

e Probabilistic Guarantee of SCMB

o _ 8
Perr1 = P ((z+a) gea |z €Fv) = [y (1—ﬁ) (1) errorl: out-of-bound access

* Probabilistic Guarantee of SDMB

P.o=P(xr=y|x€rv, y€rv) = d8—9 (2) error2: coincidental address collision
Perrg =P (L(z,8)N1(y,7y) #0 | x€FV, y€FV)
ﬂﬂl_ 8)2 Bty—8 (3) error3: coincidental address overlap

Probabilities of Errors in a Typical Setting

* Typical Setting
* 4-MB pre-allocated memory area (S = 0x400000)
e 2 executors (n = 2)

e diversity of filling values d is set to be 1
e =8, 3=0x1000, yv=0x1000

 Probabilities of Errors
e P._.=1.9073e-06

errl —

* P, =19073e-06

err2 ~

¢ .2 =0.00195

Evaluation Settings

. Subjects: SPEC 'a W@ €

* Computing Resources
* 8-core CPU (Intel®Core™i7-8700@ 3.20GHz)
* 16G main memory

* Time budget
* no time limit for Spec2000
* 5 minutes for each malware sample

Evaluation on SPEC

e SPEC2000: a well-known benchmark set

* 12 real-world programs
* some of them are large (e.g., 176.gcc)

* Comparison

. N,
e execution outcomes UYL
e code coverage p VS/ x./ﬂl'ﬂg

* memory dependence

Evaluation on SPEC

* Execution Outcomes
e PMP is 84 times faster than X-Force
e the failure rate is similar

* Code Coverage

* PMP has comparable code coverage with X-Force (83.8% v.s. 82.7%)
* PMP achieves 100% code coverage for some programs while X-Force does not

* Memory Dependence
» X-Force has 6.5 times more false positives than PMP
* X-Force has 10% more false negatives than PMP

Evaluation on .alw';,e

* 400 Malware Samples
* half of them are from VirusTotal
* half of them are from Padawan

p x-/ﬂ/z'g

.\ |
PEmECE Vé/ Iyg Habo Analysis System

4

system time fast-forwarding
ti-virtualization-detection
CUCI@% e ,CUCI@%

Evaluation on .alw';,e

* PMP reports more than twice syscall sequences of that of other tools
* PMP is 9.8 times faster than X-Force

* PMP yields 1.5 times longer path schemes than X-Force

Cuckoo — P A T
Habo 4| l—— ome © o0 o= o290 = oo
Padawan]:—u—hnn me oo o .
Cuckoo™ -|_-u—| o sso 8 8 was oo
H-Force e Jasseas s & & osos
PMP ,|.
0 30 100 150 200 230

(a) number of exposed syscall sequences

2.00
12D
1.60
1.40
1.20
1.00
0.20
0.60
0.40
0.20
0.00

u PMP mX-Force

(b) executions per second

m PMP mX-Force

(c) length of path scheme

Case Study: C&C Bot Malware Sample

e Simplified Code Snippet

01 char *data = read file("/sys/class/dmi/id/product name") ;

02 1f (contains(data, "VirtualBox", "VMware"))

03 remove self and exit(); VM detector

04 while (1) {

05 char *ip = select intranet ip(ip list);

06 char *vuln = selegt known ;uln(v;ln list); communication to the
07 if (connect_and_che;k(ip,_vuln)) { N selected IP address
08 send info to server (ip, vuln); sendhughostwﬁo

09 send payload(ip, wvuln); and payload

10 }

11}

* Comparison of Different Tools

B e T e

syscall sequences

Availability

Experimental version of PMP:
https://github.com/pmp-tool/PMP

https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP

Thank you!
Q&A

