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Abstract—Disassembling stripped binaries is a prominent
challenge for binary analysis, due to the interleaving of code
segments and data, and the difficulties of resolving control
transfer targets of indirect calls and jumps. As a result, most
existing disassemblers have both false positives (FP) and false
negatives (FN). We observe that uncertainty is inevitable in
disassembly due to the information loss during compilation and
code generation. Therefore, we propose to model such uncertainty
using probabilities and propose a novel disassembly technique,
which computes a probability for each address in the code space,
indicating its likelihood of being a true positive instruction.
The probability is computed from a set of features that are
reachable to an address, including control flow and data flow
features. Our experiments with more than two thousands binaries
show that our technique does not have any FN and has only
3.7% FP. In comparison, a state-of-the-art superset disassembly
technique has 85% FP. A rewriter built on our disassembly
can generate binaries that are only half of the size of those
by superset disassembly and run 3% faster. While many widely-
used disassemblers such as IDA and BAP suffer from missing
function entries, our experiment also shows that even without any
function entry information, our disassembler can still achieve 0
FN and 6.8% FP.

I. INTRODUCTION

Analyzing and transforming commercial-off-the-shelf and

legacy software have many applications [1], [2], [3], [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21], such as bug finding, security hardening,

reverse engineering, code clone detection and refactoring.

However, they are highly challenging due to the lack of source

code. The first fundamental problem is to precisely disassem-

ble the software. The seemingly simple task is indeed highly

challenging due to the diversity and complexity of compilation

and optimizations. There are two popular kinds of disassembly

techniques. The first one disassembles instructions following

the address order, called linear sweep disassemblers, and

the other disassembles instructions by following control flow

edges (e.g., jumps and calls), called traversal disassemblers.

Both have well known limitations. In particular, code and data

can interleave, causing a large number of false positives and

even false negatives in linear sweep disassemblers; traversal

disassemblers suffer indirect control flow caused by function

pointers, virtual tables, and switch-case statements, which

make recognizing control transfer targets highly difficult. Even

the state-of-the-art disassemblers such as those in BAP [22],

IDA-Pro [23], OllyDbg [24], Jakstab [25], SecondWrite [26],

and Dyninst [27] have difficulty fully disassembling complex

binaries [28]. Some may miss up to 30% of the code [28].

There are machine learning based methods [29] that aim

to recognize function entries by instruction patterns (e.g.,

starting with “push ebp”). However, such methods have

inevitable false positives and false negatives (e.g., the entries

of many library functions do not follow specific patterns).

Recently, superset disassembly [30] was proposed to address

these limitations. It disassembles at each address to produce a

superset of instructions. A rewriter is built on the disassembler

to instrument all superset instructions. While it has a critical

guarantee of no false negatives that other binary rewriting tools

cannot provide, the rewritten binaries have substantial code

size blow-up and nontrivial runtime overhead (e.g., 763% size

overhead and 3% runtime overhead on SPEC programs).
We argue that the capabilities of reasoning about uncertainty

is critical for binary analysis, since it is inherent due to the

lack of symbolic information. Our overarching idea is hence

to use probabilities to model uncertainty and then perform

probabilistic inference to determine the appropriate way of

disassembling subject binaries. In particular, our disassembler

computes a posterior probability for each address in the code

section to indicate the likelihood of the address denoting a

true positive instruction (i.e., an instruction generated by the

compiler). Specifically, our technique disassembles the binary

at each address just like superset disassembly. We call the

result the superset instructions or valid instructions, which

may or may not be true positives. We then identify correlations

between these superset instructions such as one being the

transfer target of another; and one defining a register that

is later accessed by another. These relations denote semantic

features that only the real code body would likely demonstrate.

We call them hints. They are uncertain because instructions

decoded from random bytes may by chance possess such

features. For each kind of hint, we perform apriori probability

analysis to determine their prior probabilities. We develop

an algorithm to aggregate these hints and compute the poste-

rior probabilities. The resulting disassembler has probabilistic

guarantees of no false negatives (e.g., the likelihood of missing

a true positive instruction is lower than 1
1000 ). In our empirical

study with 2, 064 binaries, it never misses any true positive

instruction with an appropriate setting. It also has a much

smaller number of false positives and much lower overhead

in rewriting, compared with superset disassembly.
Our contributions are summarized as follows.

• We propose an innovative idea of probabilistic disas-

sembling. The capabilities of reasoning about uncertainty

provides unique benefits compared to existing techniques.

• We identify a set of features for use as disassembly hints
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Disassembler False Negative False Positive
Linear sweep Some Substantial
Traversal [23] Substantial None
Superset [30] None Bloated
Our method None∗ Some∗
∗: with probabilistic guarantees

TABLE I: Comparison of Different Kinds of Disassemblers

and perform static probability analysis to determine their

likelihood (§III-B).

• We develop a novel inference algorithm that leverages a

number of key characteristics of x86 instruction design

(§IV) to aggregate uncertain hints.

• Our experiments on 2, 064 binaries demonstrate that our

technique does not have any false negatives, and the false

positive rate is 3.7%, meaning that it disassembles 3.7%

additional instructions that are not true positives. It does

not miss any instructions even when function entries

are not available, with 6.8% FP. Our evaluation on

SPEC Windows PE binaries shows that objdump misses

3095 instructions due to code and data interleavings,

whereas our tool misses none with 8.12% FP. We also

use our disassembler in supporting binary writing. When

compared with the state-of-the-art superset rewriting

technique [30], our technique reduces the size of

rewritten binary by about 47% and improves the runtime

speed of the rewritten binary by 3%.

II. BACKGROUND AND MOTIVATION

In this section, we use a real world example to explain

binary code disassembly, the limitations of existing work

(§II-A), and how we advance the state of the art (§II-B).

A. Binary Code Disassembly

Figure 1(a) presents a snippet from libUbuntuCompo-
nents.so in Ubuntu 16.04. In this piece of code, data is

inserted in between the code bodies of two functions. In (a),

the bytes from 0xbbf72 to 0xbbf8f (in blue) denote data.

Address 0xbbf90 denotes the entry of a function. Another

function (omitted from the figure) precedes the data bytes.

While the binary is stripped, we acquire the ground truth

through debug symbols from a separate unstripped instance.

Linear Sweep Disassembly. Linear sweep disassemblers

disassemble the next instruction from the bytes right after

the current instruction. Here, we use objdump. Without

symbolic information, objdump cannot recognize the data

bytes. As a result, after it disassembles the body of the

preceding function, it proceeds to disassemble the data bytes

to instructions 0xbbf72, 0xbbf8b, and so on as in Fig-

ure 1(b). Specifically, in the shaded area, it considers the

three bytes starting at 0xbbf8f an instruction. Consequently,

it misses the true function entry 0xbbf90. Note that the

instruction sequences in Figure 1 are horizontally aligned

by their addresses. In addition, objdump disassembles the

wrong instruction at 0xbbf92. This illustrates that linear
disassemblers cannot properly handle inter-leavings of data
and instructions. Note that embedding data such as constant

values and jump tables in between code segments is a common

practice in compilers [28], [31]. As presented in Table I, linear
sweep disassemblers have some false negatives (i.e., missing
instructions) and a lot of false positives (i.e., incorrectly
disassembling data bytes as instructions). False negatives are

particularly problematic for binary rewriting as missing even

a single instruction could have catastrophic consequences.

False positives can cause unnecessary overhead in rewriting,

ambiguity in type reverse engineering and so on.

Traversal based Disassembly. Some other diassemblers such

as IDA [23] and BAP [22] disassemble by following control

flow edges, starting from function entries. A prominent chal-

lenge is to recognize function entries. Missing an entry means

the entire function body may not be properly disassembled.

The presence of indirect calls makes function entry identi-

fication difficult as the precise call targets are only known

at runtime. In our example, there is no direct invocation to

the function entry 0xbbf90 in libUbuntuComponent
and the function is not exported either. As a result, IDA

misses the entire function body. Furthermore, the first instruc-

tion of the function entry is a rarely used instruction “MOV
0x19b978(rip), rax”. As such, ML based techniques

(e.g., [32], [29], [33]) likely miss it. There are also non-

learning techniques to recognize functions in binaries [34],

[35], [36]. They are based on heuristics such as the matching

of push and pop operations at the entry and exit of a function.

However, a systematic way to handle the inherent uncertainty

in such heuristics is still in need.

As illustrated by Table I, traversal disassemblers have no
false positives but potentially substantial false negatives. In

fact, Bao et al. [29] show that traversal disassemblers such as

IDA may miss 68.19% function entries.

Superset Disassembly. A state-of-the-art technique (partic-

ularly for rewriting/instrumentation) is called superset dis-
assembly [30]. The idea is to consider that every address

starts an instruction, called superset instruction. As such,

consecutive superset instructions may share common bytes.

Rewriting is performed on all superset instructions. It can

be easily inferred that the superset disassembler has no
false negatives but must have a bloated code body due to
the large number of superset instructions that are not true
positives (Table I). Figure 1(c) presents the results for superset

disassembly. Observe that a superset instruction is generated

by disassembling the bytes starting at each address. Hence,

we have instructions at 0xbbf72, 0xbbf73, ..., 0xbbf91,

0xbbf92, and so on. Observe that consecutive instructions

share common byte values (e.g., the body of 0xbbf91 “8b
05 71 b9 19 00” is the suffix of 0xbbf90). Also observe

that all the true positive instructions, i.e., those in Figure 1(a),

are part of the superset. As such, the rewritten binary can

properly execute as all possible jump/call targets must be

instructions in the superset and hence instrumented. Note

that the bloated instructions cause not only substantial size

overhead, but also runtime slowdown because executing each
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Fig. 1: Example from libUbuntuComponent.so. Instructions are horizontally aligned by their addresses. The code is slightly

modified for demonstration purposes. In instructions with two operands, the first one is source and the second one is destination.

superset instruction requires a table lookup to determine the

location of the instrumented version.

B. Our Technique

We aim to inherit the advantages of superset disassembly

(i.e., no false negatives) while substantially reducing the false

positives and achieving much lower overhead. The idea is

that true positives have lots of hints indicating that they

are true instructions. For example, they often have a lot of

definition and use (def-use) relations caused by registers and

memory, that is, a register/memory-location is defined at an

earlier instruction and then used in a later one. In Figure 1(a),

hint 1© indicates a def-use relation caused by register rax
between instructions 0xbbf90 and 0xbbfa2; 2© by rdx;
3© indicates a def-use by the flag bit. Note that false positive

instructions are less likely to induce def-use relations due to

their random nature. For example, instructions at 0xbbf8b-

0xbbf8f (Figure 1(c)) define some memory indexed by rax,

but there are no corresponding uses. Furthermore, two jumps

to the same target are likely true positives (e.g., hint 4©) as

the chance that random jumps have the same target is small.

More hints are discussed in §III-B.

However, hints are uncertain, meaning that false positives

instructions have a (small) chance of exhibiting such features.

For example, according to §III-B, false positive instructions

may have 1
16 chance to have def-use relation caused by some

register. Hence, the essence of our technique is to associate
these hints with prior probabilities that are derived from
apriori probability analysis, and then perform probabilistic
inference to fuse these evidences to form strong confidence
about true positives. Intuitively, the inference procedure that

aggregates prior probabilities is based on the following reason-

ing: if a superset instruction is likely to be a true positive, its

control flow descendants are likely to be true positives, and the
different superset instructions that share common bytes with
it are unlikely true positives. Note that we aim to disassemble

binaries generated by regular compilers so that instructions

do not have overlapping bodies. For example, the instructions

involved in hints 1©- 4© have reachability along control flow

(e.g., those in 1© can reach 4©), allowing their probabilities to

be progagated and aggregated. Intuitively, while individually
1©- 4© have certain probability (e.g., 1

16 ) to be random, the

chance of all of them randomly happening together is very

low. After inference, the posterior probabilities indicate the

likelihood of superset instructions being true positives. Fig-

ure 1(d) shows the probabilities computed by our technique

for each superset instruction. Observe that the true positives

(highlighted ones) have large probabilities (some of them are

almost certain such as 0xbbfb0 and 0xbbfba), whereas

false positives have (very) small probabilities.

Fig. 2: Occlusion does not cascade

III. PROBABILISTIC CHARACTERISTICS OF X86

A. Observing Instruction Occlusion
In x86, part of a valid instruction may be another valid

instruction and two valid instructions may have overlapping
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bodies. We call them occluded instructions. We say a few

bytes form a valid instruction if they can be decoded to an

instruction. A valid instruction may not be a true positive

instruction. Therefore, if the starting point (e.g., function entry)

is not properly recognized, we may have an occluded instruc-

tion sequence that differs from the true positive sequence.

Consider an example in Figure 2. Column one shows the

continuous addresses; column two shows the byte values; and

the remaining columns show different instructions sequences

when disassembling starts at different addresses. Note that

each instruction (box) aligns horizontally with its addresses

and byte values in the first two columns. Column three

shows the ground truth instruction sequence, in which the

first four bytes (from 0x400597 to 0x40059a) form a MOV
instruction whereas the following five bytes form another MOV
instruction, followed by a CALL instruction. However, if we

start disassembling in the middle of the first instruction, we

could acquire sequences of valid instructions that occlude with

the ground truth, as shown in the remaining columns (i.e.,

occluded instructions are in grey). Observe that in columns

four and five, part of the MOV instruction is decoded to a

different MOV instruction and a conditional jump instruction,

respectively. In the last column, the last byte 0xe0 of the MOV
instruction even groups with the first byte 0xbf of the next

(ground truth) instruction to form a valid LOOPNE instruction.

A concern about occlusion is that it may be cascading,

meaning that when we start at a wrong place, a large number

of following instructions are consequently occluded. However,

researchers have the following observation [37].

(Occlusion Rule): Cascading occlusion is highly un-
likely: occluded sequences tend to quickly agree on a
common suffix of instructions.

If one of the sequences is the true positive sequence,

occluded sequences quickly converge with the true positive.

Consider the example in Figure 2. The three occluded se-

quences all converge to the ground truth sequence after one

or two instructions. Intuitively, cascading occlusion is unlikely

because: two occluded instructions have a good chance to
agree on their rears. In other words, the suffix of an instruction

is likely to be another instruction. Consider Figure 2. The

occluded instructions in columns 3 and 4 are the suffices of

the ground truth MOV instruction. The only exception is that

when an occluded instruction i0 (e.g., the LOOPNE instruction

in Figure 2 last column) starts at the very end of a valid

instruction j0 (e.g., the first MOV in the 3rd column), i0 may go

beyond j0 and cause occlusion in the instruction following j0,

say j1 (e.g., the second MOV in the 3rd column). In this case,

i0 likely ends in the middle of j1. As such, the instruction(s)

following i0 (e.g., the SUB and ADD instructions in the last

column) agree with j1 at the their rear ends. We did a study

on 2064 ELF binaries and found that 99.992% occluded in-

struction sequences converge within four instructions. We have

also conducted a formal probability proof from the encodings

of x86 instructions. Our proof shows that for instructions i0,

..., ik with n0, ..., nk bytes, respectively. The probability of

Fig. 3: Control flow convergence

an occluded sequence starting inside i0 and not agreeing with

the rear of ik is at most 1
(n0−2)...(nk−2) . With a sequence of

7 instructions, each having 5 bytes, the probability that an

occluded sequence does not converge at all is 1
37 = 1

6561 .

Intuitively, it is analogous to that if two parties cannot settle

on a dispute with a small probability p in one round of

negotiation. The probability that they cannot resolve within

n rounds is pn. The details are elided.

B. Observing Probabilistic Hints for Disassembling

Without knowing the appropriate entries of code segments,

we could disassemble at each address and acquire a set of

all valid instructions (or, superset instructions [30]) with only

some being true positives. Next we discuss a number of

correlations between valid instructions that indicate that the

corresponding bytes are not data bytes with high probabilities.

We call them probabilistic hints. The occlusion rule and the

probabilistic hints are the two corner stones of our technique.

Hint I: Control Flow Convergence. As shown in the middle

of Figure 3 (b), if there are three potential instructions instr1,

instr2 and instr3 with instr3 being the transfer target of

both instr1 and instr2, there is a good chance that they

are not data bytes (but rather instruction bytes). Figure 3(a)

shows an example. The bytes starting at 0x804a634 and

at 0x804a646 are disassembled to two conditional jumps
A© and B©, respectively, whose target is a same valid in-

struction C©. Intuitively, since it is highly unlikely data bytes

can form two control transfer instructions and both by chance

point to the same target, they are likely instruction bytes. This

control flow relation is often induced by high level language

structures such as conditional statements (e.g., Figure 3(c)).

Probability Analysis. Assume data byte values have uniform

distribution. Given two valid control transfer instructions

instr1 and instr2, let instr1’s transfer target be t, which has

the range of [-27+1, 27-1], [−215+1, 215−1], and [−231+1,

231 − 1] for relative, near, and long jumps, respectively. The

likelihood that instr2 has the same transfer target is hence 1
255 ,

1
216−1 , and 1

232−1 . In other words, when we see two control

transfer instructions having the same target, the likelihood that

they are data bytes is (very) low.

Hint II: Control Flow Crossing. As shown in the middle

of Figure 4 (b), if there are three valid instructions instr1,

instr2 and instr3, with instr2 and instr3 next to each other;

instr3 being the transfer target of instr1, and instr2 having
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Fig. 4: Control Flow Crossing

a control transfer target different from instr3 (and hence

crossing control flow edges), there is a good chance that they

are not data bytes (but rather instruction bytes). Figure 4 (a)

shows an example. Since it is highly unlikely data bytes can

form two control transfer instructions with one jumping to

right after the other, they are likely instructions. This control

flow relation is often induced by loopy language structures

(e.g., Figure 4 (c) with instr1 the loop head, instr2 the

last instruction of the loop body and instr3 the loop exit).

The probability analysis is similar to that of control flow

convergence and hence elided.
There are also other control flow related hints. For example,

if a valid control transfer instruction i (e.g., a jump) has a

target that does not occlude with the sequence starting from

i, the chance of i denoting data bytes is 1
n , with n the

average instruction length. This is because a false positive

jump (disassembled from random data bytes) may likely jump

to the middle of an instruction. Although this hint is not as

strong as the convergence and crossing hints, a large number

of such hints can be aggregated to form strong indication,

through an algorithm described in §IV.

Hint III: Register Define-use Relation. We say a pair of

instructions instr1 and instr2 have a register define-use (def-

use) relation, if instr1 defines the value of a register (or some

flag bit) and instr2 uses the register (or the flag bit). In

Figure 5(c), there are two def-use relations denoted by the

arrows, one induced by register rdx and the other by eax.

Another example is that a flag bit is set by a comparison

instruction, and then used by a following conditional jump

instruction. Given two valid instructions, if they have def-use

relation, they are unlikely data bytes.
Note that false positive instructions often do not have regis-

ter def-use although they may demonstrate (bogus) memory

def-use relations. Figure 5(a) presents a snippet of jump

table disassembled to a sequence of instructions. Observe

that the first instruction adds al to the memory location

indicated by rax whereas the second instruction adds cl to

the same location. There is a memory def-use between the

two instructions as the second instruction first reads the value

stored in the location and then performs the addition. However,

as we will show in later probability analysis, register def-

use is hardly random, but rather caused by register allocation

(by compiler). Figure 5(b) presents a snippet of string. It is

disassembled to a sequence of valid instructions too. Observe

that there are no register def-use relations.

Probability Analysis. Assume data byte values have uniform

distribution. To simplify our discussion, we further assume

an arbitrary valid instruction has 1
2 chance to write to some

register or some flag bit (and the other 1
2 chance writing only

to memory). In contrast, an arbitrary valid instruction reading

some register is much more likely. Note that even a read from

memory often entails reading from register. For example, the

instruction at 0x4005ce in Figure 5(c) performs a memory

read which entails reading rbp. Hence, we make an approx-

imation (just for the sake of demonstrating our probability

analysis), assuming the likelihood that an instruction reads

some register is 0.99. Each instruction has three bits to indicate

which register is being read/written-to according to the x86

instruction reference. As such, given two valid instructions

instr1 and instr2, they have register def-use with the chance

of 1
2 × 1

23 = 1
16 . In other words, when we observe def-use

between two valid instructions, the chance that they denote

data bytes is 1
16 .

We need to point out these hints only indicate the corre-

sponding bytes are not data bytes, they do not suggest the
valid instructions are indeed true positives. In other words,

they may be occluded instructions that are part of some ground

truth instructions. This is because occluded instructions often

share similar features such as the same register operand(s).

For instance, bytes “89 c2”, which is the suffix of the first

instruction in Figure 5 (c), is disassembled to MOV eax,
edx, which also has a register def-use with the second

instruction. However, observing these hints strongly suggests
that the corresponding bytes are instruction bytes. Fortunately,

the aforementioned occlusion rule dictates that even there

is occlusion, it will soon be automatically corrected. Our

disassembly technique is hence built on this observation.

Besides the register def-use hint, we have other hints that

denote data flow related program semantics. For example, an

instruction saving a register to a memory location followed

by another instruction that defines the register corresponds

to register spilling [38], which can hardly be random. We

also consider memory def-use between instructions of different

opcodes. Details are elided.

IV. PROBABILISTIC DISASSEMBLING ALGORITHM

As discussed in the previous section, when a probabilistic

hint is observed, we have certain confidence that the cor-

responding bytes are not data bytes but rather instruction

bytes, although we are still uncertain if they are true positive

instructions as their occluded peers may have similar proper-

ties as well. The occlusion rule dictates that a sequence that

starts with some occluded instruction can quickly correct itself

and converge on true positive instructions. Therefore in our

method, we consider an instruction is likely a true positive if
multiple sequences with a large number of hints converge on
the instruction. Here, a sequence starting from an instruction

i is acquired by following the control flow (e.g., if i is a

unconditional jump, the next instruction in the sequence would

be the target of the jump). We say multiple sequences converge
on an instruction if it occurs in all of them.

Specifically, let a hint h have a prior probability p being data

byte, with p computed by the analysis in the previous section.
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Fig. 5: Register Definition-use Relation

Fig. 6: Example for the algorithm; the code snippet in foo() corresponds to a statement “for (i=0;i<11;i++) ...”

Since the following instructions are acquired strictly following

the control flow semantics, they inherit the probability p.

Intuitively, if j is the next instruction of h along control flow,

j’s probability of being some data byte is equal to or smaller

than p. When the sequences starting with multiple hints h1,

h2, ... hn converge on an instruction i, the probability of

i representing data byte is D[i] = p1 × p2 × ... × pn. As

such, when a large number of hints converge on i, i is highly

unlikely a data byte.

However, a small D[i] does not necessarily denote that i
is a true positive instruction. We then leverage the exclusion
property of a true positive instruction, that is, if i is a true
positive instruction, all the other valid instructions occluding
with i must not be true positive instructions1.Therefore, we

compute the likelihood of i being a true positive instruction

by conducting normalization with all the instructions occluded

with i. Intuitively, if i is the only one that has a very small D[i]
compared to all the occluded instructions, i is highly likely true

positive. If there are occluded instructions whose D values

are comparable to D[i], we cannot be certain that i is true

positive. In this case, we keep all these instructions just like

superset disassembly. However, the key point is that due to the
occlusion rule, sequences quickly converge on true positives
such that the occluded peers of the converged true positives are
not reachable by any sequences and hence receive no hints. As

such, the true positives stand out in most cases, the exception

being very short and featureless code segments. According to

our experiments (see §V), our technique never misses any true

1This property may not hold in manually crafted binaries in which the
developer purposely introduces occlusion between true positive instructions.
However, we focus on binaries generated by compilers in this paper.

positive and has as low as 3.7% false positives. In comparison,

the false positive rate of superset disassembly is 85%.

Algorithm Details. Algorithm 1 takes as input a binary B
which is an array of bytes indexed by address; a list of hints H
with H[i] = p meaning that i is a hint with a prior probability

p (of being data bytes). It produces posterior probabilities P
with P [i] the likelihood that i being a true positive instruction.

Within the algorithm, we use D[i] to denote the probability i
being a data byte and RH[i] to denote the set of hints that

reach i, each hint represented by its address.

In lines 1-6, the algorithm initializes all the D values and

all the RH values. If the bytes starting at i denote invalid

instruction, D[i] is set to 1.0, otherwise ⊥ to denote that we

do not have any knowledge. Note that some byte sequences

cannot be disassembled to any valid instruction.

Due to the loopy structures in binary, the algorithm is overall

iterative, and terminates when a fix point is reached. The

iterative analysis is in lines 8-30 with variable fixed point
used to determine termination. The analysis consists of three

steps: forward propagation of hints (lines 10-21), local prop-
agation within occlusion space (lines 22-24), and backward
propagation of invalidity (lines 25-30). The first step traverses

from the beginning of B to the end, propagating/collecting

hints and computing the aggregated probabilities. It leverages

the following forward inference: (1) the control flow successor
of a (likely) instruction is also a (likely) instruction. Otherwise,

the program is invalid because its execution would lead to

exception (caused by the invalid instruction) following the

control flow. The second step is to propagate the computed

probability for each instruction i to its occlusion space con-

sisting of all the other addresses that can be decoded into
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Algorithm 1 Probabilistic Disassembling

Input: B - binary indexed by address
H - probabilistic hints, denoted by a mapping from
an address to a prior probability

Output: P [i] - posterior probability of an address i denoting
a true positive instruction

Variable: D[i] - probability of address i being data byte
RH[i] - the set of hints, denoted by a set of addresses,
that reach an address i

1: for each address i in B do
2: if invalidInstr(i) then
3: D[i] ← 1.0
4: else
5: D[i] ← ⊥
6: RH[i] ← {}
7: fixed point ← false
8: while !fixed point do
9: fixed point ← true

� Forward propagation of hints (Step I)
10: for each address i from start of B to end do
11: if D[i] ≡ 1.0 then
12: continue
13: if H[i] �= ⊥ and i �∈ RH[i] then
14: RH[i] ← RH[i] ∪ {i}
15: D[i] ← Πh∈RH[i]H[h]

16: for each n, the next instruction of i along control flow do
17: if RH[i]−RH[n] �= {} then
18: RH[n] ← RH[n] ∪RH[i]
19: D[n] ← Πh∈RH[n]H[h]
20: if n < i then
21: fixed point ← false

� Propagation to occlusion space (Step II)
22: for each address i from start of B to end do
23: if D[i] ≡ ⊥ and ∃j occluding with i, s.t. D[j] �= ⊥ then
24: D[i] ← 1-minj occludes with i(D[j])

� Backward propagation of invalidity (Step III)
25: for each address i from end of B to start do
26: for each p, the preceding instruction of i along control flow do
27: if D[p] ≡ ⊥ or D[p] < D[i] then
28: D[p] ← D[i]
29: if p > i then
30: fixed point ← false

� Compute posterior probabilities by normalization
31: for each address i from start of B to end do
32: if D[i] ≡ 1.0 then
33: P [i] ← 0
34: continue
35: s ← 1

D[i]
36: for each address j, representing an instruction occluded with i do
37: s ← s+ 1

D[j]

38: P [i] ← 1/D[i]
s

instructions occluding with i. It is to leverage the following

local inference: (2) an instruction being likely renders all the
other instructions in its occlusion space unlikely. The third

step traverses each address from the end to the beginning and

propagates invalidity of instructions. It leverages the following

backward inference: (3) when an instruction i is unlikely, all
the instructions that reach i through control flow are unlikely.

Intuitively, it is the logical contrapositive of the forward

inference rule (1). The first step can be considered to identify

instruction bytes, whereas the second and third steps are to

identify data bytes.

Step I. In lines 13-15, if i denotes a hint and i has not been

added to RH[i], it is added to RH[i] and D[i] is updated to

the product of the prior probabilities of all the hints in RH[i]
(line 15). In lines 16-21, the algorithm propagates the hints in

RH[i] to i’s control flow successor(s). Particularly, if RH[i]
has some hint that the successor n does not have (line 17), the

hints of i are propagated to RH[n] by a union operation (line

18), and D[n] is updated. In lines 20-21, if the successor n has

a smaller address so that it has been traversed in the current

round, the analysis needs another round to further propagate

the newly identified hint(s).

Step II. In lines 22-24, the algorithm traverses all the addresses

and performs local propagation of probabilities within occlu-

sion space of individual instructions. Particularly, for each

address i, it finds its occluded peer j that has the minimal

probability (i.e., the most likely instruction). The likelihood

of i being data is hence computed as 1−D[j] (line 24).

Step III. Lines 25-30 traverse from the end to the beginning.

For each address i, if its control flow predecessor p does not

have any computed probability or has a smaller probability

(line 27), which intuitively means that we have more evidence

that i is data (instead of instruction), then we set p to have

the same level of confidence of denoting data bytes (line 28).

In the extremal case, if D[i] ≡ 1.0, D[p] must be 1.0 too.

If p has a larger address than i and hence p must have been

traversed, variable fixed point is reset and the analysis will

be conducted for another round (lines 29-30).

Note that the control flow successors and predecessors are

implicitly computed along the analysis. Our analysis does not
require correctly recognizing indirect jump and call targets,

which is a very difficult challenge. In other words, even though

such control flow relations are missing, our technique can

still collect enough hints from (disconnected) code blocks to

disassemble correctly. In §V-D, we show that our technique

can disassemble without any function entry information with

0 false negatives and only 6.8% false positives.

After the iterative process, lines 31-38 compute the posterior

probabilities for true positive instructions by normalization. If

an instruction starting at i is invalid, P [i] is set to 0 (lines

32-33). Otherwise, it sums up the inverse of probability D for

all the instructions occluded with i, including i itself, to s;

then P [i] is computed as the ratio between 1
D[i] and s.

Example. Consider an example in Figure 6. It is much simpler

than the one in §II and allows easy explanation. The large box

on the left shows a code snippet denoting the beginning of a

function foo() (from 0x40058c to 0x400594) and part

of the function body (from 0x4005c0 to 0x4005e1) corre-

sponding to a simple loop “for (i=0;i<11;i++)...”.

The code snippet is preceded by data bytes that stand for

constant strings (from 0x40057b to 0x40058b). The strings

are disassembled to valid instructions. Note that symbolic

information is not available, we mark the function entry

and strings just for explanation purpose. Boxes A©- F© on

the right stand for sequences starting from some occluded

instructions. The instructions in the grey background denote

occlusions whereas instructions without background denote

the converged ones, which are horizontally aligned with the
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corresponding instructions in the leftmost box. For example,

in box A©, disassembling at 0x40057c causes occlusion up

to 0x400583. In the following, we show how our algorithm

computes the probabilities for true positives.

During preprocessing, our technique collects the hints and

their prior probabilities. Each circled number denotes such a

hint (only part of the hints are shown). For example, 1© is a

register-def-use hint (hint III in §III-B) due to rdi. According

to §III-B, the prior probability is 1
16 (being a data byte). Note

that this hint actually occurs in the data bytes. In addition,
2© and 3© stand for the register-spilling (i.e., backup and then

update) hint due to rbp and rsp, respectively; 4© stands for

register-def-use; 5© stands for control-flow-crossing (hint II

in §III-B); and 6© stands for memory-def-use. None of the

occluded sequences provide any additional hints.

Initially, D[0x400583] = D[0x40057e] = 1.0 and all

other D values are ⊥. In step I, hints are collected and

probabilities are computed in a forward fashion. Hint 1©
cannot be propagated to address 0x400584 due to the bad

instruction at 0x400583 and the sequences in A© and D© do

not provide any hint, hence D[0x400584] = ⊥. Its occluded

peers in 0x400585-0x400588 have the same D value.

In contrast, D[0x40058c] = 1
16 due to the hint 2©. Similarly,

D[0x40058d] = ( 1
16 )

3 due to the three hints it is involved in.

As shown in boxes B©, its occluded peer 0x40058e cannot

be reached from 0x40058c. As a result, it gets no hint and

D[0x40058e] = ⊥. Similarly D[0x40058f ] = ⊥. Let us skip

a few instructions and consider 0x4005db. Due to the loop

(with the backedge 0x4005df→0x4005c2), hints 2©- 6©
all reach 0x4005db. As such, D[0x4005db] is a tiny value

smaller than 1
232 . In contrast, as shown in C© and F©, no hints

can reach its occluded peers 0x4005dc and 0x4005dd and

their D values remain ⊥. Through step II of local propagation

in occlusion space, D[0x40058f ] = D[0x40058e] = 1 − 1
163

and D[0x4005dc] = D[0x4005dd] � 1.

In step III, the invalidity information is propagated back-

ward. That is, if an address has a larger D value than its

predecessor, the predecessor inherits that D value. Specifi-

cally, 0x400583 being invalid invalidates all its control flow

predecessors including 0x400582, 0x400581, 0x40057f,

and 0x40057b. That is, their D values equal to 1.0.

In contrast, 0x40058d has two possible predecessors,

“0x40058b: 4c 55 rex.WR PUSH rbp” (not shown

in the code snippet) and “0x40058c: 55 PUSH rbp”

(shown in the code snippet). The former has the prefix

“rex” that is only used in the long mode [39] and hence

does not form any hint with other instructions. Furthermore,

it occludes with 0x40058c. As a result, D[0x40058b] =
1 − D[0x40058c] = 15

16 after steps I and II. However, since

D[0x40058d] = 1
163 , which is smaller than D[0x40058b],

there is no backward propagation. Although D[0x40058e] =
1 − 1

163 is a large value, it does not have any control flow

predecessor, that is, it cannot be reached by disassembling at

any preceding addresses.

After the iterative process, the D values are

normalized to compute the posterior probabilities.

For example, since 0x40058c only occludes with

0x40058b and D[0x40058b] = 15
16 , D[0x40058c] = 1

16 .

P [0x40058c] = 16
16+16/15 = 0.94 and P [0x40058b] = 0.058.

The other true positive instructions have higher than 0.99
probabilities. For instance, P [0x40058d] � 0.9987 and

P [0x40058e] = P [0x40058f ] � 0.0006. P [0x4005db] � 1.0
and P [0x4005dc], P [0x4005dd] are negligible.

V. IMPLEMENTATION AND EVALUATION

We have implemented a prototype on top of BAP [22] using

OCaml. Our implementation has 5, 546 LOC. To evaluate

our technique, we use two sets of benchmarks. The first set

contains 2, 064 x86 ELF binaries collected from the BAP

corpora [22]. The size of these binaries ranges from 100KB to

3MB. They come with symbolic information, from which we

derive the ground truth. We stripped the binaries before ap-

plying our disassembler. The second set is the SPEC2006INT

programs. We used SPEC for the comparison with super set

disassembly [30]. All the experiments were run on a machine

with Intel i7 CPU and 16 GB RAM. Our evaluation addresses

the following research questions (RQ).

• RQ1: Can our technique disassemble binaries with accu-

racy, completeness, and efficiency (§V-A)?

• RQ2: How does our technique compare with a state of

the art super set disassembly (§V-B)?

• RQ3: How does our technique perform when data and

code are interleaved, in comparison with linear sweep

disassembly (§V-C)?

• RQ4: How does our technique perform when no function

entry information is available (e.g., for indirect functions

that are one of the most difficult challenges for traversal

disassemblers in IDA [23] and BAP [22]) (§V-D)?

A. RQ1: Effectiveness and Efficiency

To answer RQ1, we perform four experiments: (1) measure

false negatives (missing true positive instructions) and false

positives (bogus instructions) on the 2, 064 binaries; (2) mea-

sure the disassembling time; (3) analyze the contributions of

each individual kind of hints; (4) study the effect of different

probability threshold settings.

FP and FN. We report the results with the probability threshold

of P >= 0.01, meaning that we are very conservative and

hence keep all the valid instructions with more than 0.01 com-

puted posterior probability. In this setting, our technique does

not have any false negatives. Figure 7 shows the correlations

between binary size and the FP rate. Observe that most cases

cluster at bottom-left. Most medium to large binaries have

lower than 5% false positives. The a few largest (on the right)

are even lower than 2%. The ones with larger FP rates tend

to be small binaries, which have fewer hints. The average FP

rate is only 3.7%. This strongly suggests the effectiveness of

our technique.

Disassembling Time. Figure 8 shows the distribution of time.

Observe that it has a close-to-linear relation with the binary

size. The largest ones take about 10 minutes to disassemble.
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Fig. 7: Binary Size and FP rate

Fig. 8: Size and Processing Time

The medium ones take 4-8 minutes. Our algorithm is not as

fast as other disassemblers because it is an iterative algorithm

based on probabilistic inference. Also, we have not optimized

implementation. We argue that since disassembling is one-time

effort, the cost is justifiable.

Contributions of Different Kinds of Hints. Figure 9 shows the

results for three settings: using only the control flow hints;

only the data flow hints (e.g., def-use and register-spilling);

and using all hints. The x axis denotes intervals of the FP rate

and the y axis represents the number of binaries that fall into

an interval. For example, with only control flow hints, about

300 binaries have less than 1% FPs; with only data flow hints,

about 70 binaries have less than 1% FPs; with all hints, the

number is 510. In other words, both types of hints are critical

for getting the best results.

Effects of Different Probability Thresholds. As mentioned

Fig. 9: Distribution of Different Kinds of Hints

Fig. 10: Tradeoffs of Threshold Setting

earlier, we retain instructions whose computed probability

P >= α. Figure 10 shows how the FP, FN rates (on the right

y axis) and the percentage of precisely disassembled functions

(on the left y axis) change with α (the xaxis). For example,

at the starting point on the left is α = 0.67% (i.e., we keep

instructions with P >= 0.0067), FP is about 4% and FN is

0, and 53.23% of the 607,758 functions in the corpora are

precisely disassembled. With the growth ofα, FP drops, FN

and the rate of precisely disassembled functions rise. At the

other end on the right is α = 20%, FP is 0.6% whereas FN is

6.7%. Almost 73% of functions are precise.

B. RQ2: Comparison with Superset Disassembly

Linear sweep and traversal disassemblers suffer false nega-

tives, which may cause serious problems in binary rewriting.

Superset disassembler [30] is a state-of-the-art that does not

have false negatives. However, it introduces lots of false

positives, leading to size blowup in rewriting and unnecessary

runtime overhead. Table II shows the comparison with superset

disassembly. To compare the effects on binary rewriting, we

integrate our disassembler with their rewriter. We use the same

SPEC programs in [30] (column one). Columns 2-4 present

the FP rate, the code size blowup after rewriting, and the

execution time variation after rewriting, respectively. Here, we

do not add any instructions during rewriting. Columns 5-7

present the same information for our technique. Observe that

we reduce the size blowup from 763% to 404% and improve

the execution time by 3%. Note that it is normal that rewritten

binaries may execute faster than the original code [30] due to

the cache behavior changes caused by rewriting. Note that

although our technique still has 404% size inflation, it is

because the rewriter uses a huge lookup table to translate each

address in the code space. While all the entries are necessary

in superset rewriting, majority of these entries are not needed

in our rewriter, and therefore empty. We plan to remove the

empty table entries and replace it with a cost-effective hash

table in the future. The FP rate differences (columns 2 and 5)

indicate the large number of these redundant entries.

C. RQ3: Handling Data and Code Interleavings

A prominent challenge in disassembly is to handle data

and code interleavings (i.e., the presence of read-only data

in between code segments), which could cause false negatives
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Superset Disassembly Probabilistic Disassembly

Program FP Size (rewritten/orig) Exec. time (rewritten/orig) FP Size (rewritten/orig) Exec. time (rewritten/orig)

400.perlbench 85.32% 780% 116.71% 11.29% 427% 117.74%
401.bzip2 84.65% 779% 105.49% 6.57% 400% 97.30%
403.gcc 88.03% 751% 104.60% 11.33% 409% 101.71%
429.mcf 84.72% 749% 104.02% 4.60% 399% 104.74%

445.gobmk 90.27% 727% 103.43% 6.20% 372% 97.30%
456.hmmer 82.71% 779% 99.14% 6.64% 411% 94.12%
458.sjeng 87.08% 756% 98.83% 7.61% 407% 92.76%

462.libquantum 80.96% 758% 100.42% 4.04% 400% 96.94%
464.h264ref 82.36% 781% 100.39% 2.41% 395% 94.57%
471.omnetpp 85.02% 768% 105.24% 9.82% 420% 108.4%

473.astar 81.46% 761% 94.28% 3.90% 402% 93.24%

Avg 84.8% 763% 103.0% 6.8% 404% 99.9%

TABLE II: Superset Disassembly vs Probabilistic Disassembly

Fig. 11: FP Rates In the Absence of Function Entries

in linear sweep disassembly. In this experiment,, we compile

SPECint 2000 benchmark by Visual Studio 2017 with different

optimization levels to generate a set of binaries. We extract

ground truth from pdb files. We use both objdump, a linear

sweep disassembler, and our disassembler to disassemble the

stripped binaries. The comparison between the disassembled

results and the ground truth shows that objdump misses 3095

instructions in total, whereas our tool misses none. The average

FP rate of our tool is 8.12% (5.95%, 8.84%, 5.76%, and 8.98%

for optimization levels O1, O2, Od, and Ox, respectively).

The FP rate is higher than ELF binaries as data and code

interleavings are more common in PE binaries.

D. RQ4: Handling Missing Function Entries

Another prominent challenge, especially for traversal dis-

assembly, is missing function entries due to indirect calls. To

simulate such challenges, we eliminate all the function related

hints, such as call edges that have the same target (part of the

hint I). In other words, we only leverage the intra-procedural

hints to disassemble. Figure 11 presents the results, with x
axis the FP interval and y axis the number of binaries. The

average FP rate is 6.8%, slightly higher than that of using both

inter- and intra-procedural hints. FN is still 0. This indicates

that in the cases where traversal disassemblers such as IDA

and BAP have troubles due to missing function entries, our

technique has substantial advantages.

VI. RELATED WORK

We have discussed existing disassembly techniques in §II.
In this section, we discuss other related works. Probabilis-

tic inference has been used in program analysis, such as

locating software faults [40], inferring explicit information

flow [41], and recognizing memory objects [42]. But to our

best knowledge, we are the first one to use it in binary

disassembly. Machine learning has been used for binary

analysis. For instance, Wartell et. al. [43] used a statistical

compression technique to differentiate code and data. Shingled

Graph Disassembly [44] leverages graph model based learning

on a large corpus of binaries to recognize data bytes. Our

technique does not require training. Its formalization of using

a random variable to represent each address, the introduction

of hints and the fusion of these hints are unique. Dynamic

disassembly (e.g., [45], [46], [27], [1], [47]) disassembles

during execution. These approaches impose extra runtime

overhead. In addition, they can hardly serve downstream static

analysis such as dependence analysis. Disassembly has many

applications, such as binary hardening [6], [48], [49], [50],

[5], deobfuscation [51], [52], reassemble disassembling [53],

[54], [55], reverse engineering [56], and exploitation [57]. Our

work is particularly suited in rewriting and hardening.

VII. THREATS TO VALIDITY

Although we used the corpus from BAP and SPEC in our

experiments, the benchmarks may not represent all features

of real-world binaries. We will test our technique on more

binaries. We focus on binaries generated by compilers. It is

unclear how our technique will perform on obfuscated code

although we believe semantic hints still exist in such code.

VIII. CONCLUSION

We propose a novel probabilistic disassembling technique

that can properly model the uncertainty in binary analysis. It

computes a probability for each address in the code space,

indicating the likelihood of the address representing a true

positive instruction. The probability is computed by fusing

a set of uncertain features that can reach the address. The

results show that our technique produce no false negatives

and as low as 3.7% false positives; and it substantially

outperforms a state-of-the-art superset disassembly technique.
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