
BDA: Practical Dependence Analysis
for Binary Executables by Unbiased
Whole-Program Path Sampling and

Per-Path Abstract Interpretation
Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei,

Yonghwi Kwon, and Xiangyu Zhang

• Determine data dependence between instructions
in binary executables

Intro: Binary Program
Dependence Analysis

• Determine data dependence between instructions
in binary executables

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

Intro: Binary Program
Dependence Analysis

• Determine data dependence between instructions
in binary executables

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

Intro: Binary Program
Dependence Analysis

• Determine data dependence between instructions
in binary executables

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

Intro: Binary Program
Dependence Analysis

• Determine data dependence between instructions
in binary executables

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

DEPENDENCE
Intro: Binary Program
Dependence Analysis

• Determine data dependence between instructions
in binary executables
• Have many applications
• Precise call graph construction
• Malware analysis to expose hidden behaviors
• Binary rewriting
• ……

Intro: Binary Program
Dependence Analysis

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

• Determine data dependence between instructions
in binary executables
• Have many applications
• A key challenge is to identify if multiple memory

read/write instructions access the same memory
location

?

?

Intro: Binary Program
Dependence Analysis

1 ...
2 a = 0;
3 ...
4 int b = a;

1 ...
2 mov [rax], 0x0
3 ...
4 mov rbx, [rcx]

• Determine data dependence between instructions
in binary executables
• Have many applications
• A key challenge is to identify if multiple memory

read/write instructions access the same memory
location

?

?

Intro: Binary Program
Dependence Analysis

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values

s[lb, ub]
representing {lb, lb+s, lb+2s, …, ub}

e.g.,
2[0, 8] representing {0, 2, 4, 6, 8}

stride

upper bound

lower bound

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values
• Have difficulty scaling to complex programs

1 int *p;
2 if (...)
3 p = ...;
4 else
5 p = ...;
6 *p = 0;

1 ...
2 ...
3 mov rax, rbx
4 ...
5 mov rax, [rcx]
6 mov [rax], 0

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values
• Have difficulty scaling to complex programs

2[0, 2] representing {0, 2}1 int *p;
2 if (...)
3 p = ...;
4 else
5 p = ...;
6 *p = 0;

1 ...
2 ...
3 mov rax, rbx
4 ...
5 mov rax, [rcx]
6 mov [rax], 0

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values
• Have difficulty scaling to complex programs

2[0, 2] representing {0, 2}1 int *p;
2 if (...)
3 p = ...;
4 else
5 p = ...;
6 *p = 0;

1 ...
2 ...
3 mov rax, rbx
4 ...
5 mov rax, [rcx]
6 mov [rax], 0

100[0, 100]
representing {0, 100}

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
• Integrated into a variety of binary analysis frameworks

(Angr, BAP)
• Compute a set of possible values for each operand of an

instruction
• Use a strided interval to denote the set of values
• Have difficulty scaling to complex programs

100[0, 100]
representing {0, 100}

2[0, 2] representing {0, 2}1 int *p;
2 if (...)
3 p = ...;
4 else
5 p = ...;
6 *p = 0;

1 ...
2 ...
3 mov rax, rbx
4 ...
5 mov rax, [rcx]
6 mov [rax], 0 2[0, 100] representing

{0, 2, 4, ..., 100}

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)
ANGR-VSA BAP-VSA

164.gzip ✘ TIMEOUT (12 hours)
175.vpr ✘ TIMEOUT (12 hours)
176.gcc ✘ TIMEOUT (12 hours)
181.mcf ✘ ✓

186.crafty ✘ TIMEOUT (12 hours)
197.parser ✘ TIMEOUT (12 hours)
252.eon ✘ TIMEOUT (12 hours)

253.perlbmk ✘ TIMEOUT (12 hours)
254.gap ✘ TIMEOUT (12 hours)

255.vortex ✘ TIMEOUT (12 hours)
256.bzip2 ✘ TIMEOUT (12 hours)
300.twolf ✘ TIMEOUT (12 hours)

Intro: Existing Works

• The state-of-the-art: Value Set Analysis (VSA)

• More efficient but conservative technique: ALTO

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications
• E.g., indirect control-flow transfer targets can help

construct precise call graphs

has a very low likelihood of missing any true positive

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications
• E.g., indirect control-flow transfer targets can help

construct precise call graphs

Strict Soundness
à Never miss any true positives
à Produce a large number of bogus call edges

Probability Guarantees
à Discover most of the true edges
à Have a low chance of missing some true positive edges

has a very low likelihood of missing any true positive

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications

• Observation 2: a dependence relation can be
disclosed by many whole-program paths

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications

• Observation 2: a dependence relation can be
disclosed by many whole-program paths
• For a program with n statements

• The number of dependences: O(n2)
• The number of paths is O(2n)

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications

• Observation 2: a dependence relation can be
disclosed by many whole-program paths

à BDA: a sampling-based abstract interpretation
technique for dependence analysis

Observation

• Observation 1: probabilistic guarantees are
sufficient for many practical applications

• Observation 2: a dependence relation can be
disclosed by many whole-program paths

à BDA: a sampling-based abstract interpretation
technique for dependence analysis

We will use source code examples to explain our idea.
But BDA operates on stripped binary executables.

Naïve Sampling Algorithm?
To toss a fair coin at each predicate 1. void foo(char *buf){

2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (!check1(buf))
4. return;
5. if (!check2(buf))
6. return;
7. if (!check3(buf))
8. return;
9. if (!check4(buf))
10. return;
11. if (!check5(buf))
12. return;
13. if (!check6(buf))
14. return;
15. printf(“%s”, buf);
16.}

Naïve Sampling Algorithm?
To toss a fair coin at each predicate 1. void foo(char *buf){

2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (!check1(buf))
4. return;
5. if (!check2(buf))
6. return;
7. if (!check3(buf))
8. return;
9. if (!check4(buf))
10. return;
11. if (!check5(buf))
12. return;
13. if (!check6(buf))
14. return;
15. printf(“%s”, buf);
16.}

Naïve Sampling Algorithm?
To toss a fair coin at each predicate 1. void foo(char *buf){

2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (!check1(buf))
4. return;
5. if (!check2(buf))
6. return;
7. if (!check3(buf))
8. return;
9. if (!check4(buf))
10. return;
11. if (!check5(buf))
12. return;
13. if (!check6(buf))
14. return;
15. printf(“%s”, buf);
16.}

Naïve Sampling Algorithm?
To toss a fair coin at each predicate 1. void foo(char *buf){

2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (!check1(buf))
4. return;
5. if (!check2(buf))
6. return;
7. if (!check3(buf))
8. return;
9. if (!check4(buf))
10. return;
11. if (!check5(buf))
12. return;
13. if (!check6(buf))
14. return;
15. printf(“%s”, buf);
16.}

Naïve Sampling Algorithm?
To toss a fair coin at each predicate

DEPENDENCE

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (!check1(buf))
4. return;
5. if (!check2(buf))
6. return;
7. if (!check3(buf))
8. return;
9. if (!check4(buf))
10. return;
11. if (!check5(buf))
12. return;
13. if (!check6(buf))
14. return;
15. printf(“%s”, buf);
16.}

Naïve Sampling Algorithm? NO
To toss a fair coin at each predicate

DEPENDENCE

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

1/2

1/2

1/2

1/2

1/2

1/2 1/2

1/2

1/2

1/2

1/2

1/2

P(Red Path): 1/64
Find Dependence

P(Blue Path): 1/2
Cannot Find Dependence

Naïve Sampling Algorithm? NO
To toss a fair coin at each predicate

DEPENDENCE

1. void foo(char *buf){
2. scanf(“%s”, buf);
3. if (check1(buf))

5. if (!check2(buf)) 4. return;

15. printf(“%s”, buf);
16.}

7. if (!check3(buf)) 6. return;

9. if (!check4(buf)) 8. return;

11. if (!check5(buf)) 10. return;

13. if (!check6(buf)) 12. return;

13. return;

?/?

?/?

?/?

?/?

?/?

?/? ?/?

?/?

?/?

?/?

?/?

?/?

P(Red Path): 1/7
Find Dependence

P(Blue Path): 1/7
Cannot Find Dependence

7 paths in total

Workflow of BDA

• Phase 1: Path Sampling
Sample whole-program paths under a uniform distribution

• Phase 2: Per-path Abstract Interpretation
Compute the possible values for individual instructions,
following the given sample path

• Phase 3: Posterior Analysis
Mitigate the possible incomplete path coverage during sampling

Phase 1: Path Sampling

• Input: Binary executable and its inter-procedural
control flow graph

• Output: A number of whole-program path samples

1. int main(){
2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

Phase 1: Inter-procedural
Control Flow Graph gee()

foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Phase 1: Inter-procedural
Control Flow Graph

1. int main(){
2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

1. int main(){
2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

Phase 1: Inter-procedural
Control Flow Graph gee()

foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Phase 1: Inter-procedural
Control Flow Graph

Intra-procedural
Control Flow1. int main(){

2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Phase 1: Inter-procedural
Control Flow Graph Inter-procedural

Control Flow1. int main(){
2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Phase 1: Inter-procedural
Control Flow Graph

1. int main(){
2. int a;
3. if (rand())
4. gee(&a);
5. else foo(&a) ;
6. }
7.
8. void foo(int *a){
9. gee(a) ;
10. if (rand())
11. *a+=1;
12. }
13.
14. void gee(int *a){
15. if (rand())
16. *a=0;
17. else *a=2;
18. }

gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Phase 1: Path Counting
gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Toss a biased coin at
predicates to sample
each path uniformly

Phase 1: Path Counting

BB_1

BB_5BB_4

Entry main()• m inter-procedural
paths from BB_4 to
BB_6 m

Phase 1: Path Counting

BB_1

BB_5BB_4

Entry main()

m n

• m inter-procedural
paths from BB_4 to
BB_6
• n inter-procedural

paths from BB_5 to
BB_6

Phase 1: Path Counting

BB_1

BB_5BB_4

Entry main()

m

• m inter-procedural
paths from BB_4 to
BB_6
• n inter-procedural

paths from BB_5 to
BB_6

• n/(m+n) probability to
take BB_5 from BB_1

n
n/(m+n)m/(m+n)

Phase 1: Path Counting
gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

Compute the weight for
each basic block, which
denotes the number of
inter-procedural paths
from the block to the exit
of its enclosing function

Phase 1: Path Counting
gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

The path counting is
performed in reverse
topological order

1. Sort the call graph
(geeà fooàmain)

2. Sort the nodes inside
each function

1

23

4

5
6

7

8

9

1011

12

Phase 1: Path Counting
gee()

BB_14

BB_17BB_16

BB_18

The path counting is
performed in reverse
topological order

1. Sort the call graph
(geeà fooàmain)

2. Sort the nodes inside
each function

1

Phase 1: Path Counting
gee()

BB_14

BB_17BB_16

BB_18

The path counting is
performed in reverse
topological order

1. Sort the call graph
(geeà fooàmain)

2. Sort the nodes inside
each function

1

The first
processed node

1 1

2

There are two paths
inside gee()

Phase 1: Path Counting

BB_12

foo()

Return node’s
weight is 1

1

W[BB_12] = 1

Phase 1: Path Counting

BB_11

BB_12

BB_10

foo()

1

W[BB_10]
= W[BB_12] + W[BB_11]
= 1 + 1 = 2

2

1

Non-callsite node’s
weight is the sum of
successors’ weights

Phase 1: Path Counting

BB_14

BB_8

BB_10

2

foo()

2

W[BB_8]
= W[BB_14] x W[BB_10]
= 2 x 2 = 4

4
Callsite node’s weight is the
product of the callee weight
and the continuation weight

Phase 1: Path Counting

BB_1

BB_5BB_4

BB_6

BB_8

BB_10

Entry

Exit

main()

1

42

6• 2 inter-procedural
paths from BB_4
to BB_6
• 4 inter-procedural

paths from BB_5
to BB_6

• 2/3 probability to
take BB_5 from
BB_1

2/3

Phase 1: Path Sampling
gee()
foo()
main()

BB_1

BB_5BB_4

BB_6

BB_14

BB_17BB_16

BB_18

BB_8

BB_11

BB_12

BB_10

Entry

Exit

1

1 1

2

1

2

1

4

1

4

6
2/31/3

1/2 1/2

1/2

1/2

BB_1

BB_4

BB_14

BB_16

BB_18

BB_6

1/3

1/2

Path 1:

P1 = 1/6 P2 = 1/6

BB_1

BB_5

BB_8

BB_14

BB_17

BB_18

2/3

1/2

Path 2:

BB_10

BB_12

BB_6

1/2

2

Phase 1: Practical Challenges

• The weight of each block is extremely large
• The number of whole-program paths: O(2n)

Phase 1: Practical Challenges

• The weight of each block is extremely large
• The number of whole-program paths: O(2n)
• How to handle biased distribution (e.g., 1 : 101000)

A simple random number generator
will introduce substantial error

on such a biased odds.

Phase 1: Practical Challenges

• The weight of each block is extremely large
• The number of whole-program paths: O(2n)
• How to handle biased distribution (e.g., 1 : 101000)
• We develop a novel algorithm to simulate the biased

distribution

Phase 1: Practical Challenges

• The weight of each block is extremely large
• Loops and recursion [Bounded unrolling]
• Multi-exit [Two different kinds of weights]

Phase 2: Per-Path Abstract
Interpretation
• Follow the given sampled path

Phase 2: Per-Path Abstract
Interpretation
• Follow the given sampled path
• Use singleton value, instead of strided interval

Phase 2: Per-Path Abstract
Interpretation
• Follow the given sampled path
• Use singleton value, instead of strided interval
• Is to-some-extent similar to concrete execution

Phase 2: Per-Path Abstract
Interpretation
• Follow the given sampled path
• Use singleton value, instead of strided interval
• Is to-some-extent similar to concrete execution
• Compute the possible values for individual

instructions, which will be used to collect the
definition and use information about memory

Phase 2: Per-Path Abstract
Interpretation

&v à 0xDEADBEEF

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

Phase 2: Per-Path Abstract
Interpretation

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

DEF(0xDEADBEEF) = {B}

&v à 0xDEADBEEF

Phase 2: Per-Path Abstract
Interpretation

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

DEF(0xDEADBEEF) = {B}

&v à 0xDEADBEEF

USE(0xDEADBEEF) = {E}

Phase 2: Per-Path Abstract
Interpretation

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

DEF(0xDEADBEEF) = {B}

&v à 0xDEADBEEF

USE(0xDEADBEEF) = {E}

Phase 3: Posterior Analysis

• Cannot sample all the whole-program paths
• Miss some dependence belonging to uncovered paths

Phase 3: Posterior Analysis

• Cannot sample all the whole-program paths
• Miss some dependence belonging to uncovered paths

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

Phase 3: Posterior Analysis

• Cannot sample all the whole-program paths
• Miss some dependence belonging to uncovered paths

B. v = 0; C. v = 1;

E. output(v); F. output(-v);

✓ ✓

Phase 3: Posterior Analysis

• Cannot sample all the whole-program paths
• Miss some dependence belonging to uncovered paths

C. v = 1;

E. output(v); F. output(-v);

✘

A. if (rand())

D. if (rand())

G. return;

Phase 3: Posterior Analysis

• Merge per-path memory write information at each
control-flow joint point

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

&v à 0xDEADBEEF

Phase 3: Posterior Analysis

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

&v à 0xDEADBEEF

• Merge per-path memory write information at each
control-flow joint point

DEF(0xDEADBEEF) = {B}

DEF(0xDEADBEEF) = {C}

Phase 3: Posterior Analysis

A. if (rand())

B. v = 0; C. v = 1;

D. if (rand())

E. output(v); F. output(-v);

G. return;

&v à 0xDEADBEEF

• Merge per-path memory write information at each
control-flow joint point

DEF(0xDEADBEEF) = {B, C}

Phase 3: Posterior Analysis

• Cross-check the memory read information to detect
dependence

B. v = 0; C. v = 1;

E. output(v);

USE(0xDEADBEEF) = {E}

DEF(0xDEADBEEF) = {B, C}

Probabilistic Guarantees

• Assume m out of total n paths disclose a
dependence, and let k = m/n
• For one sample, the probability pd of observing a

given dependency d is:

• For N sample, the probability Pd of observing a
given dependency d is:

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:11

By applying Taylor’s Theorem to inequality (4), we can derive inequality (5). In practice,
the length L of the longest path of any binary executable (without loops or recursion) satisfies
L≪ (263 + 1), the approximation is hence very tight around 1

n . For example, 176.gcc’s longest path

is nearly 40000, such that 1−(8e−15)
n ≤ p̃ ≤ 1+(8e−15)

n .

(1 −
2L

263 + 1
) ·

1

n
≤ p̃ ≤ (1 +

2L

263 + 1
) ·

1

n
(5)

We should note that a simple random number generator would not work because of the limitation
of floating point representation. Considering selecting a branch with possibility 1e−1000 represented
via 1 : 1e+1000, it would be transformed to 2e−308 (the minimal representable positive value in
float64), suggesting over 2e+692 times undesirable amplification of the likelihood. This would lead
to heavily biased sampling. Lumbroso [2013] proposed a heavy-weight algorithm to accurately
sample from strongly-biased distribution, whose average-case time complexity is O(log(p + q))
when sampling from p :q. In contrast, Algorithm 2 samples in O(1) with negligible precision loss,
and hence is more desirable in our context where the sampling function is frequently invoked.

Probabilistic Guarantee for Disclosing Dependence. As mentioned in Section 2, a (memory)
dependence may be disclosed by many paths. Assumem out of total n paths disclose a dependence,
and let k = m

n . Following our path sampling algorithm, in a path sample, the probability pd of
observing a given dependency d satisfies inequality (6).

(
263

263 + 1

)2L
· k ≤ pd = p̃ ·m ≤

(
263 + 1

263

)2L
· k (6)

For N samples, the probability Pd of disclosing dependency d at least once has a lower bound
mentioned in inequality (7).

Pd = 1 − (1 − pd)
N ≥ 1 −

(

1 −

(
263

263 + 1

)2L
· k

)N
≈ 1 − (1 − k)N (7)

Inequality (7) offers a strong guarantee for finding dependency in practice. Taking 176.gcc as an
example, if L=40000, k=0.0005 and N =10000, we would have Pd ≥ 99.32%, which means that the
chance of missing the dependence is only 0.68%.

4.3 Addressing Practical Challenges

Handling Loops. Our discussion so far assumes loop-free and recursion-free programs. BDA
distinguishes two kinds of loops and handles them differently. The first kind is loops whose
iteration numbers are not external input related. We call it constant loops. The other kind is input
related, called input-dependent loops.

For an input-dependent loop, it is intractable to determine how many times it iterates. A standard
solution is to compute a fix-point, which often entails substantial over-approximation. Hence,
our design is to bound the number of iterations. A naive solution is to give a fixed bound for all
input-dependent loops. However, this could cause non-trivial path explosion in the presence of
nesting loops. Hence, we bound the total number of iterations across all the nesting loops within
a function. Such a design also allows easy computation of weight values. Assume the bound for
each function is t = 3, Figure 7a illustrates the idea. For each function F , BDA clones the function
t times, denotes as F0, . . . , Ft−1. For each back-edge in Fi , we reconnect it to the corresponding
loop head in Fi+1. For example, back-edge a in Figure 7 becomes a1, a2 and a3 connecting different
versions of F . Note that in the transformed graph at most t = 3 back-edges could be taken (e.g., a 3
times and b 0 times; a 2 times and b 1 time; and so on).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:11

By applying Taylor’s Theorem to inequality (4), we can derive inequality (5). In practice,
the length L of the longest path of any binary executable (without loops or recursion) satisfies
L≪ (263 + 1), the approximation is hence very tight around 1

n . For example, 176.gcc’s longest path

is nearly 40000, such that 1−(8e−15)
n ≤ p̃ ≤ 1+(8e−15)

n .

(1 −
2L

263 + 1
) ·

1

n
≤ p̃ ≤ (1 +

2L

263 + 1
) ·

1

n
(5)

We should note that a simple random number generator would not work because of the limitation
of floating point representation. Considering selecting a branch with possibility 1e−1000 represented
via 1 : 1e+1000, it would be transformed to 2e−308 (the minimal representable positive value in
float64), suggesting over 2e+692 times undesirable amplification of the likelihood. This would lead
to heavily biased sampling. Lumbroso [2013] proposed a heavy-weight algorithm to accurately
sample from strongly-biased distribution, whose average-case time complexity is O(log(p + q))
when sampling from p :q. In contrast, Algorithm 2 samples in O(1) with negligible precision loss,
and hence is more desirable in our context where the sampling function is frequently invoked.

Probabilistic Guarantee for Disclosing Dependence. As mentioned in Section 2, a (memory)
dependence may be disclosed by many paths. Assumem out of total n paths disclose a dependence,
and let k = m

n . Following our path sampling algorithm, in a path sample, the probability pd of
observing a given dependency d satisfies inequality (6).

(
263

263 + 1

)2L
· k ≤ pd = p̃ ·m ≤

(
263 + 1

263

)2L
· k (6)

For N samples, the probability Pd of disclosing dependency d at least once has a lower bound
mentioned in inequality (7).

Pd = 1 − (1 − pd)
N ≥ 1 −

(

1 −

(
263

263 + 1

)2L
· k

)N
≈ 1 − (1 − k)N (7)

Inequality (7) offers a strong guarantee for finding dependency in practice. Taking 176.gcc as an
example, if L=40000, k=0.0005 and N =10000, we would have Pd ≥ 99.32%, which means that the
chance of missing the dependence is only 0.68%.

4.3 Addressing Practical Challenges

Handling Loops. Our discussion so far assumes loop-free and recursion-free programs. BDA
distinguishes two kinds of loops and handles them differently. The first kind is loops whose
iteration numbers are not external input related. We call it constant loops. The other kind is input
related, called input-dependent loops.

For an input-dependent loop, it is intractable to determine how many times it iterates. A standard
solution is to compute a fix-point, which often entails substantial over-approximation. Hence,
our design is to bound the number of iterations. A naive solution is to give a fixed bound for all
input-dependent loops. However, this could cause non-trivial path explosion in the presence of
nesting loops. Hence, we bound the total number of iterations across all the nesting loops within
a function. Such a design also allows easy computation of weight values. Assume the bound for
each function is t = 3, Figure 7a illustrates the idea. For each function F , BDA clones the function
t times, denotes as F0, . . . , Ft−1. For each back-edge in Fi , we reconnect it to the corresponding
loop head in Fi+1. For example, back-edge a in Figure 7 becomes a1, a2 and a3 connecting different
versions of F . Note that in the transformed graph at most t = 3 back-edges could be taken (e.g., a 3
times and b 0 times; a 2 times and b 1 time; and so on).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

to it also being applicable to any supervised learner
or data type. However, their approach are limited
in supervised learning, while our technique is more
general.

GGDB is also related with adversarial training [7].
Adversarial examples are perturbed inputs designed
to fool machine learning models. Adversarial train-
ing injects such examples into training data to in-
crease robustness. Di↵erent from model debugging,
adversarial training is aiming at generate adversarial
examples, which would cause model bugs. We believe
GGDB is complementary to these work.

pd � 1� (1� 8

15
)5 = 0.967

pd � 1� (1� 8

15
)50 = 1� 2.2⇥ 10�14

|✏|  2L

263 + 1

References

[1] Gabriel Cadamuro, Ran Gilad-Bachrach, and Xi-
aojin Zhu. Debugging machine learning models.
In ICML Workshop on Reliable Machine Learn-

ing in the Wild, 2016.

[2] Ekin Dogus Cubuk, Barret Zoph, Dandelion
Mané, Vijay Vasudevan, and Quoc V. Le. Au-
toaugment: Learning augmentation policies from
data. CoRR, abs/1805.09501, 2018.

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Ben-
gio. Generative adversarial nets. In Advances in

Neural Information Processing Systems 27: An-

nual Conference on Neural Information Process-

ing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 2672–2680, 2014.

[4] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E.
Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neu-

ral Information Processing Systems 25: 26th An-

nual Conference on Neural Information Process-

ing Systems 2012. Proceedings of a meeting held

December 3-6, 2012, Lake Tahoe, Nevada, United

States., pages 1106–1114, 2012.

[5] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xi-
angyu Zhang, and Ananth Grama. MODE: auto-
mated neural network model debugging via state
di↵erential analysis and input selection. In Pro-

ceedings of the 2018 ACM Joint Meeting on Euro-

pean Software Engineering Conference and Sym-

posium on the Foundations of Software Engineer-

ing, ESEC/SIGSOFT FSE 2018, Lake Buena

Vista, FL, USA, November 04-09, 2018, pages
175–186, 2018.

[6] David E Rumelhart, Geo↵rey E Hinton, Ronald J
Williams, et al. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1,
1988.

[7] Florian Tramèr, Alexey Kurakin, Nicolas Pa-
pernot, Ian J. Goodfellow, Dan Boneh, and
Patrick D. McDaniel. Ensemble adversarial train-
ing: Attacks and defenses. In 6th International

Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings, 2018.

3

Probabilistic Guarantees

• Loop unrolling = 15
• Probabilities of observing the the dependence from

strcpy to line 1:
• Sample 5 times

• Sample 50 times

1 src[8] = '\x00’;
2 strcpy(src, dst);

to it also being applicable to any supervised learner
or data type. However, their approach are limited
in supervised learning, while our technique is more
general.

GGDB is also related with adversarial training [7].
Adversarial examples are perturbed inputs designed
to fool machine learning models. Adversarial train-
ing injects such examples into training data to in-
crease robustness. Di↵erent from model debugging,
adversarial training is aiming at generate adversarial
examples, which would cause model bugs. We believe
GGDB is complementary to these work.

pd � 1� (1� 8

15
)5 = 0.967

pd � 1� (1� 8

15
)50 = 1� 2.2⇥ 10�14

|✏|  2L

263 + 1

References

[1] Gabriel Cadamuro, Ran Gilad-Bachrach, and Xi-
aojin Zhu. Debugging machine learning models.
In ICML Workshop on Reliable Machine Learn-

ing in the Wild, 2016.

[2] Ekin Dogus Cubuk, Barret Zoph, Dandelion
Mané, Vijay Vasudevan, and Quoc V. Le. Au-
toaugment: Learning augmentation policies from
data. CoRR, abs/1805.09501, 2018.

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Ben-
gio. Generative adversarial nets. In Advances in

Neural Information Processing Systems 27: An-

nual Conference on Neural Information Process-

ing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 2672–2680, 2014.

[4] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E.
Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neu-

ral Information Processing Systems 25: 26th An-

nual Conference on Neural Information Process-

ing Systems 2012. Proceedings of a meeting held

December 3-6, 2012, Lake Tahoe, Nevada, United

States., pages 1106–1114, 2012.

[5] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xi-
angyu Zhang, and Ananth Grama. MODE: auto-
mated neural network model debugging via state
di↵erential analysis and input selection. In Pro-

ceedings of the 2018 ACM Joint Meeting on Euro-

pean Software Engineering Conference and Sym-

posium on the Foundations of Software Engineer-

ing, ESEC/SIGSOFT FSE 2018, Lake Buena

Vista, FL, USA, November 04-09, 2018, pages
175–186, 2018.

[6] David E Rumelhart, Geo↵rey E Hinton, Ronald J
Williams, et al. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1,
1988.

[7] Florian Tramèr, Alexey Kurakin, Nicolas Pa-
pernot, Ian J. Goodfellow, Dan Boneh, and
Patrick D. McDaniel. Ensemble adversarial train-
ing: Attacks and defenses. In 6th International

Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings, 2018.

3

Evaluation

• We implemented BDA in Rust

• The system is available at
https://github.com/bda-tool/bda/

https://github.com/bda-tool/bda/

Evaluation

• Code and Intra-procedural Path Coverage
• Program Dependence Analysis
• Necessity of Posterior Analysis
• Effect of Sampling
• Analysis Overhead
• Downstream Analysis

Benchmark: SPECTINT 2000 Timeout Budget: 12 hours

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

Evaluation: Program Dependence
Analysis (Compared with ALTO)

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

Dependence observed by
reference execution

Evaluation: Program Dependence
Analysis (Compared with ALTO)

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

Dependence detected by
reference execution
but not by the tool

Evaluation: Program Dependence
Analysis (Compared with ALTO)

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

Dependence detected by
the tool but not by
reference execution

Evaluation: Program Dependence
Analysis (Compared with ALTO)

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

Dependence whose source
and destination have
different types

Evaluation: Program Dependence
Analysis (Compared with ALTO)

The checker is implemented as an LLVM pass, propagating symbol
information to individual instructions, registers and memory locations.

Evaluation: Program Dependence
Analysis (Compared with ALTO)

PROGRAM #REFER
ALTO

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 2,229,749 0.00 2,226,169 13.55
175.vpr 13,042 36,840,012 0.00 36,826,970 72.45
181.mcf 2,050 588,076 0.00 586,026 55.20

186.crafty 30,777 44,139,556 0.00 44,108,779 11.16
197.parser 15,196 32,905,403 0.00 32,890,207 89.21
252.eon 4,401 994,655 0.00 990,264 98.02

253.perlbmk 57,507 102,068,477 0.00 100,349,485 92.69
254.gap 7,935 10,611,636 0.00 10,603,701 94.06

255.vortex 29,971 265,981,817 0.00 265,951,846 89.66
256.bzip2 4,306 2,466,876 0.00 2,462,570 28.71
300.twolf 16,710 44,735,257 0.00 44,718,440 75.42

Avg. 16.861 49,414,683 0.00 49,246,769 65.47

ALTO reports 49M dependence, 65% of them are mis-typed , without
missing any.

PROGRAM #REFER
BDA

#FOUND MISS(%) #EXTRA MISTYPED(%)
164.gzip 3,580 29,370 0.22 25,798 11.92
175.vpr 13,042 559,460 0.08 546,428 61.88
181.mcf 2,050 3,347 0.00 1,297 12.94

186.crafty 30,777 1,077,346 0.15 1,046,614 7.31
197.parser 15,196 659,867 0.01 644,673 81.12
252.eon 4,401 28,855 0.00 24,454 78.11

253.perlbmk 57,507 5,389,973 0.23 5,363,373 82.77
254.gap 7,935 205,200 0.52 197,306 74.30

255.vortex 29,971 2,159,444 0.33 2,129,473 64.10
256.bzip2 4,306 13,917 0.23 9,621 10.84
300.twolf 16,710 2,285,090 0.34 2,268,436 73.45

Avg. 16.861 1,128,352 0.19 1,114,316 50.80

Evaluation: Program Dependence
Analysis (Compared with ALTO)

BDA reports 1M dependence (48 times smaller than ALTO’s), 50% of
them are mis-typed, only with 0.19% missing rate

PROGRAM #REFER
BDA

#FOUND MISS(%) #EXTRA MISTYPED(%)
...

175.vpr 13,042 559,460 0.08 546,428 61.88
181.mcf 2,050 3,347 0.00 1,297 12.94

186.crafty 30,777 1,077,346 0.15 1,046,614 7.31
...

PROGRAM #REFER
VSA

#FOUND MISS(%) #EXTRA MISTYPED(%)
...

175.vpr 13,042 TIMEOUT TIMEOUT TIMEOUT TIMEOUT
181.mcf 2,050 23,068 0.00 21,018 54.33

186.crafty 30,777 TIMEOUT TIMEOUT TIMEOUT TIMEOUT
...

BAP-VSA only handles 181.mcf within 12 hours.

Evaluation: Program Dependence
Analysis (Compared with VSA)

PROGRAM #REFER
BDA

#FOUND MISS(%) #EXTRA MISTYPED(%)
...

175.vpr 13,042 559,460 0.08 546,428 61.88
181.mcf 2,050 3,347 0.00 1,297 12.94

186.crafty 30,777 1,077,346 0.15 1,046,614 7.31
...

PROGRAM #REFER
VSA

#FOUND MISS(%) #EXTRA MISTYPED(%)
...

175.vpr 13,042 TIMEOUT TIMEOUT TIMEOUT TIMEOUT
181.mcf 2,050 23,068 0.00 21,018 54.33

186.crafty 30,777 TIMEOUT TIMEOUT TIMEOUT TIMEOUT
...

BAP-VSA only handles 181.mcf within 12 hours.

Evaluation: Program Dependence
Analysis (Compared with VSA)

BDA reports 5 times less dependence, with less mistyped ones.

Evaluation: Downstream Analysis

PROGRAM
#INDIRECT JUMP EDGES #INDIRECT CALL EDGES
IDA REFER BDA IDA REFER BDA

164.gzip 0 0 0 0 3 3
175.vpr 49 0 49 0 1 1
176.gcc 3,628 324 3,628 25 214 853
181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1
197.parser 0 0 0 0 1 1
252.eon 17 0 17 0 183 215

253.perlbmk 1,454 229 1,454 24 243 261
254.gap 63 5 63 2 1,438 7,836

255.vortex 247 56 247 0 24 27
256.bzip2 0 0 0 0 1 1
300.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

Evaluation: Identify Indirect
Control Flow Targets

IDA is a
widely used
commercial
disassembling
tools.

PROGRAM
#INDIRECT JUMP EDGES #INDIRECT CALL EDGES
IDA REFER BDA IDA REFER BDA

164.gzip 0 0 0 0 3 3
175.vpr 49 0 49 0 1 1
176.gcc 3,628 324 3,628 25 214 853
181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1
197.parser 0 0 0 0 1 1
252.eon 17 0 17 0 183 215

253.perlbmk 1,454 229 1,454 24 243 261
254.gap 63 5 63 2 1,438 7,836

255.vortex 247 56 247 0 24 27
256.bzip2 0 0 0 0 1 1
300.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

Evaluation: Identify Indirect
Control Flow Targets

IDA is a
widely used
commercial
disassembling
tools.

PROGRAM
#INDIRECT JUMP EDGES #INDIRECT CALL EDGES
IDA REFER BDA IDA REFER BDA

164.gzip 0 0 0 0 3 3
175.vpr 49 0 49 0 1 1
176.gcc 3,628 324 3,628 25 214 853
181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1
197.parser 0 0 0 0 1 1
252.eon 17 0 17 0 183 215

253.perlbmk 1,454 229 1,454 24 243 261
254.gap 63 5 63 2 1,438 7,836

255.vortex 247 56 247 0 24 27
256.bzip2 0 0 0 0 1 1
300.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

IDA is a
widely used
commercial
disassembling
tools.

Evaluation: Identify Indirect
Control Flow Targets

PROGRAM
#INDIRECT JUMP EDGES #INDIRECT CALL EDGES
IDA REFER BDA IDA REFER BDA

164.gzip 0 0 0 0 3 3
175.vpr 49 0 49 0 1 1
176.gcc 3,628 324 3,628 25 214 853
181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1
197.parser 0 0 0 0 1 1
252.eon 17 0 17 0 183 215

253.perlbmk 1,454 229 1,454 24 243 261
254.gap 63 5 63 2 1,438 7,836

255.vortex 247 56 247 0 24 27
256.bzip2 0 0 0 0 1 1
300.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

Evaluation: Identify Indirect
Control Flow Targets

BDA performs
as good as IDA
in inferring
indirect jump
targets. (470 in
average)

BDA reports
767 indirect
call edges,
without
missing any
observer ones .

Evaluation: Malware Analysis

• Malware behavior is largely defined by its system
and library calls, together with parameter values.

• BDA performs static constant propagation through
dependence, to identify the parameter values.

Evaluation: Malware Analysis

BDA reports 3
times more
hidden malicious
behaviors than
cuckoo.

Cuckoo is the
state-of-the-art
malware
analysis tool.

MD5 OF MALWARE REPORT DATE
#LIBRARY CALL
CUCKOO BDA

1a0b96488c4be390ce2072735ffb0e49 2019-01-22 50 164
3fb857173602653861b4d0547a49b395 2018-07-24 20 112
49c178976c50cf77db3f6234efce5eeb 2019-01-23 23 48
5e890cb3f6cba8168d078fdede090996 2019-01-25 28 138
6dc1f557eac7093ee9e5807385dbcb05 2018-12-23 20 75
72afccb455faa4bc1e5f16ee67c6f915 2019-07-02 6 81
74124dae8fdbb903bece57d5be31246b 2019-03-21 36 203
912bca5947944fdcd09e9620d7aa8c4a 2019-10-04 20 68
a664df72a34b863fc0a6e04c96866d4c 2018-12-20 23 99
c38d08b904d5e1c7c798e840f1d8f1ee 2018-08-28 34 151
c63cef04d931d8171d0c40b7521855e9 2019-01-23 20 81
dc4db38f6d3c1e751dcf06bea072ba9c 2018-10-23 20 77

Avg. / 25 108

Evaluation: Malware Analysis

MD5 OF MALWARE REPORT DATE
#LIBRARY CALL
CUCKOO BDA

1a0b96488c4be390ce2072735ffb0e49 2019-01-22 50 164
3fb857173602653861b4d0547a49b395 2018-07-24 20 112
49c178976c50cf77db3f6234efce5eeb 2019-01-23 23 48
5e890cb3f6cba8168d078fdede090996 2019-01-25 28 138
6dc1f557eac7093ee9e5807385dbcb05 2018-12-23 20 75
72afccb455faa4bc1e5f16ee67c6f915 2019-07-02 6 81
74124dae8fdbb903bece57d5be31246b 2019-03-21 36 203
912bca5947944fdcd09e9620d7aa8c4a 2019-10-04 20 68
a664df72a34b863fc0a6e04c96866d4c 2018-12-20 23 99
c38d08b904d5e1c7c798e840f1d8f1ee 2018-08-28 34 151
c63cef04d931d8171d0c40b7521855e9 2019-01-23 20 81
dc4db38f6d3c1e751dcf06bea072ba9c 2018-10-23 20 77

Avg. / 25 108

BDA reports 3
times more
hidden malicious
behaviors than
cuckoo.

Cuckoo is the
state-of-the-art
malware
analysis tool.

• open(“/etc/passwd”, O_RDONLY)
à Read user password

• system(“/bin/sh”)
à Return a remote shell

• system(“rm –rf /”)
à Remove all the files on disk

Closely Related Work
Random abstract interpretation

• Discovering affine equalities using random interpretation [POPL 03]

• Global value numbering using random interpretation [POPL 04]

• Precise inter-procedural analysis using random interpretation

[POPL 05]

Path encoding

• Efficient path profiling [MICRO 96]

• Precise Calling Context Encoding [ICSE 10]

Reducing the runtime complexity of path-sensitive analysis

• ESP: Path-sensitive program verification in polynomial time [PLDI 02]

• Sound, complete and scalable path-sensitive analysis [PLDI 08]

Conclusion

• We propose a practical program dependence
analysis for binary executables
• A novel unbiased whole-program path sampling

algorithm
• A per-path abstract interpretation
• Probabilistic guarantees in disclosing a dependence

relation

• Result
• Improve the state-of-the-art, such as Value Set Analysis
• Improve performance of downstream applications

Thank you!

Q&A

BDA Repo
https://github.com/bda-tool/bda/

Email Address
zhan3299@purdue.edu

https://github.com/bda-tool/bda/

