
Supplementary Material

This document servers as the supplementary material of OOPSLA 2019 publication titled
“BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-program
Path Sampling and Per-path Abstract Interpretation”[1].

1 Basic Information of Binaries under Evaluation
To assess BDA’s effectiveness and efficiency, we compare it with other dependence analy-
sis techniques on the SPECINT2000 [2] benchmark. Table 1 presents the statistics of the
SPECINT2000 binaries, including their size, number of instructions, basic blocks, and func-
tions.

We also apply BDA in several downstream analyses, one of them is to identify hidden
malicious behaviors of a set of 12 recent malware samples provided by VirtualTotal [3]. We
present Table 2 to show malware ids, size, and report date.

Table 1: SPECINT2000 programs.
Program Size # Insn # Block # Func
164.gzip 143,760 7,650 707 61
175.vpr 435,888 32,218 2,845 255
176.gcc 4,709,664 378,261 36,931 1,899
181.mcf 62,968 2,977 213 24
186.crafty 517,952 42,084 4,433 104
197.parser 367,384 24,584 2,911 297
252.eon 3,423,984 40,119 7,963 615

253.perlbmk 1,904,632 133,755 12,933 717
254.gap 1,702,848 91,608 9,020 458

255.vortex 1,793,360 109,739 16,970 624
256.bzip2 108,872 6,859 577 63
300.twolf 753,544 57,460 4,280 167

Table 2: Malware samples.
Malware Size Report Date

1a0b96488c4be390ce2072735ffb0e49 1,806,356 2018-03-10
3fb857173602653861b4d0547a49b395 163,099 2018-07-17
49c178976c50cf77db3f6234efce5eeb 116,385 2018-03-12
5e890cb3f6cba8168d078fdede090996 18,112 2018-03-14
6dc1f557eac7093ee9e5807385dbcb05 88,520 2018-07-09
72afccb455faa4bc1e5f16ee67c6f915 729,816 2017-05-17

74124dae8fdbb903bece57d5be31246b 21,804 2018-10-09
912bca5947944fdcd09e9620d7aa8c4a 124,366 2018-10-09
a664df72a34b863fc0a6e04c96866d4c 200,976 2018-07-17
c38d08b904d5e1c7c798e840f1d8f1ee 178,781 2017-02-24
c63cef04d931d8171d0c40b7521855e9 88,436 2018-03-14
dc4db38f6d3c1e751dcf06bea072ba9c 124,154 2018-07-17

2 Proof of Theorem 4.1
Theorem 4.1. Using Algorithm 2, the probability p̃ of any whole-program path being
sampled satisfies equation 1, in which n is the total number of whole-program paths and L
is the length of the longest path.

(263

263 + 1)2L · 1
n
≤ p̃ ≤ (263 + 1

263)2L · 1
n

(1)

1

Proof. First, for any weight wv, we prove that w̃v follows 263

263+1 · wv≤ w̃v≤wv.{
exp = max (blog wvc , 63)− 63
sig = bwv/2expc (2)

According to equation 2, if wv < 264, w̃v = wv. Otherwise, sig ≤wv/2exp < sig + 1, and
hence sig×2exp≤wv <(sig+1)×2exp. As sig≥263 when wv≥264, we have w̃v≤wv < 263+1

263 ·w̃v.
Thus, 263

263+1 · wv≤ w̃v≤wv. As a result, the following holds.

263

263 + 1 ·
w1

w1 + w0
≤ w̃1

w̃1 + w̃0
≤ 263 + 1

263 · w1

w1 + w0
(3)

Let p1 = w1
w1+w0

be the accurate probability of choosing branch 1, the lighter-weight branch.
p0 = w0

w1+w0
choosing the other. Thus, we can derive the following 4 from inequality 3.

263

263 + 1 · pl ≤
w̃1

w̃1 + w̃0
≤ 263 + 1

263 · pl (4)

Next, we derive the bounds of p̃1, the probability of Algorithm ?? choosing branch 1.
There are two cases.

(a) If n<64, we directly have p̃l = w̃1/(w̃1 + w̃0). According to inequality 4, we have the
following.

263

263 + 1 · pl ≤ p̃l ≤
263 + 1

263 · pl (5)

(b) If n ≥ 64, p̃1 = w̃1.sig

w̃0.sig×2n . Note that w̃1
w̃0+w̃1

= w̃1.sig

w̃0.sig×2n+w̃1.sig
. Thus, we have p̃1 ≥

w̃1
(w̃1+w̃0) . Combining with inequality 4, we can have p̃1 ≥ 263

263+1 · pl. On the other hand,
p̃1 = w̃1

w̃0+w̃1
· w̃0.sig×2n+w̃1.sig

w̃0.sig×2n . Because w̃1.sig < 264≤ 2 · w̃0.sig, we can have w̃0.sig×2n+w̃1.sig

w̃0.sig×2n <

w̃0.sig×2n+w̃0.sig×2
w̃0.sig×2n = 2n−1+1

2n−1 . As n ≥ 64 here, we can have p̃1 = w̃1
w̃0+w̃1

· w̃0.sig×2n+w̃1.sig

w̃0.sig×2n <

w̃1
w̃0+w̃1

· 263+1
263 . Combining with inequality 4, we can have p̃1 <(263+1

263)2 · pl. Thus,

263

263 + 1 · p1 ≤ p̃1 ≤ (263 + 1
263)2 · p1 (6)

From inequality 5 and 6, the following is true.

(263

263 + 1)2 · p1 ≤ p̃1 ≤ (263 + 1
263)2 · p1 (7)

Similarly, we can prove the bound for p̃0.
Note that any sampled path could contain at most L conditional predicates. Thus, the

probability p̃ of any whole-program path being sampled satisfies equation 1.

2

3 Algorithms in Posterior Analysis
After the abstract interpretation of all sampled paths, the posterior analysis is performed
to complete dependence analysis, via aggregating the abstract values collected from indi-
vidual path samples in a flow-sensitive, context-sensitive, and path-insensitive fashion. This
section will present detailed algorithms of Per-sample Analysis and Handle Memory
Read which are elided in [1].

Per-sample Analysis Algorithm 1 traverses each instruction iaddr and the abstract ad-
dress maddr accessed by the instruction and updates I2M (line 4). If iaddr is a memory
write, the previous definition of maddr is killed by iaddr (line 6) and iaddr becomes the
latest definition (line 7). If it is a read, a dependence is identified between iaddr and the
lastest definition and added to DEP (line 9).

Algorithm 1 Per-sample Analysis
Input: MOS: MemOpSeq . memory operation sequence

Output: I2M : Address→ {AbstractValue} . map an instruction to abstract addresses accessed by it
DEP : Address→ {Address} . map an instruction to the instructions it depends on
KILL: Address→ {Address} . map an instruction to reaching definitions it kills

Local: DEF : AbstractValue → Address . map an abstract address to its latest definition

1: function PerSampleAnalysis(MOS)
2: while ¬MOS.empty () do
3: 〈iaddr, maddr〉 ←MOS.dequeue () . acquire an instruction instance and the accessed address
4: I2M [iaddr]← I2M [iaddr] ∪ {maddr}
5: if is_memory_write (iaddr) then
6: KILL [iaddr]← KILL [iaddr] ∪ {DEF [maddr]} . previous definition of maddr is killed by iaddr

7: DEF [maddr]← iaddr . iaddr is the new definition of maddr

8: else if is_memory_read (iaddr) then
9: DEP [iaddr]← DEP [iaddr] ∪ {DEF [maddr]} . detect a new dependence

10: end if
11: end while
12: return 〈I2M, DEP, KILL〉
13: end function

Handle Memory Read Similar to handling memory writes in [1], Algorithm 2 specially
addresses strong updates, which lead to single dependence (lines 4-5). Otherwise in lines
7-11, for each maddr ever accessed by iaddr in some sample, dependences are introduced
between iaddr to all the live definitions of maddr in M2I.

3

Algorithm 2 Handle Memory Read
Input: iaddr: Address . the current instruction

DIP : Address× Address . dependences
M2I: AbstractValue→ {Address} . map an address to its definitions
GI2M : Address→ {AbstractValue} . map an instruction to its accessed addresses
GDEP : Address→ {Address} . map an instruction to its dependences in samples

Output: DIP
′ : Address× Address . updated dependences

1: function HandleMemoryRead(iaddr, DIP , M2I, GI2M , GDEP)
2: if capacity (GDEP [iaddr]) ≡ 1 then . strong dependence
3: for def in GDEP [iaddr] do
4: DIP

′ ← DIP
′ ∪ {〈iaddr, def〉}

5: end for
6: else
7: for maddr in GI2M [iaddr] do
8: for def in M2I [maddr] do
9: DIP

′ ← DIP
′ ∪ {〈iaddr, def〉}

10: end for
11: end for
12: end if
13: return DIP

′

14: end function

References
[1] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu

Zhang. Bda: Practical dependence analysis for binary executables by unbiased whole-
program path sampling and per-path abstract interpretation. In Proceedings of the ACM
on Programming Languages archive Volume 3 Issue OOPSLA, 2019.

[2] Standard Performance Evaluation Corporation. Specint2000 benchmark. https://www.
spec.org/cpu2000/CINT2000/, 2003.

[3] VirusTotal. Virustotal. https://www.virustotal.com/, 2018.

4

https://www.spec.org/cpu2000/CINT2000/
https://www.spec.org/cpu2000/CINT2000/
https://www.virustotal.com/

	Basic Information of Binaries under Evaluation
	Proof of Theorem 4.1
	Algorithms in Posterior Analysis

