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Background 

• Difficulties in Malware Behavior Analysis 
• the needed environment or setup may not present  

• recent malware makes use of time-bomb and logic-bomb to hide payload 

• sophisticated malware even use cloaking technique to anti-analysis 

 

• Forced Execution 
• penetrate malware self-protection mechanisms and various trigger conditions 

• works by force-setting branch outcomes of some conditional instructions 

• challenge: maintain crash-free execution 



X-Force v.s. PMP 

• X-Force: heavy-weight 
• track individual instructions 

• reason about pointer alias relations on-the-fly 

• repair invalid pointers by on-demand memory allocation 

 

• PMP: light-weight 
• no tracking individual instructions 

• no on-demand memory allocation and pointer repair 

• pre-allocate a large memory buffer 

• fill the buffer and variables with carefully crafted random values before execution 

 



Example 
01  typedef struct{double *f1; long *f2;} T; 

02  void foo() { 

03    long **a = malloc(...); 

04    T *b; 

05    if (cond1()) init(b); 

06    if (cond2()) { 

07      long *c = b->f2; 

08      *(b->f2) = **a; // [0x0008] = [0x0010] 

09      *(b->f1) = 0.1; // [0xffd0] = 0.1 

10      long tmp = *c; 

11   } 

12  } 

b->f2 

b 

takes the false branch 
is forced to take the true branch 

c: 0x08 

b: 0x20 



Architecture of PMP 
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Memory Pre-planning 

During Execution Program Loading 

program entry 

call instruction 
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Variable Initialization 

• Global Variables 
• read the offset and size information of the .bss segment from the ELF header 

• set .bss segment with random values indicating word-aligned PAMA addresses 

• Heap Variables 
• intercept all memory allocations 

• set the allocated regions to contain random word-aligned PAMA addresses 

• Local Variables 
• initialize the entire stack region like a heap region during program loading 

• intercept each function invocation to reinitialize the overwritten stack regions 

 

 



SCMB and SDMB Properties 

• SCMB (Self-Contained Memory Behavior) 
• if the filling values are interpreted as memory address, the corresponding 

accesses still fall into PAMA 

• violations of SCMB lead to memory access exceptions 

 

• SDMB (Self-Disambiguated Memory Behavior) 
• it is highly unlikely that two semantically unrelated memory operations access 

the same random address 

• violations of SDMB lead to bogus dependences and corrupted variable values 



Example 
01  typedef struct{double *f1; long *f2;} T; 

02  void foo() { 

03    long **a = malloc(...); 

04    T *b; 

05    if (cond1()) init(b); 

06    if (cond2()) { 

07      long *alias = b->f2; 

08      *(b->f2) = **a; // [0x0008] = [0x0010] 

09      *(b->f1) = 0.1; // [0xffd0] = 0.1 

10      long tmp = *alias; 

11   } 

10  } 

b->f2 

b->f1 

*a 

a 

b 

takes the false branch 
is forced to take the true branch 

a: 0x01ed7010 

b: 0x20 



Implementation 

• Based on QEMU User-Mode Emulator 
• instrument conditional jumps and indirect jumps to enforce path scheme 

• currently supports ELF binary on x86_64 platform 

 

• Practical Challenges 
• handling file and network I/O, infinite loop and recursion 

• allocation of large PAMA 

• misaligned memory access 



Probability Analysis 

• Definition 
• PA: set of all possible addresses within PAMA 

• WA: word-aligned subset of PA, FV: random subset of WA 

• S=|PA|=|WA|×8: size of PAMA, d=|FV|/|WA|: diversity of filling values 

• Probabilistic Guarantee of SCMB 

 

• Probabilistic Guarantee of SDMB 

 

（1） 

（2） 

（3） 

error1: out-of-bound access 

error2: coincidental address collision 

error3: coincidental address overlap 



Probabilities of Errors in a Typical Setting 

• Typical Setting 
• 4-MB pre-allocated memory area (S = 0x400000) 

• 2 executors (n = 2) 

• diversity of filling values d is set to be 1 

• α = 8, β = 0x1000, γ = 0x1000 

 

• Probabilities of Errors 
• Perr1 = 1.9073e-06  

• Perr2 = 1.9073e-06  

• Perr3 = 0.00195 

 



Evaluation Settings 

• Subjects: 

 

• Computing Resources 
• 8-core CPU (Intel®CoreTM i7-8700@ 3.20GHz) 

• 16G main memory 

 

• Time budget 
• no time limit for Spec2000 

• 5 minutes for each malware sample 



Evaluation on  

• SPEC2000: a well-known benchmark set 
• 12 real-world programs 

• some of them are large (e.g., 176.gcc) 

 

• Comparison 
• execution outcomes 

• code coverage 

• memory dependence 



Evaluation on  

• Execution Outcomes 
• PMP is 84 times faster than X-Force  

• the failure rate is similar 

• Code Coverage 
• PMP has comparable code coverage with X-Force (83.8% v.s. 82.7%) 

• PMP achieves 100% code coverage for some programs while X-Force does not 

• Memory Dependence 
• X-Force has 6.5 times more false positives than PMP 

• X-Force has 10% more false negatives than PMP 

 

 

 

 

 



Evaluation on  

• 400 Malware Samples 
• half of them are from VirusTotal 

• half of them are from Padawan 

 

++ 
 

system time fast-forwarding 
anti-virtualization-detection 



Evaluation on  

    (a) number of exposed syscall sequences 

• PMP reports more than twice syscall sequences of that of other tools 

• PMP is 9.8 times faster than X-Force 

• PMP yields 1.5 times longer path schemes than X-Force 

(b) executions per second (c) length of path scheme 



Case Study: C&C Bot Malware Sample 

• Simplified Code Snippet                       

 

 

 

 

 

 

• Comparison of Different Tools 
Tools Cuckoo Habo Padawan Cuckoo++ X-Force PMP 

# syscall sequences 153 169 292 221 274 705 

01  char *data = read_file("/sys/class/dmi/id/product_name"); 

02  if (contains(data, "VirtualBox", "VMware")) 

03    remove_self_and_exit(); 

04  while (1) { 

05    char *ip = select_intranet_ip(ip_list); 

06    char *vuln = select_known_vuln(vuln_list); 

07    if (connect_and_check(ip, vuln)) { 

08      send_info_to_server(ip, vuln); 

09      send_payload(ip, vuln); 

10    } 

11  } 

VM detector 

communication to the 
selected IP address 

sending host info 
and payload 



Availability 

 

 

Experimental version of PMP: 

https://github.com/pmp-tool/PMP 

 

https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP
https://github.com/pmp-tool/PMP
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Q & A 


