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Abstract—Exploitable bugs in smart contracts have caused sig-
nificant monetary loss. Despite the substantial advances in smart
contract bug finding, exploitable bugs and real-world attacks
are still trending. In this paper we systematically investigate
516 unique real-world smart contract vulnerabilities in years
2021-2022, and study how many can be exploited by malicious
users and cannot be detected by existing analysis tools. We
further categorize the bugs that cannot be detected by existing
tools into seven types and study their root causes, distributions,
difficulties to audit, consequences, and repair strategies. For each
type, we abstract them to a bug model (if possible), facilitating
finding similar bugs in other contracts and future automation.
We leverage the findings in auditing real world smart contracts,
and so far we have been rewarded with $102,660 bug bounties
for identifying 15 critical zero-day exploitable bugs, which could
have caused up to $22.52 millions monetary loss if exploited.

Index Terms—Blockchain, Smart Contract, Vulnerability, Se-
curity, Empirical Study

I. INTRODUCTION

Since the Bitcoin and blockchain technology were intro-
duced in 2008, their market capitalization has experienced an
explosive growth, reaching over $438 billion (as of 5 August
2022) [1]. Nowadays, there exists countless blockchain-based
products and services for anyone to interact with, such as
those in travel, healthcare, finances, and lately virtual reality.
Blockchains such as Ethereum, Solana, and Polygon handle
millions of transactions everyday. High-level programming
languages like Solidity enable the creation and integration
of numerous innovative ideas with blockchains, in the form
of smart contracts. Just like traditional software applications,
smart contracts are composed by developers and hence sus-
ceptible to human errors. Many of them are exploitable.
According to [2], $1.57 billion were exploited from various
smart contracts as of 1 May 2022.

A large body of techniques have been proposed to detect
smart contract vulnerabilities such as reentrancy and integer
overflows, and they can be classified into categories such
as fuzzing [3]–[7], formal verification [8]–[14], and runtime
verification [15], [16]. Despite the success of these tech-
niques, smart contract exploits are still commonly seen in
the wild [17]. This may root at the fundamental differences
between smart contract and traditional software vulnerabilities.

Differences between Smart Contract and Traditional Soft-
ware Vulnerabilities. For traditional software, security vul-
nerabilities are largely different from functional bugs. The
former has limited forms such as buffer overflow (leading
to control flow hijacking) [18], information leak [19], and
privilege escalation [20], whereas the latter is very diverse,

denoting violations of domain-specific and even application-
specific properties. Moreover, functional bugs in traditional
software usually lead to incorrect outputs and/or interrupted
services, which may not cause direct security concerns. In
contrast, smart contract vulnerabilities are in many cases
functional bugs, due to their unique nature, incorrect outputs
in smart contract usually indicate monetary loss. Finding
these vulnerabilities hence requires checking domain-specific
properties, which is much harder than checking a limited set
of general security properties in traditional software.

Therefore, we consider that it is highly valuable to sum-
marize recent exploitable smart contract bugs to understand
the underlying critical properties. In this paper, we study a
large set of 516 exploitable bugs from 167 real-world contracts
reported/exploited in years 2021-2022, and aim to summarize
their root causes and distributions. We collect these bugs from
the highly reputable Code4rena contests [21] (with a total
of 462 bugs), which invite individuals and companies from
all over the world to audit real-world contracts by providing
substantial bounties [22], and from various real-world exploit
reports (e.g., those from [23], [24]), with a total of 54 exploits.
The real-world exploits account for $256.3 millions monetary
loss. In the study, we answer a few research questions such
as how many such bugs can be detected by existing tools,
how difficult is it to detect such bugs, the root causes of
those that cannot be detected by tools, their consequences,
repair strategies, and distributions. The detailed setup of our
study is in §III. Compared to existing surveys and studies
on smart contract bugs (e.g., [25]–[28]), we collect the latest
bugs and study them from many unique perspectives such as
tool coverage, distributions and difficulty levels. We have 10
findings. Some of them are highlighted in the following.

• More than 80% exploitable bugs are beyond existing tools
(we call them machine unauditable bugs (MUBs)). This
is largely due to the lack of describing and checking the
corresponding domain-specific properties.

• Majority of exploitable bugs in the wild are hard to find,
including those within and beyond the scope of tools.

• MUBs can be classified to seven categories. Two of
the categories (accounting for 40% of the MUBs) are
project/implementation specific (consequently no general
oracles to detect them). The remaining five categories
have clear symptoms and can be properly abstracted such
that automated oracles may be devised.

• Different types of MUBs have different distributions and
different difficulty levels, with price oracle manipulation



(38%) and privilege escalation most popular in real-world
exploits, and accounting errors most popular in bugs
found during audit contests.

Contributions. We make the following contributions.
• We conduct a comprehensive study of a large number

of recent smart contract vulnerabilities and identify the
missing gaps and difficulties in exploitable bug detection.

• We classify the exploitable bugs into different categories,
and extract their essence and root causes. We have a
number of findings, which may have ramifications for
future tool building.

• We demonstrate the importance of our findings by our
preliminary success in finding 15 zero-day exploitable
bugs in real-world smart contracts. These bugs could
endanger $22.52 millions funds if exploited.

II. BACKGROUND

This section gives a short explanation of the key terms
(italicized and underlined) used throughout the paper. For
a comprehensive background, please see our supplementary
material [29] (§I). Experienced readers may skip this section.
Ethereum Blockchain. Ethereum [30] is a platform that
enables the creation of custom financial products on the web.
It uses a secure public ledger called the blockchain [31] to
keep track of transactions. Miners validate transactions and
add them to block on the blockchain, for which they are paid
in the form of a fee called gas.
Smart Contracts. Smart contracts are applications that run
on Ethereum, and they provide functionalities to implement
business models. They are publicly accessible and transpar-
ent, and they can interact with each other, constituting a
decentralized finance (DeFi) [32].
Solidity. A programming language called Solidity is used to
write smart contracts, which are similar to classes in Java. Each
contract has two types of functions, external and internal. A
transaction starts when a user invokes an external function and
it is considered complete once it is added to the blockchain.
Address. Entities on Ethereum, such as users and smart
contracts, are represented by an address, or a 20
byte value (e.g., 0xe03a2766325d914898cdA00d4EF92
7A305786Aa7).
Tokens and Crypto-currency. To enable business models,
Ethereum introduced Ethereum Request for Comment (ERC)
tokens, which represent assets. There are two types of to-
kens, fungible and non-fungible. Fungible tokens, such as
ERC20, are interchangeable, while non-fungible tokens, such
as ERC721, are unique. Tokens can be created, transferred, or
destroyed from a central contract and their value depends on
the amount of assets stored in the central contract compared
to the amount of tokens in circulation. Users can buy or sell
tokens by interacting with their central contract.
Exploitable Bugs and A Real-world Example. A bug that
can result in direct monetary loss is known as an exploitable
bug. A real-world example can be seen in the Redacted

1 contract ERC20 {
2 // owner => spender => amount
3 mapping (address => mapping (address => uint256))
4 internal _allowances;
5
6 function _approve(address owner, address spender,
7 uint256 allowance) internal {
8 _allowances[owner][spender] = allowance;
9 }

10
11 function transferFrom(address from, address to,
12 uint256 amount) external {
13 require(_allowances[from][msg.sender] >= amount);
14 _approve(from, msg.sender,
15 _allowances[from][to] - amount);
16 _transfer(from, to, amount);
17 }
18 }

Fig. 1: The Redacted Cartel exploit

Cartel [33] contract, as shown in Figure 1. An ethical hacker
reported this bug and was rewarded with a $560,000 bounty.
The contract is a fungible token that is based on real-world
assets, such as USDC tokens backed by US Dollars. In the
code, there is a mapping called _allowances that keeps track
of the amount of tokens that the owner has allowed a spender
to use (lines 3-4). This mapping can only be accessed by
the contract’s functions, since it is an internal field. There
is a function called _approve() which updates the amount
of allowance (lines 6-9). Another function, transferFrom,
transfers a specified amount of tokens from one address to
another (lines 11-17). This function is external and can be
called by anyone, including users and other smart contracts.

The bug occurs when the contract mistakenly uses
the allowance of to instead of msg.sender (line 15).
That is, the correct allowance to update should be
_allowances[from][msg.sender] - amount. Consider-
ing that a victim user Alice grants Bob an allowance of 10
tokens, an adversary Eve can invoke tranferFrom(Alice,

Bob, 0) without any token transferred. However, since line
15 updates Eve’s allowance as _allowance[Alice][Bob]

- 0, Eve illegally gains 10-token allowance of Bob.
This bug is difficult to detect because it requires an under-

standing of the meaning of _allowances, the purpose of the
transferFrom function, and the business model. The bug
survived multiple rounds of auditing, including automatic tool
analysis. This highlights the importance of code review and
thorough testing in smart contract development.

III. RESEARCH QUESTIONS AND STUDY METHODOLOGY

In this section, we first present the scope and research
questions of this study. We then explain our methodology of
collecting and analyzing data, as well as the threats to validity.

Threat Model and Scope of Our Study. In our threat model,
the adversary is a contract user who crafts special inputs
to exploit the on-chain contract and further cause monetary
loss. Other attacks such as insider attacks and spam attacks
are out of scope. Insider attacks are launched by privileged
users of the contract (e.g., owners who might steal funds
by leveraging the owner privileges). In spam attacks, the



TABLE I: Basic information of Code4rena contests. # Cont
and # Vuln denote the numbers of hosted contests and in-scope
bugs, respectively. # Atten denotes the number of auditors
who have attended at least one contest of the corresponding
category, while the total # Atten denotes the total number
of auditors who have ever participated in Code4rena contests.
TVL denotes the overall value of crypto assets deposited in the
corresponding DeFi projects, i.e., the worth of these projects.

Categories # Cont Bounty # Atten # Vuln TVL

Lending 20 $1,145K 180 53 $304.8M
Dexes 13 $1,020K 139 70 $898.9M
Yield 12 $ 970K 193 85 $304.8M
Services 11 $ 532K 123 21 $219.8M
Derivatives 9 $ 525K 123 13 $147.8M
Yield Aggregator 9 $ 365K 124 22 $265.5M
Real World Assets 7 $ 405K 69 10 $ 41.8M
Stablecoins 6 $ 365K 102 7 $364.7M
Indexes 6 $ 215K 101 7 $ 1.0M
Insurance 5 $ 298K 74 19 $ 42.9M
NFT Marketplace 4 $ 266K 126 8 $ 46.6M
NFT Lending 4 $ 230K 108 10 $ 8.2M
Cross Chain 4 $ 250K 81 7 $ 32.0M
Others 3 $ 110K 25 9 $118.3M

Total 113 $6.696M 358 341 $2.797B

adversary only setups a trap and the user has to be lured to
take actions leading to undesirable consequences. Since our
study focuses on vulnerabilities of on-chain contracts, we also
exclude attacks where off-chain components get involved.
Research Questions. We target the following four key re-
search questions. We call exploitable bugs that can be detected
by existing automatic tools machine auditable bugs (MABs)
and the others machine unauditable bugs (MUBs).

• (RQ1) What kinds of exploitable bugs are machine
auditable by existing tools? How many real-world ex-
ploitable bugs are machine auditable?

• (RQ2) How difficult is it to audit exploitable bugs?
• (RQ3) What are the root causes, categories, and distri-

butions of machine unauditable bugs?
• (RQ4) What are the symptoms and fixes of machine

unauditable bugs? Can they be properly abstracted such
that automated oracles can be devised.

The first two questions target all exploitable bugs, including
machine auditable and unauditable, to understand the success
and limitations of existing tools. The last two focus on the
latter kind on which the community shall place their efforts.
Data Collection. We collect two datasets of bugs, from the
Code4rena contests and real-world exploit reports.
Code4rena Contests. Code4rena [21] is a highly reputable
audit contest platform. Each Code4rena contest lasts for 3-7
days and aims to have real-world DeFi projects audited before
official deployment (pre-deployment), for which the developers
of subject projects commit a bounty in the range of $20K to
$1M as incentive. Individuals, companies, and institutes from
all over the world can participate. After the contest, a group
of Code4rena judges (i.e., very experienced auditors elected
by the community) and the project’s developers get together
to inspect the bug reports, where they confirm the valid ones,

TABLE II: Basic information of surveyed real-world exploits

Categories
Attacks Bug Bounties

# Bugs Fund loss # Bugs Bounties

Lending 1 $ 5,000K 2 $ 1,630K
Dexes 7 $ 13,950K 3 $ 65K
Yield 6 $ 20,300K 1 $ 10K
Services 3 $ 5,600K 2 $ 610K
Derivatives - - 2 $ 200K
Yield Aggregator 1 $ 2,100K 2 $ 300K
Real World Assets 2 $ 1,127K 1 $ 50K
Stablecoins 5 $211,360K - -
Indexes - - 1 $ 90K
NFT Marketplace 1 $ 20K - -
NFT Lending 2 $ 5,800K - -
Cross Chain - - 1 $10,000K
Others - - 1 $ 1,050K

Total 28 $265,257K 16 $14,005K

classify reports based on root causes, and decide the criticality
level of bugs. Note that each bug is assigned a criticality level:
low, medium, or high, where only high-risk bugs can cause
asset loss (and hence are exploitable) [34]. The final reward
is decided by both the criticality level of the bug and the
number of reports submitted for the bug (more submissions
lead to a lower reward as the bug is easier than others).

We collect and analyze 462 unique high-risk bugs from 113
Code4rena contests hosted between April 2021 and June 2022.
For each case, we inspect the bug report, the faulty contracts
(which are available through Github), and the project’s doc-
umentation. Following the suggestions in Claes et al. [35],
each bug is checked by at least two individual researchers.
Any disagreement will be turned to an additional researcher.
We reach consensus for all cases after the new researcher gets
involved. All our researchers are experienced auditors, having
participated 23 contests from February 2022 to June 2022.
One of them was invited to be a consultant for judges.

Among the 462 surveyed bugs, we identify 341 in-scope
bugs (exploitable by remote users). Table I presents the basic
information of surveyed contests and the in-scope bugs. The
first column presents the categories of on-chain projects,
following the taxonomy by DefiLlama [36], a leading DeFi an-
alytics platform. The description of each category is available
in our supplementary material [29] (§II). Observe that around
$2.8 billions are protected by Code4rena auditing, indicating
the representativeness of the dataset, and $6.7 millions are
committed as bounties.
Real-world Exploits. Our second dataset comprises 54 real-
world exploits, collected from postmortems and bugfix reviews
of real-world exploits from January 2022 to June 2022. These
reports are published by highly-reputable security researchers
(e.g., [23], [37]) and companies (e.g., [24], [38]–[40]). We
follow the aforementioned study methodology (for Code4rena
reports). Overall, we identify 44 (out of 54) in-scope bugs. Ta-
ble II presents the basic information. Real-world exploits target
post-deployment contracts, including real attacks launched
against on-chain contracts and caused real asset damage (i.e.,
attacks), and the cases in which ethical hackers demonstrated
vulnerabilities in a local off-chain environment and were



TABLE III: Categories of machine-auditable bugs

ID Bug Name

AF Assertion Failure
AW Arbitrary Write
BD Block-state Dependency
CE Compiler Error
CH Control-flow Hijack
EL Ether Leak
FE Freezing Ether
GI Gas-related Issue
IB Integer Bug

ID Bug Name

ME Mishandled Exception
PL Precision Loss
RE Reentrancy
SC Suicidal Contract
TD Transaction-ordering

Dependency
TO Transaction Origin Use
UV Uninitialized Variable
WP Weak PRNG

awarded bug bounties by the projects (i.e., bug bounties).
The first column of Table II denotes the categories. Columns
2-3 denote the number of in-scope bugs and fund loss by
attacks respectively, while columns 4-5 denote the ones for
bug bounties. Observe that, while $14 million were paid as
incentives to ethical hackers, over $265 million were lost due
to real attacks in the first half of 2022; despite the substantial
auditing efforts paid prior to deployment, there are still many
post-deployment exploitable bugs.

Finding 1: Although the DeFi community has heavily in-
vested on protecting their products, the current supply of
tools and human auditor resources have not met the demand.

Threats to Validity. The internal threat to validity mainly
lies in human mistakes in the study. Specifically, we may
misclassify a bug and miss a category. To reduce this threat,
we ensure each bug has been examined by at least two
authors. Disagreement will be turned to an additional author.
The categorization is agreed on by all the authors. Most
authors have extensive smart contract auditing experience and
cyber-security/software-engineering expertise in general. The
external threat to validity mainly lies in the subjects used in
our study. The bugs we study may not be representative. We
mitigate the risk using highly reputable data sources and a
large number of bugs. Since we focus on recent bug reports,
the study may not represent historic bugs well. However, we
argue that studying up-to-date bugs is of importance due to the
fast evolution pace of the field. Besides, due to the distribution
variances in auditor expertise (in Code4rena contests) and in
smart contract functional complexity, our metrics in measuring
bug difficulty may have biases and should only be considered
as references instead of rigorous quantification.

IV. (RQ1) ON THE EFFECTIVENESS OF EXISTING
AUTOMATIC TOOLS

To understand the capabilities of existing techniques, we
examine the literature to summarize the kinds of bugs that
can be detected by existing methods. We then study how many
of the exploitable bugs in our datasets fall in their scope. To
empirically support the correctness of our examination, we
also apply two state-of-the-art commercial tools to our datasets
to see whether they can detect the bugs.

In particular, we examine papers published on top-tier
Software Engineering, Security, and Programming Language
venues from 2017 to 2022. Overall, we include 37 existing

TABLE IV: Summary of existing tools. Com denotes whether
it is a commercial tool widely used in real-world auditing.
Orcl stands for test oracles, where , , and denote fixed
and simple oracles, hand-coded oracles, and oracles that can
automatically adapt to cover a wide range of functional bugs,
respectively. The remaining columns present bug coverage.

Machine-auditable Bugs

Kind
Too
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ComOrclAF AWBD CE CH EL FE GI IB M
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PL RE SC TD TO UV W

P

Fu
zz
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g

ReGuard [41] 18 ✓
ContractFuzzer [42] 18 ✓ ✓ ✓ ✓ ✓ ✓
ILF [7] 19 ✓ ✓ ✓ ✓ ✓ ✓ ✓
sFuzz [43] 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Harvey [3] 20 ✓ ✓ ✓ ✓ ✓ ✓
Vultron [44], [45] 20 ✓ ✓ ✓ ✓
ConFuzzius [46] 21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Smartian [6] 21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Echidna [47], [48] 21 ✓ ✓
xFuzz [49] 22 ✓ ✓ ✓

St
at

ic
A

na
ly

si
s

Gasper [50] 17 ✓
Securify [51] 18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Vandal [52] 18 ✓ ✓ ✓ ✓ ✓ ✓
MadMax [53] 18 ✓ ✓ ✓
SASC [54] 18 ✓ ✓ ✓ ✓
SmartCheck [55] 18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zeus [56] 18 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slither [14] 19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sereum [57] 19 ✓ ✓
NPChecker [58] 19 ✓ ✓ ✓ ✓ ✓
Sensors [59] 22 ✓ ✓ ✓
Remix [60] 22 ✓ ✓ ✓ ✓ ✓ ✓

V
er

ifi
ca

tio
n ECF [61] 17 ✓

Solc-Verify [62] 19 ✓ ✓ ✓
VeriSol [63] 19 ✓
VeriSmart [64] 20 ✓ ✓
Solid [65] 21 ✓

Sy
m

bo
lic

E
xe

cu
tio

n

Oyente [8] 16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Maian [66] 18 ✓ ✓ ✓
teEther [67] 18 ✓ ✓ ✓ ✓
Osiris [68] 18 ✓ ✓ ✓ ✓
Manticore [69] 19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sCompile [70] 19 ✓ ✓ ✓ ✓ ✓ ✓
M-A-R [71] 21 ✓
SmarTest [72] 21 ✓ ✓ ✓ ✓
Mythril [73] 22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sailfish [74] 22 ✓ ✓

methods and summarize the bugs handled by them into 17
types. We call them machine-auditable bugs (MAB). Table III
presents the MABs, with more details available in our
supplementary material [29] (§III). An important observation
is that their test oracles are general and sufficiently simple to
support instantiations in a wide range of projects. They hence
have a similar nature to general oracles used in traditional
software such as buffer-overflow and use-after-free. For
example, control-flow hijack bugs (CH) use an oracle similar
to that used in control flow integrity (CFI) [75], [76] in
traditional software. Reentrancy bugs (RE) use an oracle that
detects cycles in a transaction, which is generally applicable
to all contracts. Therefore, they can hardly cover functional
bugs that require domain-specific or even application-specific
oracles [77] (e.g., the Redacted Cartel bug in Figure 1).

Table IV provides the examination results of existing works.
We classify them into four categories: fuzzing, static analysis,
formal verification, and symbolic execution. Overall, there are
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11 commercial tools, developed by leading companies, such
as Trail of Bits [78] and ConsenSys [79]. Also observe that
most commercial tools provide coverage for a wide variety of
bugs. Most existing works (35 out of 37) rely on general and
simple oracles, or hand-coded specifications (e.g., Echidna and
VeriSol). Vultron proposes an interesting general oracle that
has the potential to cover a wide range of functional bugs. That
is, for a single asset, the total balances of all parties should
not change. Although the advantages of having such a general
invariant are prominent, many modern DeFi projects employ
aggressive and complex business models that are beyond this
invariant. For example, lending projects are naturally designed
for multi-asset business within which the total balances of a
single asset is volatile. Although it may not be effective in
the modern Web3.0 ecosystem, Vultron took the first step of
automatically deriving test oracles.

Finding 2: Existing techniques rely on simple and general
oracles or hand-coded ones that are project specific. Such
oracles may not be sufficient for functional bugs in general.

For any bug in our datasets, as long as it falls into the
scope of any existing work in Table IV (assuming 100%
precision and recall of these tools), we consider it machine-
auditable. Figure 2 depicts the breakdown of machine au-
ditable and unauditable bugs in our datasets. Observe that,
despite the over-approximation, only 20% exploitable bugs can
be detected by existing works, disclosing a significant supply
shortage of automated bug finding capabilities. We empirically
validate the finding. Specifically, we run Slither [14] and
Oyente [8], two state-of-the-art commercial tools, on our
datasets. Neither can detect any MUB (by our classification).

Finding 3: A large portion of exploitable bugs in the wild
(i.e., 80%) are not machine auditable.

We speculate the main reason is Finding 2 – existing tools
have limited oracles, i.e., only checking limited properties.
For example, existing oracles focused on detecting access
violations through tx.origin. However, modern projects
support complex roles for governance, including owners, pro-
posers, and even whitelists/blacklists, which is well beyond
tx.origin. Note that Finding 2 does not suggest existing
tools are ineffective. It is well possible that a large number of
MABs have been detected and prevented during development
(and hence not present in our datasets).

Learning-based Techniques. Learning-based techniques
have shown promising results. We believe these techniques,
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Fig. 3: Overall auditing difficulty. Each bar denotes how
many machine (un-)auditable bugs are reported by the given
number of auditors, where x-axis and y-axis denote the
number of auditors and the ratio w.r.t. the total number of
machine (un-)auditable bugs, respectively.

especially ESCORT [80] based on transfer learning and
Eth2Vec [81] based on code clone detection, will greatly
help make more bugs machine-auditable if existing MUBs
are integrated into the training process. However, due to the
lack of awareness of latest bug types, the current datasets
hardly include the MUBs we discussed, hindering detection
performance in the modern Web3.0 ecosystem. According
to our investigation, most techniques [80], [82]–[84] were
trained with bugs which fell into the machine-auditable
categories. This, on the other hand, highlights the importance
and necessity of our study.

V. (RQ2) ON THE DIFFICULTY OF AUDITING
EXPLOITABLE BUGS

It is in general very hard to determine the difficulty level of
detecting certain bugs, by tools or manual efforts. However,
the Code4rena contests provide a perfect platform to quantify
bugs’ difficulties. Specifically, each contest is participated by a
large number of independent auditors, who submit their reports
separately. While the proficiency level of auditors may vary,
we use the number of reported instances of a particular bug as
a possible indicator of its relative difficulty level. Intuitively,
a lower number of bug reports suggests a higher level of
difficulty in discovering the bug.

Figure 3 delineates the difficulty of auditing exploitable
bugs. It shows that 52.46% of MABs and 54.29% of MUBs
are only reported by a single auditor, and hence most difficult.
The ratios for machine auditable and unauditable bugs found
by two auditors are 27.87% and 20.00%, respectively. Only
around 25% of exploitable bugs are found by three or more
auditors.

Finding 4: Majority of exploitable bugs are difficult to find.

Also, observe that the difficulty distributions of MABs and
MUBs are quite similar. That is, most bugs of either kind are
difficult. There are multiple possible explanations. One is that
the MABs in the wild are already left-over after tool scanning
during development. As such, they are found by manual efforts
during contests. Note that it is impossible to know whether
the auditors used tools or manual efforts to find these bugs.
Another explanation is that bugs that are difficult for humans
are likely difficult for tools as well due to similar inherent
challenges in analysis.
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TABLE V: Auditing difficulties for MUBs of different types

# Auditors
Types

1 2 3 4 5 >= 6

Price Oracle Manipulation 75.00% 12.50% 0.00% 0.00% 0.00% 12.50%
Erroneous Accounting 59.09% 21.21% 7.58% 6.06% 3.03% 3.03%

ID Uniqueness Violations 42.86% 17.14% 8.57% 11.43% 5.71% 14.29%
Inconsistent State Updates 53.33% 22.22% 2.22% 6.67% 6.67% 8.89%

Privilege Escalation 56.52% 21.74% 8.70% 4.35% 0.00% 8.70%
Atomicity Violations 57.14% 19.05% 4.76% 4.76% 4.76% 9.52%

Contract Impl Specific Bugs 46.15% 20.51% 17.95% 5.13% 0.00% 10.26%

Finding 5: There are no obvious differences between audit
difficulty distributions of MABs and MUBs.

VI. (RQ3) ON THE CATEGORIES OF MUBS

Since 80% of exploitable bugs are not machine auditable,
we focus on such bugs in the rest of the paper. In this section,
we aim to categorize MUBs according to their root causes and
study their distributions.

A. Root Causes and Categorization

The 271+35 MUBs can be grouped into 7 categories: (C1)
price oracle manipulation; (C2) erroneous accounting; (C3)
ID uniqueness violations; (C4) inconsistent state updates;
(C5) privilege escalation; (C6) atomicity violations; and (C7)
implementation specific bugs. Their distributions can be found
in Figure 4. We also present their difficulty levels in Table V,
using the same metric as Figure 3.

(C1) Price Oracle Manipulation. Smart contracts usually
resort to external authorities on Ethereum, which are also
contracts called price oracles, to determine the price of an
asset. Oracles use certain rules to determine prices (e.g., based
on reserve balances). However, if an application contract does
not use a price oracle’s APIs properly, the adversary can
interact with the price oracle in a legit way to influence the
price query result returned to the application contract to gain
illegal profits. More detailed explanation and an example can
be found in §VII-A. It is one of the most notorious types
of vulnerabilities in the DeFi history, causing at least $44.8
millions loss in the first half of 2022 alone. As shown in
Figure 4, it constitutes 6% of the Code4rena bugs (the least
common bug) and 34% of the real-world exploits (the most
common exploit). Table V shows that the auditing difficulty
of such bugs is significantly higher than others. As such many
of them evade auditing and get exploited after deployment.

(C2) Erroneous Accounting. Many smart contracts imple-
ment complex business models. The implementations hence
involve a lot of difficult-to-interpret numerical computation.

TABLE VI: Breakdown of MUBs w.r.t. DeFi categories

Categories
Code4rena Bugs

C1 C2 C3 C4 C5 C6 C7

Lending 3 6 4 7 9 6 8
Dexes 2 16 8 15 3 1 6
Yield 7 23 17 8 5 6 10

Services 0 4 2 5 0 0 3
Derivatives 1 6 1 0 2 0 1

Yield Aggregator 1 6 0 5 0 1 4
Real world assets 1 0 4 3 0 0 1

Stablecoins 0 2 1 0 0 0 2
Indexes 0 0 1 2 0 2 0

Insurance 0 3 1 3 3 2 4
NFT Marketplace 0 1 1 0 1 2 1

NFT Lending 1 1 1 0 1 1 1
Cross Chain 0 1 1 1 1 0 1

Others 0 3 1 0 0 1 2

We call incorrect implementations of underlying business
model formulas erroneous accounting bugs. These bugs usu-
ally introduce small errors every time they are exercised.
However, these errors can accumulate and induce substantial
loss. For example, Compound Finance [85], a flagship lending
contract, was exploited and had over $80 millions stolen, due
to an unnoticeable problematic calculation of annual percent-
age yield [86]. The bug survived 9 rounds of auditing by top
security companies [87] and even formal verification [88]. It
was not found until being exploited. Figure 4 shows that it is
the most popular type of Code4rena bugs (27%) and the 5th
most popular type of real-world exploits. As Table V shows, its
auditing difficulty is slightly above average, with around 59%
being found by a single auditor. The reason is that finding
such bugs requires substantial domain knowledge. The very
broad participation of Code4rena contests seems to provide a
good coverage of domain expertise such that many of these
bugs can be captured (although each by very few auditors).
More details are in our supplementary material [29] (§V).

(C3) ID Uniqueness Violations. Most smart contract func-
tionalities are in the form of some entity (e.g., a user or
contract) operating on some asset (e.g., an NFT token). As
such, access control is needed in these processes and enti-
ties/assets ought to be uniquely represented. Within smart con-
tract implementation, entities and assets are usually denoted
as data structures, which often have an ID field that uniquely
represents an entity/asset. However, developers may forget to
ensure uniqueness of ID fields; they may mistakenly consider
other data fields are unique and use them as replacement IDs.
As such, the adversary could impersonate an entity or create a
fake/duplicate asset that has the same field value as some real
entity/asset to pass the access control checks and then perform
illegal operations. We call this type of bugs ID uniqueness
violations. It constitutes 16% of the Code4rena bugs (43 out
of 271) and 3% of real-world exploits (1 out of 35). It is
the 4th and the 7th most commonly seen type of bugs in the
two respective datasets. Such bugs are relatively easy to find,
with 57% reported by multiple auditors. This could explain its
distribution difference in the two datasets as ID bugs may be
largely found during auditing (e.g., Code4rena contests).

(C4) Inconsistent State Updates. Smart contracts have many



state variables (e.g., debts and collaterals) with implicit corre-
lations. For example, the credit limit of a user is proportional
to her collateral in a lending contract. However, when the
developers update one variable, they may forget to update the
correlated variable(s) or update incorrectly. Depending on the
state variables that are incorrectly updated, the consequences
of this kind of bugs range from incorrect statistics to loss
of funds. In the recent year, three exploits [89]–[91] caused
around $3.8 millions loss and also the collapse of a smart con-
tract’s internal economy. It constitutes 18% of the Code4rena
bugs (49 out of 271) and 11% of the real-world exploits. It
is the 2nd and the 4th most commonly seen bugs in the two
datasets. The bug difficulty level is about average.

(C5) Privilege Escalation. Smart contracts often support a
number of business flows, each denoting a unique use case.
For example, a lottery contract needs to support at least three
distinct flows including buying tickets, drawing winners, and
claiming prizes. A business flow may consist of a sequence
of transactions in the temporal order. Within a flow, sensitive
operations are guarded by access control checks. However,
there may be some unexpected business flow to a sensitive
operation along which the access control is weaker than
necessary. This is very similar to privilege escalation bugs that
are very popular in mobile applications [20]. These bugs have
diverse consequences, depending on the sensitive operations
that are not well protected. Nearly $7.5 millions got stolen in
2022, due to privilege escalation bugs. It constitutes 9.2% of
the Code4rena bugs and 22.9% of the real-world exploits. It
is the second most popular type of real-world exploits. The
difficulty of auditing them is about average.

(C6) Atomicity Violations. Multiple business flows (i.e.,
transaction sequences) may interleave and interfere with each
other, by accessing the same state variables. Some business
flows may require business level atomicity, demanding state
variables cannot be accessed by other flows while they are on-
going. Developers do not anticipate such interference and fail
to ensure (business level) atomicity. The reason of these bugs
is that developers mistakenly think atomicity is guaranteed
by the runtime and hence they do not need to be concerned.
However, the runtime only ensures each transaction is atomic,
and business flow atomicity, if needed, has to be ensured by
the developers. Atomicity violations constitute 8.1% of the
Code4rena bugs and 5.7% of real-world exploits. It is the least
common bugs in auditing, and the second least in the wild.
They are slightly harder to find (than the others), with 57% of
bugs found by only one auditor. The reason is that it is difficult
to determine business flows and if they need atomicity.

(C7) Contract Implementation Specific Bugs. We find
that 16% of the Code4rena bugs and 14% of the real-world
exploits are implementation specific, meaning that they do not
have a general oracle and unlikely appear in a different smart
contract. They hence have a low priority because abstracting
them may not provide as valuable guidance as the others.
The Redacted Cartel bug in Figure 1 is an example.

Finding 6: MUBs can be classified to 7 categories, with 85%
belonging to categories C1-C6 that are not project specific.

Finding 7: Different types of MUBs have different popular-
ity, with accounting errors (C2) and price oracle manipu-
lation (C1) most popular in the Code4rena bugs and the
real exploits, respectively. Auditing is particularly effective
in preventing certain bugs such as accounting errors.

Finding 8: Different types of MUBs have different auditing
difficulties, with price oracle manipulation and ID unique-
ness violation bugs the hardest and the easiest, respectively.

B. Bug Distributions in Different Types of Projects

To understand what kinds of bugs are more likely in a
specific type of contracts, we study the distributions of MUBs
in different DeFi categories. Table VI presents the results
of Code4rena bugs. Note that we do not include real-world
exploits because only 3 out of the 14 (DeFi) categories have
more than 3 exploits, which may induce substantial threat to
validity. The gray scale denotes the prevalence. For example,
55% (i.e., 6/11) of derivative projects’ bugs are caused by
erroneous accounting (C2) but only 30% (i.e., 23/75) for yield
projects. The former is therefore darker than the latter. Observe
that a few bug types are particularly prevalent in some DeFi
categories, such as erroneous accounting (C2) and inconsistent
state update (C4) bugs in Dex projects. This is mainly due to
the unique nature of these projects. For example, Dex projects
swap and trade assets. They use complex computation to deal
with the volatility of crypto-currency, and are hence prone to
erroneous accounting bugs. These suggest that auditors may
want to devise different auditing strategies for different types
of projects, e.g., prioritizing the prevalent bug types. We follow
such strategies during our guided auditing (§VIII).

Finding 9: Different kinds of DeFi projects tend to be prone
to different types of MUBs.

VII. (RQ4) ON THE SYMPTOMS AND FIXES OF MUBS

We use real examples of (C1) price oracle manipulation,
(C2) Erroneous Accounting, and (C5) privilege escalation bugs
to demonstrate their symptoms and repair strategies. We also
provide an abstract model for each bug, which could facilitate
future scanning tool and test oracle building.

A. Price Oracle Manipulation (C1)

These bugs require additional knowledge. We first introduce
the concepts and then explain such bugs with an example.

Price Oracle and Automated Market Maker. Determining
the price of an asset is a critical functionality for a business
model. In DeFi, it is done by price oracles. Despite a diverse
set of price oracle contracts, the predominant sort is Automate
Market Maker (AMM), which is designed for exchanging two
types of assets, e.g., WETH and USDC (similar to USD in
real-world), with which users can exchange one asset for
another and the exchange rate is decided by a pre-defined



1 contract LendingContract {
2 IERC20 public WETH;
3 IERC20 public USDC;
4 IUniswapV2Pair public pair; // USDC - WETH
5 // debt --> USDC, collateral --> WETH
6 mapping(address => uint) public debt;
7 mapping(address => uint) public collateral;
8
9 function liquidate(address user) external {

10 uint dAmount = debt[user];
11 uint cAmount = collateral[user];
12 require(getPrice() * cAmount * 80 / 100 < dAmount,
13 "the given user’s fund cannot be liquidated");
14 address _this = address(this);
15 USDC.transferFrom(msg.sender, _this, dAmount);
16 WETH.transferFrom(_this, msg.sender, cAmount);
17 }
18 function getPrice() view returns (uint) {
19 return (USDC.balanceOf(address(pair)) /
20 WETH.balanceOf(address(pair)))
21 }
22 }

Fig. 5: Price oracle manipulation exploit in Deus Finance

invariant law. In Uniswap [92], a leading AMM contract, the
invariant is denoted by a constant product formula, expressed
as x× y = k, stating that trades must not change the product
k of a pair’s reserve balances (within the contract) [93], e.g.,
x for WETH and y for USDC. The price of one asset over
the other is hence decided by their ratio, e.g., y/x denoting
the price of WETH over USDC. Intuitively, more supply of x
leads to its depreciation and y’s appreciation. A code snippet
from Uniswap, its explanation, and an example are presented
in our supplementary material [29] (§IV-A).

Price Oracle Manipulation. Despite being pivotal for DeFi
project development, price oracles are occasionally used im-
properly by application contracts, rendering their price queries
vulnerable. It is not a bug in the price oracle contract, but
an issue caused by oracle misuse in the application contract.
For example, although Uniswap provides an official (and
well protected) API for price queries, application contract
developers tend to implement their own queries (to Uniswap)
to avoid the expensive gas costed by the official API. A
common faulty code pattern in the application contract is to
simply determine the price by querying the ratio of two assets’
instant balances in the oracle contract. Recall that block-chain
transactions are atomic so that any action sequence in a single
transaction cannot be interrupted or interleaved with other
actions. Hence, a malicious user can tamper with the price
without the interruptions of arbitragers. It is done by first
processing an exchange (with the oracle), then invoking a
function in the vulnerable application contract which makes an
erroneous query (to the oracle), and finally processing another
exchange (with the oracle) which is the counter version of
the first one. Essentially, the first exchange imbalances the
Uniswap contract in order to manipulate the follow-up price
query, while the second exchange re-balances the Uniswap
contract to avoid losing the (borrowed) funds used in step one.
Note that the three actions are wrapped in a single transaction
(a piece of code written by the adversary), guaranteeing that
no arbitrage behavior can interfere the attack.

Example. Figure 5 presents a vulnerable code snippet, which
is slightly modified from a real-world exploit against Deus
Finance causing a loss of $3.1 millions. The bug survived at
least one publicly-known audit round [94]. Deus is a lending
contract that allows users to deposit WETH as collateral and
borrow USDC. Lines 2-4 define the addresses of WETH,
USDC, and the Uniswap AMM, respectively. Line 6 defines a
mapping debt, which denotes the amount of borrowed USDC
for each user, and line 7 a mapping collateral for the
amount of each user’s deposited WETH. As a lending con-
tract, Deus supports multiple basic functionalities, including
depositing collateral, withdrawing collateral, getting loans, and
paying debts. The vulnerability lies in function liquidate

(line 9) which forces to close a given user’s ill position,
i.e., the user’s debts exceed 80% of her collateral. To do so,
the function’s caller, i.e., msg.sender, pays the user’s debt
and gets her collateral. Specifically, the function first checks
whether the position of user is ill (lines 10-13) and processes
the token transfers (lines 14-16). The price oracle is involved
when calculating the real-world value of the collateral, i.e.,
WETH, through function getPrice() (defined in lines 18-
21). The function does not use the Uniswap API. Instead, it
directly queries the instance balances of USDC and WETH in
Uniswap and uses their ratio as the price.

To exploit, the adversary drastically decreases the price of
a collateral, forcefully making a victim’s position liquidable.
She then liquidates a valuable collateral with a much smaller
amount of fund. Assume Bob (victim) deposits 100 WETH
as collateral and borrows 100, 000 USDC. Also assume that
the current price of WETH is $4, 000 and the Uniswap
AMM holds 100 WETH and 400, 000 USDC. Note that
Bob’s current position is healthy and cannot be liquidated,
since the value of his debt is $100, 000 and his collat-
eral worths $400, 000. Alice, the adversary, can exploit the
aforementioned vulnerability by encapsulating the following
three actions into a single transaction. Specifically, she first
exchanges 100 WETH for 200, 000 USDC through UniSwap,
making the AMM’s balances of WETH and USDC 200 and
200, 000, respectively. Note that although the current real-
world price of WETH is $4, 000, Alice pays 100 WETH for
200, 000 USDC, according to the constant-product invariant,
i.e., 100 × 400, 000 = (100 + 100) × (400, 000 − 200, 000).
Alice then invokes liquidate(Bob), which succeeds since
Bob’s position depreciates with a WETH price of $1000 (due
to the instant balances of WETH and USDC in the AMM), i.e.,
100 × 1000 × 0.8 < 100, 000 at line 12. By paying 100, 000
USDC, Alice gets 100 WETH whose real-world value is
$400, 000. She acquires a large profit of $300, 000. After that,
Alice re-balances the AMM by exchanging 200, 000 USDC
for 100 WETH, retrieving her initial attack funds. To pre-
vent price oracle manipulation, most on-chain DEXes provide
manipulation-resistant APIs for price queries. Time-weighted
average price (TWAP) is the most common solution nowadays.
It is a pricing algorithm that calculates the average price of an
asset over a set period. It provides great resistance against flash
loans. Recall that a flash loan has to happen within a single



1 contract Vote {
2 struct Proposal {
3 uint160 sTime; address newOwner;
4 }
5 IERC20 votingToken;
6 address owner;
7 Proposal proposal;
8
9 function propose() external {

10 require(proposal.sTime == 0, "on-going proposal");
11 proposal = Proposal(block.timestamp, msg.sender);
12 }
13 function vote(uint amount) external {
14 require(proposal.sTime + 2 days > block.timestamp,
15 "voting has ended");
16 votingToken.transferFrom(
17 msg.sender, address(this), amount);
18 }
19 function end() external {
20 require(proposal.sTime != 0, "no proposal");
21 require(proposal.sTime + 2 days < block.timestamp,
22 "voting has not ended");
23 require(votingToken.balanceOf(address(this))*2 >
24 votingToken.totalSupply(), "vote failed");
25 owner = proposal.newOwner;
26 delete proposal;
27 }
28 function getLockedFunds() external onlyOwner { ... }
29 }

Fig. 6: A voting contract vulnerability

transaction and hence the time weight of its manipulated price
is 0. There are also other solutions, e.g., volume-weighted av-
erage price (VWAP) and time-weighted average tick (TWAT).
Flash Loans. Recall that the aforementioned exploit requires
a tremendous amount of initial funds, i.e., 100 WETH with
$400, 000 real-world value, which seems to hinder the im-
pact of price oracle manipulation. However, flash loan, a
unique and innovative lending model enabled by blockchain
techniques, makes such attacks easily realizable. It allows
users to borrow (a tremendous amount of) debts without
depositing any collateral. It leverages the atomicity of block-
chain transactions, that is, the borrow happens at the beginning
of a transaction and the debt is paid off at the end. An example
can be found in the supplementary material [29] (§IV-B).
Abstract Bug Model and Remedy. Given a price oracle
Corc, an application contract C, and lending contract(s) Cl

supporting flash loans, C needs to query Corc for prices which
are based on instant balances (or balances within a short time)
in Corc, and Cl needs to have sufficient funds to manipulate
the balance ratio in Corc. The cost of the attack is minimum,
including just gas and fees, as the flash loan is paid off at the
end. The profit depends on how much price changes can be
induced. To remedy such bugs, developers simply use official
APIs strictly following the specification.

B. Privilege Escalation (C5)

These bugs arise when an (unexpected) sequence of func-
tions can be invoked to bypass access control.
Example. Figure 6 presents a real-world case from an
anonymized contract (upon developers’ request). The code is
completely rewritten to ensure anonymity while its essence is
retained. This is a voting contract where users can elect a new
contract owner by voting. In lines 2-4, the contract defines a

data structure Proposal to describe a proposal with sTime

denoting the start time of voting and newOwner the proposed
new owner. There are three state variables votingToken,
owner, and proposal denoting the token used for voting
(line 5), the current contract owner (line 6), and an on-going
proposal (line 7), respectively. Function propose (line 9)
allows a user to propose himself as the new owner, which
creates a new proposal (at line 11) and sets the current block
time as the start time and msg.sender the proposed owner.
Observe that there can only be one on-going proposal (line 10).
Users vote by function vote, in which they send their voting
tokens to the contract (lines 16-17) to support a proposal.
Note that users can only vote in the first two days after
the voting starts, guarded by the require in lines 14-15.
The voting ends two days later, and the decision is made by
function end. Function end first checks whether there is an
on-going proposal (line 20) and whether the voting has lasted
for at least 2 days (lines 21-22). In lines 23-24, the function
then checks whether over 50% votingToken holders have
voted for the proposal. If so, a critical operation of setting
a new contract owner is performed (line 25). At line 28, a
privileged function getLockedFunds allows the owner to
get all the locked funds. Note that both functions vote and
end strictly constrain the invocation time, which constitutes
an access control preventing the two functions from being
invoked in a single transaction. Otherwise, an adversary could
invoke function vote with a tremendous amount of flash-
loaned votingToken and force a malicious proposal to go
through (similar to the exploit in §VII-A). However, an unex-
pected call sequence can evade the access control. Specifically,
consider an adversary Alice proposes herself as the owner.
When the time is approaching the deadline proposal.sTime
+ 2 days, she launches an attack wrapping the following
actions into a single transaction, including 1) flash-loaning
a large amount of votingToken from its AMM contract,
2) invoking votingToken.transferFrom, a fund transfer
function provided by all ERC20 tokens to directly transfer the
loaned amount to the contract without any access control, 3)
invoking end to become the owner, 4) getting locked funds
by function getLockedFunds, and 5) paying off the flash-
loan debt. Intuitively, Alice “votes” without calling the vote

function. The developers did not anticipate such a business
flow and hence did not guard properly.

Abstract Bug Model and Remedy. Let a business flow B be
a sequence of transactions t1, ..., tn, each denoting an external
function invocation, and n the length of flow which may be
equal to or larger than 1. Assume B has some critical operation
f guarded by a set of access control checks, denoted as P ,
a conjunction of multiple checks. However, there exists an
(unexpected) business flow t′1, ... t′m that can reach f with
access control P ′ and P ′ < P (here the operator < means
weaker-than). The challenges of identifying this type of bugs
lie in recognizing sensitive operations, which may require
domain knowledge, and finding the multiple paths that can
lead to the operations. The fixes are to add the missing access



1 contract Lottery {
2 // user address -> lottery id -> count
3 mapping (address => mapping(uint64 => uint))
4 public tickets;
5 uint64 winningId; // the winning id
6 bool drawingPhase; // whether the owner is drawing
7
8 // invoked every day to reset a round
9 function reset() external onlyOwner {

10 delete tickets;
11 winningId = 0; drawingPhase = false;
12 }
13 function buy(uint64 id, uint amount) external {
14 require(winningId == 0, "already drawn");
15 require(!drawingPhase, "drawing")
16 receivePayment(msg.sender, amount),
17 tickets[msg.sender][id] += amount;
18 }
19 function enterDrawingPhase() external onlyOwner {
20 drawingPhase = true;
21 }
22 // id is randomly chosen off-chain, i.e., by chainlink
23 function draw(uint64 id) external onlyOwner {
24 require(winningId == 0, "already drawn");
25 require(drawingPhase, "not drawing");
26 require(id != 0, "invalid winning number");
27 winningId = id;
28 }
29 // claim reward for winners
30 function claimReward() external {
31 require(winningId != 0, "not drawn");
32 ...
33 }
34 function multiBuy(uint64[] ids, uint[] amounts)
35 external {
36 require(winningId == 0, "already drawn");
37 uint totalAmount = 0;
38 for (int i = 0; i < ids.length; i++) {
39 tickets[msg.sender][ids[i]] += amounts[i];
40 totalAmount += amounts[i];
41 }
42 receivePayment(msg.sender, totalAmount),
43 }
44 }

Fig. 7: The PancakeSwap Lottery vulnerability

control checks or prevent the unexpected paths.

C. Atomicity Violations (C6)

This type of bug is caused by the interference between
concurrent business flows that are supposed to have high level
atomicity (higher than the transaction level atomicity).

Example. Figure 7 presents a real-world vulnerability in
the PancakeSwap lottery contract [95]. It was reported by
an anonymous whitehat and awarded with an undisclosed
bounty [96]. Like the lottery in the physical world, the contract
users can buy tickets and the owner randomly draws a winner
every day. Lines 3-6 define the key state variables, including
a three-level mapping tickets indicating the amount of each
ticket bought by each user (multiple tickets of the same ID
can be bought by the same or different users), the winner
(winningId), and a boolean variable indicating whether the
owner is drawing the winner (drawing). Function reset (line
9) is a privileged function for the owner to start a new round.
Function buy, starting from line 13, allows users to buy tickets
of a specified ID. It first checks that the owner is not drawing
and has not drawn the winner, at lines 14 and 15, and further
processes the payment and updates tickets accordingly. At
line 19, function enterDrawingPhase is used to start the

lottery drawing phase. Variable drawingPhase is essentially
a lock for the variable tickets to prevent further ticket
purchase in this round. After entering the drawing phase,
function draw (lines 23-28) is invoked to set the winner,
which enables claimReward. There are three business flows,
i.e., buying tickets, drawing winners, and claiming prizes.
Note that the business flow of drawing winners comprises
two functions (enterDrawingPhase and draw), and hence
two transactions. Such a design is critical. Otherwise, an
adversary could observe the winner from the draw transition
in the mempool, and bought a huge amount of tickets with
the winner’s ID. Note that before being mined and finalized
on blockchain, transactions are placed in a mempool and
visible to the public [97]. Besides, since paying a high gas
fee provides incentives for miners, it allows the adversary to
preempt the draw transaction with his own, and eventually
earn a lot of profit illegally. The contract properly prevents
this by separating the business flow to two transactions and
using a lock drawingPhase to ensure atomicity. However,
another purchase function multiBuy (lines 34-43) does not
respect such atomicity. It is a gas-friendly version of function
buy which allows buying multiple tickets at a time. It updates
tickets accordingly within the loop in lines 39-40, and
receives the payment for all tickets at line 41. However, it does
not use the drawingPhase lock, making the aforementioned
attack possible. This exploit method (preempting a pending
transaction belonging to an atomic business flow by paying a
higher gas fee) is also called front running [98], whose root
cause is usually atomicity violation.

Abstract Bug Model and Remedy. There are multiple busi-
ness flows B1, ... and Bm that access some common state vari-
ables (e.g., tickets in our example). An atomicity violation bug
occurs when concurrent business flows yield an unserializable
outcome [99]. In our example, after front-running, the amount
of tickets for the winner ID is substantially inflated after the
winner is decided and before the prizes are claimed. Such a
result cannot be achieved by serializing the business flows of
drawing winners and claiming prizes. There are a large body of
atomicity violation detection tools for traditional programming
languages such as Java and C [100]. They may be adapted to
detect violations in smart contracts. However, atomic business
flows are usually implicit (suggested by boolean flags serving
as locks and explicit time bounds). Such challenges need to
be addressed during adaptation. Atomicity violation bugs are
usually fixed using lock variables (e.g., drawingPrase).

D. Other MUB Types

Other MUB types are detailed in our supplementary material
(§V - §VII).

Finding 10: Five out of the seven MUB categories (account-
ing for 60% of MUBs), namely, all except (C2) accounting
errors and (C7) implementation specific bugs, have general
abstract models which may serve as oracles for future
automated tools.



VIII. GUIDED AUDITING

We started to audit real-world contracts using our findings
as the guidance since April 2022. By the time of writing, we
have found 15 confirmed zero-days with a few more under the
inspection of judges. Table VII summarizes the confirmed bugs
for individual bug types. All the confirmed ones are rated crit-
ical. We also participated in three Code4rena contests in July
and ranked #1 in two of them, out of the ∼100 teams/individu-
als that had submitted at least one valid report. Our aggregated
bounty is $102, 660 so far and the total funds protected due to
our reports add up to $22.52 millions. More importantly, we
have strategized based on our findings. For example, we have
focused on finding price oracle manipulations (POM) and priv-
ilege escalations (PE), the two most popular bugs according
to our study and found 2 POMs and 4 PEs. We also prioritize
the bug types to audit according to the project’s category.

Abstract Models. We have developed several tools based on
our abstract models to enhance our efficiency in auditing. With
regards to privilege escalation, we created a static analysis
tool that generates operation sequences that can reach a
specific function, using Slither. The tool produces all possible
sequences within a specified length (i.e., 5), excluding view
and private functions. The tool also performs a static (and
over-approximated) detection of the read-write dependencies
among functions, further reducing the number of paths by
eliminating redundant operations. We have also designed
scanners for other MUBs, which operate by searching for
syntactical patterns derived from our abstract bug models. For
example, the scanner for price oracle manipulation identifies
the invocation sites of the view functions in a decentralized
exchange. Overall, our auditing process is semi-automated and
guided by these tools.

IX. RELATED WORK

There have been numerous previous studies on the topic
of smart contract bugs. Atzei et al. [25] categorized bugs
into three classes based on their origin (Solidity, Ethereum,
Blockchain), and further identified twelve types of security
vulnerabilities within these classes. Their taxonomy is focused
on the mid-development phase and includes vulnerabilities
such as “calls to the unknown” and “stack size limit”. In con-
trast, our study encompasses both post-development auditing
and deployed smart contracts. Demolino et al. [101] classified
bugs based on common developer pitfalls, while Chen et
al. [28] grouped bugs into 20 categories using data from the
Ethereum Stack Exchange, a popular Q/A site for Ethereum
users. Zhang et al. [27] provided a classification of nine differ-
ent types of bugs, studying 266 bugs in academic literature and
Github from 2014. SmartDec [102] classified bugs into three
categories based on their location: blockchain, model, and
language, further divided into 33 bug types from prior to 2018.
Dingman et al. [26] categorized smart contract bugs into 49
master classes from 2014 to 2019 research publications. In a
recent study [103], the exploitability of smart contract vulner-

TABLE VII: Guided auditing results

Type Bounty Program (4) Code4rena (11)

Price Oracle Manipulation 2 0
Erroneous Accounting 0 2
ID Uniqueness Violations 0 1
Inconsistent State Updates 0 1
Privilege Escalation 1 3
Atomicity Violations 0 2
Contract Impl Specific Bugs 1 2

Total Bug Bounty Awarded 102,659.98 USD
Total Funds Protected 22.52 million USD

abilities was investigated, with a focus on 6 types of machine-
auditable bugs and the measurement of the Ether balance.

While previous studies focus on bugs that are nowadays
machine-auditable, our study is differentiated by its focus
on the latest, machine unauditable security bugs and exploits
from multiple perspectives, including distributions, difficulty
levels, and abstract bug modes. Our study is complementary to
these existing studies and leverages high-quality bug datasets
labeled by a diverse group of experts, including third-party
judges and subject project developers. This allowed us to gain
new insights that were difficult to obtain in previous works.
Our study also differs from recent studies [104]–[106] that
evaluated the bug detection capability of existing tools, given
that our focus is on demystifying bug natures and providing a
novel perspective on MUBs through abstracting their behaviors
into bug models.

Industry security practitioners have also recognized the
prevalence of MUBs and have written online articles [107]–
[109] for educational purposes. These articles primarily
focus on categorizing smart contract bugs, with some being
fine-grained [109] and others more coarse-grained [107].
Our study of machine-auditable bug types aligns with the
findings of previous studies, as these types of bugs are widely
researched. However, our study delivers new and original
insights into MUBs and highlights the need for continued
research in this area.

X. DATA AVAILABILITY

The data utilized in this study is accessible in an online
repository [29].

XI. CONCLUSION

We study 516 smart contract security bugs and exploits. We
categorize them by root causes and study their distributions,
repair strategies, and audit difficulty levels. We have ten
findings. We also perform guided auditing based on these
findings and have found 15 critical zero-days in three months
that could endanger $22.52 millions funds if exploited.
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