Supplementary Material

This document servers as the supplementary material of OOPSLA 2019 publication titled
“BDA: Practical Dependence Analysis for Binary FExecutables by Unbiased Whole-program
Path Sampling and Per-path Abstract Interpretation”[1].

1 Basic Information of Binaries under Evaluation

To assess BDA’s effectiveness and efficiency, we compare it with other dependence analy-
sis techniques on the SPECINT2000 [2] benchmark. Table [1] presents the statistics of the
SPECINT2000 binaries, including their size, number of instructions, basic blocks, and func-
tions.

We also apply BDA in several downstream analyses, one of them is to identify hidden
malicious behaviors of a set of 12 recent malware samples provided by VirtualTotal [3]. We
present Table [2] to show malware ids, size, and report date.

Table 1: SPECINT2000 programs. Table 2: Malware samples.
Program Size # Insn # Block # Func Malware Size  Report Date
164.gzip 143,760 7,650 707 61 1a0b96488c4be390ce2072735ffb0e49 1,806,356 2018-03-10
175.vpr 435,888 32,218 2,845 255 3fb857173602653861b4d0547a49b395 163,099 2018-07-17
176.gcc 4,709,664 378,261 36,931 1,899 49¢178976c50cf77db3f6234efce5eeb 116,385  2018-03-12
181.mcf 62,968 2,977 213 24 5e890cb3{6cba8168d078fdede090996 18,112 2018-03-14
186.crafty 517,952 42,084 4,433 104 6dc1f557eac7093ee9e5807385dbcb05 88,520  2018-07-09
197.parser 367,384 24,584 2,911 297 72afccb4b55faadbclebf16ee67c6f915 729,816 2017-05-17
252.eon 3,423,984 40,119 7,963 615 74124dae8fdbb903bece57d5be31246b 21,804  2018-10-09
253.perlbmk 1,904,632 133,755 12,933 717 912bcab947944fdcd09e9620d7aa8c4a 124,366  2018-10-09
254.gap 1,702,848 91,608 9,020 458 a664d{72a34b863fc0a6e04c96866d4c 200,976 2018-07-17
255.vortex 1,793,360 109,739 16,970 624 ¢38d08b904d5elc7c798e840f1d8flee 178,781  2017-02-24
256.bzip2 108,872 6,859 577 63 c63cef04d931d8171d0c40b7521855€9 88,436  2018-03-14
300.twolf 753,544 57,460 4,280 167 dc4db38f6d3cle751dcf06beal72ba9c 124,154  2018-07-17

2 Proof of Theorem 4.1

Theorem 4.1. Using Algorithm 2, the probability p of any whole-program path being
sampled satisfies equation [I, in which 7 is the total number of whole-program paths and L
is the length of the longest path.
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Thus, 2636 7 Wy SW, <w,. As a result, the following holds.
263 o 263 1
] w1 S _ w1 _ S + ) w1 (3)
263 +1 w1 + Wy w1 + Wy 263 w1 + Wy
Let p1 = o be the accurate probability of choosing branch 1, the lighter-weight branch.
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Next, we derive the bounds of p;, the probability of Algorithm ?? choosing branch 1.
There are two cases.

(a) If n<64, we directly have p;=ws /(w7 + wy). According to inequality |4, we have the
following.
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From inequality [§ and [6] the following is true.
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Similarly, we can prove the bound for py.
Note that any sampled path could contain at most L conditional predicates. Thus, the
probability p of any whole-program path being sampled satisfies equation [T}
O



3 Algorithms in Posterior Analysis

After the abstract interpretation of all sampled paths, the posterior analysis is performed
to complete dependence analysis, via aggregating the abstract values collected from indi-
vidual path samples in a flow-sensitive, context-sensitive, and path-insensitive fashion. This
section will present detailed algorithms of Per-sample Analysis and Handle Memory
Read which are elided in [I].

Per-sample Analysis Algorithm (1| traverses each instruction zaddr and the abstract ad-
dress maddr accessed by the instruction and updates I2M (line 4). If iaddr is a memory
write, the previous definition of maddr is killed by iaddr (line 6) and iaddr becomes the
latest definition (line 7). If it is a read, a dependence is identified between iaddr and the
lastest definition and added to DEP (line 9).

Algorithm 1 Per-sample Analysis

INpUT: MOS: MemOpSeq > memory operation sequence
Output: I2M: Address — {AbstractValue} > map an instruction to abstract addresses accessed by it
DEP: Address — {Address} > map an instruction to the instructions it depends on
KILL: Address — {Address} > map an instruction to reaching definitions it kills
LocAL: DEF: AbstractValue — Address > map an abstract address to its latest definition
1: function PERSAMPLEANALYSIS(MOS)
2 while ~MOS.empty () do
3 (taddr, maddr} +— MOS.dequeue () > acquire an instruction instance and the accessed address
4 I2M [iaddr] < I2M [iaddr] U {maddr}
5: if is_memory_write (iaddr) then
6 KILL [iaddr] <~ KILL [iadd?"] U {DEF [maddr]} > previous definition of maddr is killed by iaddr
7 DEF [maddr] <« iaddr > iaddr is the new definition of maddr
8: else if is_memory_read (iaddr) then
9: DEP [iaddr] <~ DEP [iaddr] U {DEF [maddr]} > detect a new dependence
10: end if

11: end while
12: return (I2M,DEP,KILL)
13: end function

Handle Memory Read Similar to handling memory writes in [I], Algorithm [2] specially
addresses strong updates, which lead to single dependence (lines 4-5). Otherwise in lines
7-11, for each maddr ever accessed by iaddr in some sample, dependences are introduced
between zaddr to all the live definitions of maddr in M21.



Algorithm 2 Handle Memory Read

INPUT:  iaddr: Address > the current instruction
DIP: Address X Address > dependences
M21I: AbstractValue — {Address} > map an address to its definitions
GI2M: Address — {AbstractValue} > map an instruction to its accessed addresses
GDEP: Address — {Address} > map an instruction to its dependences in samples
OutpuT: DIP": Address X Address > updated dependences
1: function HANDLEMEMORYREAD (iaddr, DIP, M2I, GI2M, GDEP)
2 if capacity (GDEP [iaddr]) =1 then > strong dependence
3 for def in GDEP [iaddr] do
4: DIP' « DIP' U {(iaddr,def)}
ot end for
6 else
7 for maddr in GI2M [iaddr] do
8: for def in M2I [maddr] do
9: DIP' « DIP U {(iaddr,def)}
10: end for
11: end for
12: end if

13: return DIP’
14: end function
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