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ABSTRACT
This paper presents PPA (Persistent Processor Architecture), simple
microarchitectural support for lightweight yet performant whole-
system persistence. PPA offers fully transparent crash consistency
to all sorts of program covering the entire computing stack and
even legacy applications without any source code change or recom-
pilation. As a basis for crash consistency, PPA leverages so-called
store integrity that preserves store operands during program ex-
ecution, persists them on impending power failure, and replays
the stores when power comes back. In particular, PPA realizes the
store integrity via hardware by keeping the operands in a physical
register file (PRF), though the stores are committed. Such store
integrity enforcement leads to region-level persistence, i.e., when-
ever PRF runs out, PPA starts a new region after ensuring that all
stores of the prior region have already been written to persistent
memory. To minimize the pipeline stall across regions, PPA writes
back the stores of each region asynchronously, overlapping their
persistence latency with the execution of other instructions in the
region. The experimental results with 41 applications from SPEC
CPU2006/2017, SPLASH3, STAMP, WHISPER, and DOE Mini-apps
show that PPA incurs only a 2% average run-time overhead and
a 0.005% areal cost, while the state-of-the-art work suffers a 26%
overhead along with prohibitively high hardware and energy costs.
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1 INTRODUCTION
Nonvolatilememory (NVM) technologies such as ReRAM [3, 13], 3D
XPoint [39], PCM [68, 121, 125, 139], and STT-MRAM [14, 47, 66, 74,
114] have emerged as alternatives to DRAM. Thanks to their byte-
addressability, high areal density, and in-memory persistence, they
are to be used as nonvolatile mainmemory (NVMM)—also known as
persistent memory (PMEM). That is, they can transparently replace
DRAM to accommodate persistent applications with large memory
footprint and obviate the need for serializing data in a block device
to survive power failure.
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However, it is not easy to make this obvious use case (i.e., trans-
parent NVMM) in reality. For example, while Intel Optane persistent
memory (PMEM) [22, 62, 69, 144, 151] provides the transparent use
of PMEM calledmemory modewhere DRAM is used as the last-level
cache atop PMEM, the Optane manual states that the PMEM works
as volatile memory [50]. The Optane persistent memory is not persis-
tent at all; this is mainly due to the difficulty of maintaining crash
consistency in the memory mode1. As a result, under the memory
mode, users have no choice but to risk the loss of all PMEM data in
case of power failure.

Although PMEM offers app-direct mode where DRAM is used as
main memory and PMEM serves as persistent heap [50], it pawns
off the hard work of persistent programming on users, trading the
transparency for in-memory persistence. In this partial-system per-
sistence (PSP) model [11, 20, 21, 25, 35, 75, 128, 146], users must
delineate a part of code that requires persistence, rewrite the data
structures used therein with crash consistency and memory persis-
tency [32] in mind, and often devise application-specific recovery
code tailored to the data structures [40, 49, 70, 79, 106, 127]. Be-
sides, PSP requires dedicated PMEM allocation interfaces such as
pmalloc [23], rendering already error-prone persistent program-
ming more complex [29, 91–93, 96, 99, 110]. While using transac-
tions [10, 20, 72, 84, 140] or failure-atomic sections [11, 46, 51, 85]
mitigates the programming complexity, the resulting persistent pro-
gram is slower than the original one due to the undo/redo logging
involving persistence barrier (clwb and sfence for x86).

Given the limitations of PSP and the demand for transparent use
of PMEM without sacrificing the in-memory persistence and crash
consistency, there is an increasing interest in whole-system persis-
tence (WSP) [57, 107] which covers all sorts of applications—rather
than being limited to a small set of PSP application domains such as
in-memory index structures/databases and key-value stores. That
is, WSP is agnostic to program semantics yet capable of recovering
any kind of program from power failure no matter when it occurs!

One naive approach toWSP is flushing all volatile states (register
files, SRAM caches, and DRAM cache) to PMEM when power is
about to be cut off. For example, Narayanan et al. [107] propose
to use residual energy in uninterruptable power supply (UPS) and
persist all volatile data before impending power failure, which re-
quires a considerable amount of energy to be secured for flushing.
In a similar vein, Intel’s extended asynchronous DRAM refreshing
(eADR) flushes the entire cache contents to PMEM upon power
failure using a backup battery. However, eADR also leads to signifi-
cant energy cost requiring a bulky supercapacitor of 3400𝑚𝑚3 [4];
this situation gets even worse for a deeper cache hierarchy that is

1Since PMEM here is transparently used as main memory without any code change, it
is solely the architecture’s responsibility to flush data through the deep cache hierarchy
(L1∼DRAM caches) and keep PMEM states consistent across power failure for correct
recovery.
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driven by ever-increasing working sets of data-intensive applica-
tions [12, 71]. Apart from the inability to persist other volatile states
such as registers, eADR cannot guarantee crash consistency for
PMEM’s memory mode—as it is unaffordable to reserve a sufficient
amount of energy for flushing the data of large DRAM cache to
PMEM; typical servers in data centers are equipped with more than
1TB DRAM. Given all this, it has been practically impossible to
achieve WSP on the cheap.

To this end, this paper presents Persistent Processor architecture
(PPA), the first of its kind to realize transparent, lightweight, and
performant WSP without recompilation for all program embracing
legacy software whose source code is unavailable. We found that
crash inconsistency is caused by unpersisted stores left behind
power failure and can be corrected by replaying (persisting) them
in the wake of the power failure. Suppose the program commits
3 stores (𝑠𝑡𝑟𝐴; 𝑠𝑡𝑟𝐵; 𝑠𝑡𝑟𝐶) in a row, and due to cache replacement,
the youngest 𝑠𝑡𝑟𝐶 is persisted in PMEM before the older ones.
Although this violates the program semantics if a power outage
occurs while others are cached, it is possible to fix the inconsistency
by replaying 𝑠𝑡𝑟𝐴 and 𝑠𝑡𝑟𝐵—unpersisted before the outage—when
power comes back. We can even relax this for simple hardware
implementation, i.e., rather than tracking the (un)persistence of
each individual store, PPA instead replays all 3 committed stores
and resumes the interrupted program following the last committed
instruction in the wake of the outage.

To achieve that, it is essential to preserve the registers of stores
(for replay) and other committed instructions (for resumption of the
interrupted program) across power failure. The implication is two-
fold: (1) PPA should prevent store registers from being overwritten;
this is so-called store-integrity [152]. (2) Both store registers and
other committed instruction registers must be able to survive power
outage, i.e., PPA should save the registers on the outage—using a
tiny capacitor whose energy is six orders of magnitude smaller
than what eADR requires—for the replay and the resumption in the
wake of the outage.

In particular, PPA realizes the store integrity in the core microar-
chitecture at a low cost. The key insight is that the values of store
registers are retained in the corresponding physical registers2 until
they are deallocated. For example, once the architectural register 𝑟0
of a store is renamed to a physical register 𝑝0, PPA can retrieve 𝑟0
by reading the value from 𝑝0 unless it is remapped and overwritten
by another instruction. To preserve the physical registers to which
architectural registers of stores are renamed, PPA proposes to delay
the deallocation of the physical registers—though the reorder buffer
(ROB) already commits the store instructions3. Recall that out-of-
order cores have a lot more physical registers than architectural
ones to minimize the stalls caused by the lack of physical registers
[33]; a physical register file (PRF) tends to be underutilized most of
the time since only a part of instructions in ROB (30% in our exper-
iments), e.g., loads and ALU operations, define new registers. Prior
work also observes this phenomenon, which leads to the advent
of simultaneous multi-threading (SMT) [102, 103, 136–138, 156],

2In an out-of-order processor, architectural registers are renamed to physical registers
via register renaming (see Section 2.1 for details).
3More precisely in the context of a unified PRF (Section 2.1), PPA does not deallocate the
physical registers of stores even after ROB commits them redefining their architectural
registers.

PRF bank switching [118], and physical register inlining [83]. The
takeaway is that due to PRF underutilization, PPA can delay the
deallocation of store registers with minimal run-time overhead.

Such register-renaming-based store integrity is a building block
of PPA enabling region-level persistence, where store integrity is
ensured within each region (epoch) [59] for crash consistency as
well as lightweight yet performant WSP. PPA dynamically delin-
eates the regions, performing region-level persistence and physical
register reclamation across their boundaries; whenever PRF runs
out, PPA starts a new region (epoch) with a persist barrier, which
ensures the committed stores of the prior region have already been
written to PMEM and reclaims those physical registers mapped by
the stores. To persist the stores of each region efficiently, PPA uses
asynchronous writeback overlapping them with the execution of
other instructions in the region as prior work [9, 54, 56, 60, 111, 130].
It turns out that the region size is long enough to fully hide the
store persistence latency, thanks to the large PRF of modern out-
of-order cores. If any region is interrupted by a power outage, PPA
checkpoints minimal architectural states, e.g., a part of PRF and
hardware structures related to register renaming [42]. In the wake
of the outage, PPA restores those checkpointed states, replays the
committed stores of the interrupted region, and resumes the pro-
gram from the last commit point before the outage—rather than
rolling back to the beginning of the interrupted region—for correct
and efficient recovery.

To evaluate PPA, we test it with 41 applications from SPEC
CPU2006/2017 [8, 43], SPLASH3 [123], STAMP [101], WHISPER
[105], and DOE Mini-apps [63, 135]. The experimental results show
that PPA incurs only an average of 2% run-time overhead compared
to the baseline (running original applications on PMEM’s mem-
ory mode lacking in-memory persistence and crash consistency
support). In summary, PPA makes the following contributions:

• PPA is the first lightweight yet performant whole-system
persistence that introduces minor modifications on the hard-
ware, e.g., 2 registers and 1 queue, and only needs a tiny
capacitor of 21.7 `J, unlike eADR that requires a supercapac-
itor of 550mJ.

• PPA outperforms the complex state-of-the-art compiler and
architecture codesign approach [57] in terms of all aspects,
such as run-time performance, energy requirement, and hard-
ware cost.

• PPA treats the underlying cache hierarchy as a black box,
thus being suitable for current/future caches with an arbi-
trary depth of the hierarchy, e.g., CXL (Compute Express
Link) based far persistent memory [34, 53, 61, 97, 98].

• PPA only incurs an average of 2% run-time overhead and
0.005% areal cost, which we believe paves the way to practi-
cal whole-system persistence for all, driving the revival of
persistent memory production with its cost-effectiveness.

2 BACKGROUND AND MOTIVATION
2.1 Register Renaming
Register renaming [26, 42, 44, 108], serving as a basis for PPA’s
store-integrity region formation, provides a way to eliminate false
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register dependence and thus enables more instruction-level par-
allelism (ILP). To efficiently rename architectural registers, out-of-
order processors are equipped with a unified PRF as in Alpha 21264
[65], MIPS 10K [38], ARM Cortex A-series out-of-order cores [142],
RISC-V SonicBOOM [157], and modern Intel processors from Pen-
tium 4 onwards [131]. For renaming an instruction, the processor
picks a register from a Free List (tracking free physical registers)
and maintains such a mapping from architectural register to phys-
ical one in a register alias table (RAT), i.e., any data access to the
architectural register is referred to the corresponding physical reg-
ister by consulting the RAT. Once ROB retires the instruction, the
processor puts the mapping to a commit rename table (CRT) for
facilitating exception handling and debugging.

In particular, the physical register can only be reclaimed to the
Free List when a later instruction redefining the associated architec-
tural register gets retired from ROB—because the physical register
value is no longer used thereafter.

2.2 PSP vs WSP
PSP has been a de facto standard for server-class systems backed
with Intel Optane persistent memory (PMEM) to ensure the crash
consistency of their user applications. However, this paper argues
that PSP is inferior to WSP for 3 reasons: high performance over-
head, programming/maintenance burden, and the risk of losing all
system-level states upon power failure.

First, the app-direct mode of PMEM cannot take advantage of the
deep cache hierarchy despite the ever-increasing data footprint of
PSP applications. Our experiment (Section 7.2) indicates that due to
the inability to leverage DRAM as a cache, even an ideal PSP design
is significantly (up to 2.4x and 1.39x on average) slower than the
memory mode of PMEM for memory-intensive applications. Second,
PSP is not transparent and requires programmers either to redesign
their data structures with persistence and recoverability in mind—
incurring severe bugs during development [29, 91–93, 96, 99, 110]
andmaintenance costs in the future [5, 124, 130, 154]—or to leverage
transactions for mitigating the programming burden4. Third, PSP
can only recover the states of user applications and hence puts
operating systems at the risk of losing their entire states upon
power failure, whileWSP like PPA can ensure that the entire system
states are consistent across power failure; see Section 5 for details.

Not only does WSP eliminate PSP programming and mainte-
nance costs, but it also makes persistent applications faster with
the DRAM cache. Of course, for those using PMEM’s memory mode
to leverage the deep cache hierarchy, WSP offers them persistence
and crash consistency without hurting the transparency and per-
formance. This is particularly beneficial for HPC applications (e.g.,
Mini-apps) whose states must be saved to storage on a regular basis.
We believe that lightweight persistence/recoverability, e.g., PPA,
can enable performant application-level resilience—related to one
of the nation’s exascale challenges [58, 113, 160]—by obviating the
need for expensive periodic global checkpointing to storage.

4Either way, the resulting performance overhead is so significant that PSP cannot be
used for those who expect similar performance to that of running their applications in
PMEM’s memory mode.

2.3 Region-Level Persistence for WSP
Prior techniques [18, 152, 161] recently investigate region-level per-
sistence to provide crash consistency in energy harvesting systems
(EHSs) [15, 19, 86, 95] where WSP is the norm. These techniques
partition the program into a series of regions (akin to recoverable
epochs) where their boundaries serve as recovery points. Either
compiler [18, 152, 161] or hardware (this work) is responsible for
the region formation and the persistence of each region. In par-
ticular, each region should ensure that all its stores are persisted
before the next region starts so that the program can be recovered
by restarting the power-interrupted region upon power back.

However, such a region-level persistence scheme incurs a non-
negligible performance overhead, since the program must wait
at each region boundary for the preceding region to persist its
stores, i.e., pausing until they are all written back to nonvolatile
memory (NVM). While the prior work leverages ILP to overlap the
persistence latency with the execution of other instructions, they
still cause significant performance degradation—especially in the
presence of a more deep cache hierarchy—because their regions
are too short to fully hide the long latency with ILP.

2.4 Store Integrity for Performant WSP
The key observation PPA builds upon is that we can safely recover
the system states by replaying stores that are potentially unpersisted
before power outage. Although this principle has been investigated
and adapted by many prior approaches as a concept of atomic
stores with logging them all [9, 18, 56, 84, 140], the prior schemes
suffer from the problem of doubling NVM stores—known as write
amplification.
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Figure 1: ReplayCache’s slowdown to the baseline (running
original applications on PMEM’s memory mode)

To achieve high-performance WSP, we make another observa-
tion that crash inconsistency is essentially caused by the mismatch
between the program order of committed stores and the order in
which their cache blocks are written back to NVM. To be specific,
a younger store might be evicted (persisted) to NVM while the
older ones are cached; if power failure happens before their per-
sistence, NVM status becomes inconsistent across the failure on
which the data of the older stores are lost since they have not been
persisted. This finding inspires us to recover the inconsistent NVM
status by rewriting only those potentially unpersisted stores to
NVM in the wake of the power failure—unlike traditional undo
loggings that checkpoint all stores. The upshot is that no matter
which random order of persisted stores is across power failure, it
is always possible to correctly recover by replaying all committed
stores left behind the failure and resuming from the last commit
point. Zeng et al. show that store replaying needs compilers to
prevent the store registers from being clobbered by following re-
definitions, which requires a special register allocator; they call
this store integrity in their energy harvesting work, ReplayCache
[152], and use compiler-based region-level persistence to divide the
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Figure 2: PPA overview; for store integrity, 𝑝0 is not recycled even after the multiplication commits

program to a series of regions where store integrity is enforced to
guarantee crash consistency.

Unfortunately, ReplayCache incurs too much performance over-
head (5x average slowdown as shown in Figure 1) when used to
achieve WSP for server-class cores; see Table 2. The reason is 2-
fold: (1) ReplayCache’s regions are so short (average 12 instructions
in regions) that they cannot accomplish enough ILP to hide the
region-level persistence latency through multi-level caches. That
is mainly due to the inherent issues of ReplayCache’s compiler
analyses, e.g., function calls/loops, scarce architectural registers,
and energy-aware region splitting for avoiding stagnation [17, 18]
in EHSs. Hence, the short region leads to frequent pipeline stalls at
each region boundary serving as a persist barrier; (2) ReplayCache
inserts clwb after each store to write it back to NVM, which dou-
bles the instruction count and places high pressure5 on store queue
whose overflow stalls the pipeline as well. Unlike ReplayCache,
PPA achieves performant WSP for server-class cores causing only
a 2% overhead (Section 7.1).

3 PPA OVERVIEW
PPA aims to achieve a lightweight WSP that works for a deep cache
hierarchy, where DRAM cache is used as in PMEM’s memory mode,
without sacrificing the transparency (i.e., keeping the entire soft-
ware stack as is and obviating the need for recompilation) and the
performance. PPA adopts store integrity for crash consistency, but
its novel hardware design for the integrity enforcement makes it
possible to realize a performant WSP at a low cost. In particular,
PPA leverages ample physical registers in out-of-order cores to pre-
serve store registers; it dynamically delineates the region (epoch)
boundary whenever physical registers run out. In this way, suffi-
ciently long store-integrity regions serve as the basis for failure
recovery, thus effectively hiding the store persistence latency.

Figure 2 depicts how PPA realizes WSP based on register renam-
ing of a modern out-of-order core6. In the figure, commit rename

5The clwb instruction occupies a store queue entry.
6We assume a server-class Intel Skylake core [30] though PPA can be generalized to
other out-of-order cores.

table (CRT), register alias table (RAT), and Free List are existing
microarchitectural components. CRT keeps the mapping from an
architecture register to a physical register for committed instruc-
tions, while RAT records that for in-flight instructions. The free
list maintains free registers for later renaming use. PPA proposes
MaskReg, a bit vector, to record which physical register is used
by prior committed stores and therefore should not be remapped
(overwritten) by the following redefinitions.

In Figure 2, upon renaming a destination architectural register
𝑟0 (i.e., △ 𝑟0 = 𝑟0 + 1), the processor removes a physical register 𝑝0
from the free list and puts the mapping from 𝑟0 to a physical register
𝑝0 into RAT as usual. Thus, for renaming the following store (⃝),
i.e., 𝑠𝑡𝑟 𝑟0, [100], the reference to 𝑟0 is replaced by 𝑝0. Once the
addition instruction commits (▲), making the defined value of 𝑟0
architecturally visible, the processor puts the mapping 𝑟0 → 𝑝0 in
CRT as usual. In particular, on the commit of the store (⃝), PPA
starts to track 𝑝0 in MaskReg, watching it for store integrity. When
the following redefinition of 𝑟0 is renamed (♢), the multiplication
instruction obtains 𝑝1—not 𝑝0 since it is already masked—from the
free list with RAT updated accordingly. Additional pipeline details
are deferred to Section 3.3.

3.1 Dynamic Region Formation
Similar to prior techniques [18, 152], PPA also provides region-
level persistence. However, what makes PPA stand out from them
is its ability to build regions dynamically without user interven-
tion, recompilation, and significant performance loss. PPA instead
leverages an existing microarchitectural feature to deliver the re-
gion formation with the store integrity enforced at a low cost. In
particular, PPA considers the number of free physical registers to
decide when to place a region boundary (persist barrier). As shown
in Figure 2, PPA places the boundary (barrier) when no free physi-
cal register is available at the renaming stage of the out-of-order
pipeline (). Once PPA ensures at each region boundary that the
committed stores of the finished region are all persisted, it reclaims
their physical registers with MaskReg cleared—before starting the
next region, as shown at the left bottom of the figure.
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3.2 HW-Based Asynchronous Store Persistence
Although prior software-logging-based PSP techniques guarantee
consistent NVM status across power failure, they incur significant
performance overhead because of a persist barrier (e.g., clwb and
sfence in x86). In contrast, PPA does not block the pipeline execu-
tion while stores are being persisted to NVM. That is, once the data
being stored is merged into the L1 data cache (⃝ in Figure 2), the L1
data cache controller immediately asynchronously writes back the
resulting dirty cacheline to NVM in the background, keeping the
pipeline busy with other instruction executions in the meantime.

To ensure all stores prior to the end of a region are already
persisted in NVM before committing following instructions, PPA
treats every region boundary (the last instruction of each region) as
a special persist barrier. Therefore, the core pipeline waits until
the acknowledgment of persisting the region’s all prior stores in
NVM is received by the core before entering the next region. While
stalling the pipeline can lead to a slowdown due to the wasted
cycle time, our experimental results show that our hardware-based
store persistence has a minimal impact on the pipeline performance
due to long enough regions (see Section 7.5) and thus resulting in
negligible stall cycles at the end of regions (see Section 7.3).

3.3 Dynamic Enforcement of Stores Integrity
Figure 2 shows how PPA ensures store integrity on the fly during
the pipeline execution. Upon retiring 𝑠𝑡𝑟 𝑟0, [100] (⃝ in the figure)
whose 𝑟0 was renamed to 𝑝0, PPA masks 𝑝0 in MaskReg to notify
it is occupied by the store, which makes the target register of the
following multiplication instruction renamed to 𝑝1 (♢) instead of
𝑝0. Unlike conventional cores, upon retiring the multiplication (♦
𝑟0 = 𝑟0 ∗ 2) with updating CRT with 𝑟0 → 𝑝1, PPA does not
reclaim the physical register 𝑝0 which is associated with 𝑟0’s prior
definition 𝑟0 = 𝑟0 + 1—though its value can no longer be used
due to the retirement of the multiplication overwriting 𝑟0. That is
because 𝑝0 is masked as a committed store register in MaskReg,
and it should be preserved in case of power failure so that the store
can be replayed in the wake of the failure. In this way, PPA not
only guarantees store integrity in each region but also achieves
performant WSP with a much longer region size than the compiler-
based prior work [152], thus hiding the store persistence latency.

3.4 Checkpoint and Recovery Protocol
To achieve correct program execution across power outage, all the
store registers preserved by our register renaming trick must sur-
vive power failure. For this reason, PPA should maintain necessary
microarchitecture status such as CRT across the outage. Also, in the
wake of power failure, PPA should be able to resume the program
right after the last commit point behind the outage.

In light of this, PPA exploits just-in-time (JIT) checkpointing to
save minimal architectural states—e.g., physical register 𝑝0, CRT,
and the last committed PC as shown in Figure 2 (①)—to a designated
checkpoint storage in NVM, when power is about to be cut off.
Owing to its simplicity, PPA only requires a tiny capacitor to secure
energy for JIT checkpointing, while Narayanan’s [107] and eADR’s
demand a significantly large bulky Li-thin battery or supercapacitor
[4] (Section 7.13). When the power comes back, PPA first replays all
committed stores behind the failure, e.g., 𝑠𝑡𝑟 𝑝0, [100] in Figure 2
(②), and restores other checkpointed states such as CRT (③). Then,
PPA resumes the interrupted region from the latest uncommitted
instruction following the last committed PC to continue program
execution. More details are deferred to Section 4.5 and Section 4.6.

4 PPA IMPLEMENTATION DETAILS
Figure 3 shows PPA’s microarchitecture with its 3 newly added com-
ponents; Last Committed Program Counter (LCPC), Store Operands
Mask Register (MaskReg), and Committed Store Queue (CSQ). The
LCPC register keeps the PC of the last committed instruction so that
a power-interrupted program can resume thereafter in the wake of
power failure. Note that PPA does not save or recover architectural
status related to speculation, such as in-flight instructions in ROB.
The MaskReg comprises as many bits as the PRF size. Each set bit
of MaskReg indicates that the corresponding physical register has
been used as an operand of any committed store in the current
region and thus prevents those physical registers from being up-
dated by the following instructions of the region. Finally, the CSQ
is a circular FIFO queue for tracking committed stores per region.
When a store retires from ROB, a pair of (1) the index of the source
physical register and (2) the destination physical address of the
store is inserted into the rear position of CSQ.
Actions of PPA across an Outage: Upon a power outage, PPA
has 5 components (shaded in Figure 3) JIT-checkpointed in NVM:
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CSQ, LCPC, CRT, MaskReg7, and the physical registers tracked by
CSQ/CRT. When power comes back, PPA (1) restores the check-
pointed registers, MaskReg, CRT, LCPC, and CSQ from NVM, (2)
scans CSQ entries from front to rear re-executing the stores com-
mitted before the outage8, (3) populates RAT with the restored CRT,
and (4) resumes the power-interrupted program right after LCPC.

Note that once a region is persisted at the boundary, i.e., the
pipeline receives an acknowledgment that all the committed stores
of the region have been persisted to NVM, PPA clears both the CSQ
and the MaskReg—reclaiming the store registers masked therein—
before starting the next region. Thanks to the long region size
(Section 4.1) and the asynchronous writebacks (Section 4.3), PPA
effectively hides the store persistence latency at each region end.

4.1 Enforcing Store Integrity Efficiently

• Architectural registers: r1, r2, r3
• Physical registers: p1, p2, p3, p4
• Original mapping: r1->p1, r2->p2, r3->p3
• Free list is {p4} initially

Raw Instructions RATFree ListRenamed 
Instructions

WAR  Dependence

Persist Barrier

I1: add r1, r2, r3
I2: str r1,[r2,r3]

I3: sub r2, r3, r1

I1: add p4, p2, p3
I2: str p4,[p2,p3]

I3: sub p1, p3, r4

{p4} r1 r2 r3
p1 p2 p3
p4 p2 p3
p4 p2 p3
p4 p1 p3

r1 r2 r3
p4 p2 p3
p4 p2 p3
p4 p1 p3
p4 p1 p3

{  }
{p1}

Action

rename I1
rename I2&
commit I1

{  }rename I3
commit I3

CRT

{p2}

Figure 4: Impact of register renaming on the region length
At first glance, forming store-integrity-preserving regions seems

easy, i.e., placing a region boundary right before the redefinition of
store registers to preserve their values within a region. For example,
placing a region boundary (persist barrier) after store 𝐼2 in Figure 4
ensures store integrity and post-crash consistency but yields short
regions because of a write-after-read (WAR) dependence on store
register 𝑟2. A sophisticated compiler approachmight form relatively
longer regions by renaming the redefinitions of previous store
registers—unless architectural registers run out—as in ReplayCache
[152]. However, the prior approach [152] to store integrity still
generates short regions due to a limited number of architectural
registers, e.g., 16 general-purpose registers in x86. The crux of the
problem is that ReplayCache pays for persist barrier overheads so
often at each end of such short regions.
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Figure 5: (a): CDF of free integer registers; (b) CDF of free
floating-point registers

Fortunately, the out-of-order cores already have the ability to
eliminate WAR dependence with register renaming [42], e.g., re-
naming 𝑟2 to 𝑝1 for the subtraction 𝐼3 in Figure 4. That way the
7MaskReg should be JIT-checkpointed as well to prevent store registers therein from
being recycled even after power comes back.
8Even if some stores might have already been persisted, there is no harm to execute
them again as each store is idempotent [27, 48, 67, 87, 88, 90, 155].

pipeline can execute 𝐼3 without redefining a register 𝑟2, thus ob-
viating the need for the persist barrier after the store 𝐼2—unlike
the prior approach [152] that needs the barrier to persist the store
before 𝐼3—forming longer regions than it can.

Note that the number of physical registers is much larger than
that of architectural registers and that they are often idle. Figure
5 shows that CDFs of free integer and floating-point registers—
sampled every cycle9—respectively. For example, 75% of the pro-
gram execution cycles, the baseline core has 138/110 integer/floating-
point registers not utilized for CPU2006. As such, PPA’s region size
can be sufficiently long to hide the persistence latency of stores in
each region without incurring slowdown a lot.

4.2 Forming Longer Regions at a Low Cost

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

Raw Instructions RAT Free
List
{}

MaskReg

I1: add p4, p2, p3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

Renamed Instructions
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p4 p2 p3
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Rename I2, commit I1, and free p1 associated with previous
definition of r1 to free list

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

{}I1: add p4, p2, p3
I2: str p4,[p2,p3]
I3: sub p1, p3, p4
I4: mul r1, r2, r3

Rename r2 of I3 to p1 and commit store I2, marking p2, p3,
and p4 in MaskReg, populating a CSQ entry for committed store I2
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I3: sub r2, r3, r1
I4’:persist barrier
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I4’:persist barrier
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Commit I3 but not to reclaim masked p2. Fail to rename r1
of I4 due to no free register; insert a persist barrier
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Figure 6: Dynamic region partitioning by physical register
file size; the free list shows its status after the action

With the above observation in mind, PPA proposes a minimal
change to the instruction pipeline so that it enforces store integrity
during the execution of each region. That is, PPA dynamically par-
titions program to a series of regions by placing a region boundary,
i.e., a persist barrier, upon a pipeline stall at the renaming stage; if a
register-defining instruction cannot be renamed due to the lack of a
free physical register in free list, PPA injects a persist barrier right
before the instruction (see Figure 6 for details). Once the pipeline
retires the persist barrier at the boundary of a region, i.e., all its
stores are already sure to have persisted, PPA acknowledges the re-
naming stage to reclaim the physical registers masked by MaskReg,
clears it, and resumes the pipeline to start the next region.

Figure 6 shows a step-by-step example of how to perform dy-
namic region formation while preserving registers of stores. We
assume a 4-bit MaskReg for total 4 physical registers 𝑝1 − 𝑝4. Ini-
tially, MaskReg is empty, and 𝑝1 − 𝑝3 are occupied by previous
definitions of register 𝑟1−𝑟3, and a free list contains only 𝑝4. When
renaming 𝑟1 of the addition instruction 𝐼1 at step ①, PPA maps
9We measure the number of free physical registers every cycle at the renaming stage
of an OoO core (Table 2).
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𝑟1 to the only free physical register 𝑝4 and updates the RAT and
the free list accordingly. Then, at step ②, when renaming a store
instruction 𝐼2, the references to architectural registers are replaced
by physical registers as usual. At the same time, the pipeline retires
𝐼1 instruction, deallocating 𝑝1 associated with 𝑟1’s previous defini-
tion (not shown in the figure) and updating the CRT with 𝑟1 → 𝑝4.
At step ③, the pipeline renames 𝑟2 of 𝐼3 to 𝑝1, with RAT and the
free list correspondingly updated, and commits the store 𝐼2 setting
the bits of 𝑝2 − 𝑝4 in MaskReg to 110 and populates a CSQ entry in
its back position for the committed store 𝐼2.

In particular, at step ④ where the pipeline commits 𝐼3 and re-
names 𝐼4, PPA takes different actions from the traditional out-of-
order pipeline that allows 𝑝2 to be remapped. PPA does not deallo-
cate physical register 𝑝2 associated with 𝑟2’s previous definition
(not shown in the figure), though 𝐼3 commits redefining 𝑟2. This
is because 𝑝2 is masked in𝑀𝑎𝑠𝑘𝑅𝑒𝑔 as a store operand. However,
at this moment, there is no physical register in the free list, which
makes PPA fail to rename the register 𝑟1 of 𝐼4. Thus, PPA injects a
persist barrier here as a region boundary right before instruction
𝐼4. Once the barrier gets retired, PPA reclaims all masked physical
registers 𝑝2 − 𝑝4 to the free list, clears MaskReg, and starts a new
region allowing them to be reused therein.
Full CSQ as an Implicit Region Boundary: If CSQ becomes full,
PPA cannot accommodate stores anymore, thus being unable to
replay them for power failure recovery. Thus, PPA treats this event
as a virtual region boundary where it waits for all prior stores to be
persisted. Once the core receives the acknowledgment of persisting
all prior stores, PPA starts a new region with CSQ and MaskReg
cleared. Our experiment (Section 7.9) shows that a 40-entry CSQ
rarely overflows, thus incurring a minimal performance impact.

4.3 Region-Level Asynchronous Persistence
In addition to preserving store registers for their integrity in each
region, PPA also ensures that its stores are persisted to NVM be-
fore moving on to the next region. Instead of leveraging cacheline
writeback instruction (clwb in x86) that has a lot of drawbacks, as
shown in Table 1, e.g., occupying a store queue entry for each store,
requiring inter-core snooping, and not being able to flush data from
core to NVM main memory through a DRAM cache above, PPA
leverages the asynchronous store writeback which effectively takes
it off the critical path [9, 54, 56, 60, 111, 130]. That is, when the data
being stored is merged into L1 data cache after cache coherence
transactions are completed, an asynchronous store persistence op-
eration is generated in the write buffer (WB)11 of L1 data cache and
then issued by its controller. The implication is 2-fold: (1) the store
persistence happens in the background while the core continues
the execution of following instructions, achieving ILP; (2) once a
store persistence operation is issued, all other cores already have
up-to-date memory data.

Unlike clwb, i.e., a cacheline writeback instruction that occu-
pies a store buffer entry, PPA instead uses a counter register in
the L1 data cache controller to record the number of stores being
persisted, rather than tracking each individual store with clwb; the
10While MaskReg could record all operand registers of each store, we opt to keep only
a data register as an optimization. See Section 4.6 for more details.
11WB already exists in Intel processors sitting between L1D and L2 cache for buffering
dirty cacheline eviction.

Table 1: Comparison between PPA and CLWB

Store Queue Occupied Single Store Tracking Snooping Reaching NVM
CLWB in x86 ✓ ✓ ✓ ✗

PPA ✗ ✗ ✗ ✓

counter increases for each store performed and decreases every
time the controller receives the acknowledgment of the writeback
completion. In particular, to lower write traffic towards NVM, PPA
performs persist coalescing [130] on the WB for the data being per-
sisted. That is, a younger store being persisted is merged with the
old unpersisted one of the same address sitting in the WB. This is
correct because persist barriers ensure that the WB’s data—to be
persisted—are from the same region, and the stores of the following
regions are not performed yet.

When the counter hits zero, the controller tells the core that
all prior stores in a region are persisted to NVM, allowing both
CSQ and MaskReg to be cleared. In this way, PPA determines if
the pipeline needs to stall at the region boundary by simply com-
paring the counter with zero. Although such a stall might slow
down the pipeline by waiting for the counter to be zero at each
region boundary, it turns out that the performance impact is not
significant. The reason is that the region-level persistence latency
is fully overlapped with the execution of other instructions in the
long regions dynamically formed by PPA (Section 7.3). Moreover,
PPA’s asynchronous store writeback does not generate coherence
traffic—since each core is responsible for its own writeback—thus
reducing the persistence latency further.
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Figure 7: JIT Checkpointing logic; gray parts are check-
pointed before impending power failure

4.4 Lightweight Hardware for Recovery
To achieve highly energy-efficient checkpointing and recovery, PPA
needs to checkpoint only essential architectural statuses, e.g., a part
of physical registers used by committed stores or linked with com-
mitted instructions in the interrupted region, committed stores of
the region, CRT, and program counter (PC) of the latest committed
instruction, upon power failure. With checkpointing such minimal
states, we can still restore consistent memory status by re-executing
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those stores and then resume the program execution following the
latest committed instruction.

To facilitate this, PPA proposes a simple yet hardware-efficient
FIFO queue called committed store queue (CSQ) and Last Commit-
ted PC (LCPC). Each CSQ entry keeps the source physical register
index and the destination (physical) address of committed stores
in program order, and LCPC gets updated with the PC value after
committing an instruction. Note that CSQ and LCPC do not affect
the existing pipeline’s timing logic at all because they are out of the
critical path. More importantly, CSQ is organized with a read/write
port eliminating an expensive CAM structure, making a large CSQ
realistic; we only need 40 CSQ entries at most as shown in Section
7.9 though. During normal program execution, the port is used to
populate a CSQ entry in its rear position and to checkpoint the
entire CSQ to NVM upon power failure. Finally, PPA clears CSQ
at each region boundary as with MaskReg emptied, i.e., when all
committed stores in the finished region become persistent in NVM,
before moving on to the next region.

4.5 Just-In-Time (JIT) Checkpointing on Power
Failure

To ensure correct program recovery across power failure, PPA
should checkpoint necessary states when power is about to be cut
off. Figure 7 shows how such just-in-time checkpointing works with
its circuitry implementation; upon the delivery of Power_Fail sig-
nal, PPA saves the contents of its 5 structures to NVM, i.e.,MaskReg,
commit rename table (CRT), committed store queue (CSQ), a part
of PRF, and last committed PC (LCPC). Note that PPA only check-
points those physical registers marked by CRT or CSQ entries in
that neither free registers (𝑝1 in the figure) nor uncommitted regis-
ters (𝑝3 defined by 𝐼3) affect correct program recovery. Similarly,
PPA does not have to checkpoint any other status of in-flight in-
structions, e.g., their RAT and ROB entries. This is because PPA can
resume the execution of power-interrupted program from the latest
uncommitted instruction following LCPC, when power comes back.

As with prior work on JIT checkpointing [36, 94, 95, 120, 126,
133, 143] developed for energy-harvesting systems [6, 16, 19, 152]
to realize power failure recovery, PPA implements a controller that
governs checkpointing and recovery12 operations, according to
each signal delivered on power failure and its wake-up. As shown
in the middle of Figure 7, the controller consists of 3 components:
(1) Control Finite State Automaton (FSM), (2) Source Index Generator
(SIG), and (3) NVM Address Generator (NAG). FSM is responsible
for generating control signals to checkpoint PPA’s 5 structures, i.e.,
MaskReg, CRT, CSQ, PRF, and LCPC, into their storage in NVM.
During the checkpointing process, FSM triggers SIG and NAG that
share the same logic—shown in the bottom right of the figure—for
the sum of the inputs Base and Offset to determine (1) what to be
checkpointed and (2) where to save in the NVM, respectively.

It is worth noting that PPA activates its checkpointing controller
only on power failure, and therefore it is out of the critical path most
of the time as long as power is on, i.e., PPA does not have to optimize
the controller’s circuitry for latency. This allows PPA to keep the
controller’s hardware design simple by sequentially checkpointing

12Recovery operations are not shown in Figure 7 as they are the opposite of check-
pointing operations.

PPA’s 5 structures13 one entry at a time. To illustrate, as shown
at the bottom left of Figure 7, FSM is triggered upon Power_Fail
to transit from Idle stage to Stop_Pipeline stage, where PPA stops
the core pipeline to preserve the contents of the 5 structures. Then,
FSM moves to Read stage, raising the read signal Core_Rd on the
control path so that the entry indexed by SIG can be read in each of
5 structures across which Base and Offset are properly updated.
Upon the delivery of Read_Finish signal, FSM enters Write stage
enabling the write signal NVM_Wr to write the data to the NVM
address generated by NAG. Once the writing is done, FSM either
goes back to Read stage or exits to Idle provided if Ckpt_All is
activated, i.e., all 5 structures are completely checkpointed.

To realize the above sequential checkpointing while maintaining
a low hardware complexity, PPA exploits the existing non-temporal
path [24] in x86 processors to deliver data to NVM—other than
introducing a new data path. This indicates that PPA checkpoints
its 5 structures at an 8-byte granularity as with their entry size
(Section 7.12). Likewise, FSM reads PRF and CRT at an 8-byte gran-
ularity, which seems possible given that they are implemented with
SRAM [38, 132, 157]. The takeaway is that the aforementioned JIT-
checkpointing logic is lightweight, i.e., a few hundred logic gates,
keeping the overall hardware cost of PPA minimal (Section 7.12).

4.6 Power Failure Recovery Protocol
To achieve correct program recovery, in the wake of power failure,
PPA restores MaskReg, CRT, and checkpointed physical registers
by reloading their data from NVM as an opposite operation of the
JIT checkpointing. PPA then re-executes those potentially unper-
sisted stores by reading the CSQ entries checkpointed in NVM.
To be specific, for each CSQ entry, PPA gets both the data value
by retrieving the restored PRF with an index of the checkpointed
physical register and the destination address. That way, PPA writes
the data value to the target address. Finally, PPA resets the PC to the
instruction following the LCPC to continue the program execution.

5 INTERACTIONWITH OS
This section describes how PPA interplays with the rest of the
computing stack, such as the operating systems (OS), to enable
system-level crash consistency.

Handling I/O Operations: To the best of our knowledge, sup-
porting irrevocable operations such as I/O remains an open problem.
PPA can be extended to have a battery-backed buffer for crash-
consistent I/O operations. In this way, PPA considers any store to
the buffer as persisted.

Context Switching: PPA treats context switching as is without
any special consideration. In particular, PPA does not differentiate
between kernel code and user program thanks to the benefits of
WSP. While keeping context switching as is, PPA still guarantees
correct process (de)scheduling and resumption. That is because PPA
ensures that the architectural states, e.g., stores and architectural
registers, of a descheduled process are crash-consistent by follow-
ing PPA ’s JIT checkpoint and recovery protocol. That being said,
PPA might have an indirect impact on performance, provided that

13The order in which the structures are visited does not affect the correctness of
checkpointing and recovery.
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a region boundary is introduced during context switching. In real-
ity, such a case rarely occurs because PPA forms reasonably long
regions (see Section 7.5), keeping the frequency of encountering re-
gion boundaries low. Even if the case occurs, i.e., PRF runs out in the
middle of the context switching, and the resulting region boundary
incurs the region-level persistence overhead, PPA can still mini-
mize the stall cycles at the boundary leveraging the asynchronous
store persistence, e.g., only a few stall cycles occur on average (see
Section 7.3). It turns out that they are negligible compared to typical
context switching overhead (e.g., 5-20 `𝑠) [134, 141, 145]. Conse-
quently, the context-switching performance would practically be
the same with PPA.

Interrupt Handling and System Calls: There is no special
treatment of PPA for Interrupt handling14 and system calls—that
rely on trap instructions (syscall in x86_64)—for the same rea-
son above. That is, PPA guarantees that any architectural state is
consistent across power failure. As such, PPA can resume interrupt
handlers and system calls exactly from the power failure point
without rollback. For an interrupt handler that encounters power
failure in the middle of the execution, PPA can recover all commit-
ted but unpersisted stores and architectural registers and resume
the handler from the last commit point in the wake of the failure.

6 DISCUSSION
Recovery for Multi-Cores: To guarantee correct recovery for
multi-threaded applications on multi-core processors, we assume
data-race-free (DRF) applications as required from the C/C++11
onward. DRF implies that conflicting accesses should be explic-
itly ordered by a synchronization primitive, e.g., serializing them
in a lock-protected critical section or leveraging an RMW (read-
modify-write) instruction. PPA treats all synchronization primitives,
including atomics and fences, as a region boundary so that their
actions comply with PPA’s original recovery protocol in case of
power failure; for each synchronization primitive running on a
core, it cannot be committed until all stores of its region are sure to
have been persisted to NVM with the CSQ of the core emptied. For
example, the stored data before a lock release can exist in the CSQ
of at most one core. The implication is two-fold: (1) there cannot be
multiple pending stores to the same address in the CSQs of different
cores due to the absence of data races; (2) thus, we may replay stores
in the cores’ CSQs in an arbitrary order, which still achieves correct
recovery—because each core’s CSQ entries are disjoint with any
other core’s CSQ entries. That is, PPA can restore consistent NVM
states of DRF applications—though it lets each core perform the
recovery protocol (Section 4.6) individually—without maintaining
the recovery order among the cores.
Memory Consistency Model: Although PPA is evaluated with
X86 ISA (total store ordering), it works well for other consistency
models, e.g., relaxed memory ordering (RMO) in ARM and RISC-V,
because PPA leaves load/store unit (LSQ) as is by proposing a tiny
CSQ. One might think of gating those retired stores in store buffer
(SB) without merging them to L1 cache as an alternative. However,
it complicates the hardware design and limits the performance
optimizations of RMO for 3 reasons: (1) region-level persistence

14We use the term interrupt to describe software exception and hardware interrupt.

prohibits inter-region store coalescing and out-of-order store write-
back from SB to L1 data cache; (2) it is hard to enlarge the SB size
for hiding long memory latency. That is because SB’s CAM search-
ing structure is expensive, and it must provide data within L1-hit
time, which would otherwise complicate the scheduling loads with
variable latency; (3) data being stored exists in both SB and PRF,
wasting the energy to checkpoint the same data twice.
In-Order Cores and ROB-Style Register Renaming:Our design
can be easily extended to provide WSP for both cores by accom-
modating data values (rather than indexes to PRF as in the current
PPA) and destination addresses of committed stores in the CSQ as
usual. Across power failure, the CSQ entries can be checkpointed
and thus restored to recover inconsistent NVM status via replaying.
Multiple Memory Controller (MC) Support: PPA naturally sup-
ports multiple memory controllers without any hassle. This is be-
cause PPA only moves on to the next region once all stores of the
prior region are persisted in NVM with the help of region-level per-
sistence (Section 4.3); this makes it impossible to persist a younger
store (in program order) destined to a near MC before the older one
to a far MC, if the two stores are separated in different regions. Even
if the stores exist in the same region and its power failure exposes
the possible ordering violation, PPA replays them all together with
other stores of the power-interrupted region in the wake of the
failure. Consequently, either way PPA prevents crash inconsistency
from occurring in the presence of multiple MCs.

7 EVALUATION AND ANALYSIS
All programs are compiled with -O3 flag and are statically linked.
We use the Clang/LLVM 13.0.1 compiler [76, 77] to build the base-
line binaries with default compilation flags. We implement the
same ReplayCache region formation in the same compiler to build
store-integrity binaries with disabling ReplayCache’s energy-aware
region splitting to enlarge the region size as much as possible.

Table 2: Microarchitectural Parameters

Component Configuration
Full System Mode Ubuntu 18.04 and Linux Kernel 5.4.46

Processor
8-core 4-width x86_64 OoO processor at 2GHz.

Unified PRF, ROB/IQ/SQ/LQ/Integer PRF/Floating-Point PRF:
224/97/56/72/180/168

L1I private 32KB, 8-way, 64B block, 3 cycles
L1D private 64KB, 8-way, 64B block, 4 cycles, write back

L2 shared 16MB, 16-way, 64B block, inclusive,
44 cycles, write back

DRAM Cache (LLC) shared direct-mapped, 4GB, DDR4 2400 8x8

PMEM 32GB, Read = 175ns/Write = 90ns,
16-entry WPQ [147, 148], 2.3GB/s write bandwidth [148]

CSQ 40-entry FIFO queue

We use the cycle-accurate simulator gem5 [7] to model an 8-core
(one thread per hardware core) x86_64 Skylake-X processor with
two integrated memory controllers, each of which manages a DRAM
as an off-chip direct-mapped cache as with PMEM’s memory mode.
Table 2 shows the details of the microarchitectural parameters.

To measure the impact of PPA on varying programs, we choose 6
benchmark suites, e.g.,CPU2006/2017 [8, 41, 43, 82], SPLASH3 [123],
STAMP [101], WHISPER [105], and Mini-apps [63, 135], which
represent different application domains from CPU performance
benchmarks, shared-memory multi-core systems, transactional ap-
plications, key-value stores, to memory-intensive programs.
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Table 3: Data inputs for DOE Mini-apps and WHISPER apps

Application Short Description Simulation
Data Input

Memory
Footprint

LULESH [63] High instruction and
memory-level parallelism. -s 100 664MB

XSBench [135] Stress memory system
with little computations. -s small 241MB

PC [73] Update in hash-table. 8 100000 196MB
RB [73] Insert/delete nodes in a red-black tree. 8 100000 166MB
SPS [73] Swap random entries of an array. 8 200000 264MB
TATP [73] update_location transaction. 8 100000 287MB
TPCC [73] add_new_order transaction. 8 100000 110MB

r20w80 [100] Memcached with 20% reads and 80% writes -m 1000 -t 8 189MB
r50w50 [100] Memcached with 50% reads and 50% writes -m 1000 -t 8 189MB

We simulate the entire SPLASH3/STAMP/WHISPER program
in the full system (FS) mode of gem5 with 8 cores by default. To
stress the memory system and demonstrate the benefits of enabling
DRAM as a cache, we use reference inputs to simulate SPEC CPU
applications and the data inputs specified in Table 3 for Mini-apps
and WHISPER. Additionally, we modify the source code of WHIS-
PER applications to increase the key/value sizes, keeping their data
footprint large enough; see Table 3. Similarly, we follow the prior
work [105] using Memcached 1.6.18 [100] as a server and memaslap
from libMemcached 1.0.18 [2] as a client to initiate 8 threads send-
ing 10000 requests to the server. For each memaslap request, we test
two ratios of read-to-write operations: 20/80 and 50/50 for write-
intensive and read-intensive. In particular, we set the key and value
sizes of Memcached to 64 bytes and 1KB, respectively. We follow
the same way as prior work [27, 28, 80, 89, 122, 129, 153] to fast
forward the first 5 billion instructions and then simulate the next 1
billion instructions with a detailed CPU model.

7.1 Run-time Overhead Analysis
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Figure 8: Normalized slowdown of PPA and Capri to the base-
line (original binaries running on PMEM’s memory mode);
lower is better; 40 CSQ entries

As a comparison, Figure 8 presents run-time overheads of PPA
and the state-of-the-art WSP—Capri [57] which incurs high hard-
ware costs due to the separate FIFO persist path between the core
and NVM and the complex undo+redo logging structures; see Table
6 for the comparison. To be practical, we set the persist path band-
width of Capri to 4GB/s instead of its original unrealistic 32GB/s15.
PPA incurs an average of 2% overhead, while Capri incurs a 26%
overhead due to its 11x shorter regions than that of PPA; see Section
7.5. Note that PPA only incurs a slightly high overhead for rb of
WHISPER due to the relatively higher write traffic towards NVM,
as confirmed in Figure 15 and Figure 18.

We also compare PPA and PMEM’s memory mode to the DRAM-
only system with a 32GB DRAM. Figure 9 depicts that PPA and the
15We get Capri’s source code and figure out its default persist path bandwidth is
32GB/s.
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Figure 9: Normalized slowdown to a DRAM-only systemwith
32GB volatile memory; lower is better
memory mode are 16% and 14% slower than the system only with
a 32GB DDR4 DRAM, respectively. The results are encouraging
in that PPA’s cost of making the DRAM-only system persistent is
comparable to the run-time overhead of PMEM’s memory mode
that does not offer persistence. In particular, lbm and pc incur e.g.,
44% and 58% overheads, respectively. That is because they have
poor locality and thus the DRAM cache only increases the critical
path of their memory accesses with a lot of misses.

7.2 Comparison to Partial-System Persistence
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Figure 10: Normalized slowdown of PPA and eADR/BBB
(ideal PSP) to the baseline (running original program on
PMEM’s memory mode); lower is better

To demonstrate the benefits of enabling DRAM as a cache for
the applications with high L2 miss rates (ranging from 18% to
100%), we compare PPA to an optimized version of BBB [4] whose
performance is close to that of eADR, representing the upper-bound
performance of a PSP scheme. Figure 10 shows that PPA incurs
only an average of 3% run-time overhead for these programs, while
BBB/eADR slows down the programs by 1.39x on average and up
to 2.4x for libquantum. Notably, PPA underperforms BBB/eADR
slightly for rb. The reason is two-fold: (1) PPA leads to higher
contention in WPQ (Section 7.7) due to the store persistence; (2)
rb exhibits high locality (4% L2 miss rate) and thus has less write
traffic towards NVM for the baseline.

7.3 Analysis of Stall Cycles at Region End
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Figure 11: Stall cycles at the end of regions as a percentage
of their execution time; lower is better
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Figure 11 shows the average ratio of the stall cycles occurred at
the end of each region to the execution cycles of that region. Thanks
to the sufficiently long region size (i.e., high ILP for hiding store
persistence latency), PPA only increases the stall cycle ratio of the
baseline (PMEM’s memory mode) by 0.21% on average, showcasing
why PPA incurs a low run-time overhead, i.e., 2% on average. Figure
11 also shows why PPA incurs a relatively higher overhead for
water-ns and water-sp; the reason is that, as shown in the figure,
these two applications have more stall cycles, i.e., 6.1% and 8.1%,
respectively due to their shorter regions and more stores therein
(see Figure 13).

7.4 Impact on PRF Pressure
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Figure 12: Increase in stall cycles at the renaming stage when
the core is out of physical registers; lower is better

For both the baseline (PMEM’s memory mode) and PPA, we
measure the number of stall cycles due to the lack of physical
registers in the renaming stage of the simulated core. Figure 12
highlights that PPA incurs negligible extra stall cycles (0.07%) on
average compared to the baseline. The reason is two-fold: (1) The
core pipeline stall caused by running out of free registers rarely
occurs due to the sufficient amount of free registers (see Figure 5).
(2) Although the stall happens, PPA tends to spend minimal cycles
at the end of regions (see Figure 11) and thus quickly deallocates
their reserved registers for later use.

7.5 Dynamic Region Characteristics
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Figure 13: Average number of stores and others in regions

To demonstrate why PPA incurs such a low run-time overhead,
we measure the number of stores and others in each region. As
shown in Figure 13, each region has 301 other and 18 store instruc-
tions on average thanks to the abundant free registers, while Capri’s
average region size is only 29. As a result, PPA has enough room to
keep the pipeline busy while asynchronously persisting the data be-
ing stored to NVM without waiting at each region boundary. Note
that some applications, e.g., bzip2 and libquantum, have smaller
region sizes due to their heavy register usage.

7.6 Sensitivity to Deeper Cache Hierarchy
To evaluate the sensitivity to deeper cache hierarchy, i.e., 3-level
SRAM caches atop DRAM cache, we add a shared 16MB 16-way
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Figure 14: Normalized slowdown of PPA to the baseline when
using L3 cache atop DRAM cache; lower is better
set-associative L3 cache of 44-cycle hit latency to both PPA and
the baseline (PMEM’s memory mode). We also alter the existing
L2 cache in Figure 2 to a private L2 with 14-cycle hit latency and
1MB. Figure 14 shows that PPA incurs a negligible overhead (1%)
even when the L3 cache is used atop DRAM cache thanks to PPA’s
sufficiently long region size (see Section 7.5) that can cover the
extended store persistence latency through the hierarchy.

7.7 Sensitivity to WPQ Size
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Figure 15: PPA’s normalized slowdown varying WPQ size
from 8 to 24; lower is better

To see the impact of the NVMwrite pending queue (WPQ) on the
performance of PPA, we vary theWPQ size from 8 to 24 formemory-
intensive applications of CPU2006/Mini-apps and multi-threaded
applications. As shown in Figure 15, PPA still incurs a low overhead
(8%) though the WPQ size decreases to 8. This is because many
applications exhibit high L2 write miss rates indicating already high
pressure on the WPQ for the baseline. As such, the negative effect
of extra write traffic caused by PPA’s store writeback is amortized.
Note that PPA incurs a higher overhead for some applications, e.g.,
rb, water-ns, and water-sp., as setting WPQ size to 8. The reason
is two-fold: (1) they have low L2 miss rates indicating low run-time
execution time for the baseline; (2) the store writeback leads to
high pressure on WPQ due to more generated write traffic to it.
Fortunately, the extra write traffic can be absorbed by enlarging
the WPQ size to the default (16).

7.8 Sensitivity to PRF Size
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Figure 16: PPA’s normalized slowdown varying RF sizes;
lower is better

To show how PRF size affects PPA’s performance, we vary the
PRF size from 80/80 to 280/224 (integer/floating-point PR count).
As shown in Figure 16, PPA incurs less overhead with a larger PRF.
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Note that even with the smallest PRF size of 80/80, PPA still forms
sufficiently long regions and thus incurs an average of only 12%
overhead owing to the underutilization of the PRF size. Interestingly,
the benefit of the large PRF diminishes once its size increases beyond
the default. This is because the default PRF setting already has
enough amount of free registers to form long regions covering the
persistence latency. Notably, with PRF size 80/80, PPA incurs about
30% run-time overhead for some programs, e.g.,hmmer, lbm, lu-cg,
and tpcc, since (1) PPA requires at least 65/68 integer/floating-point
registers for their normal execution, and (2) the programs have
intensive memory writes, ending up with putting high pressure on
the PRF.

7.9 Sensitivity to CSQ Size
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Figure 17: PPA’s normalized slowdown with varying CSQ
size; lower is better

To investigate the proper size of the CSQ, we vary the CSQ size
from 10 to 50. As shown in Figure 17, the CSQ size has a minimal
impact on PPA’s performance since there are an average of only 18
stores in each region (see Figure 13). In light of this, we set the CSQ
size to 40 by default such that the core pipeline encounters as less
pipeline stalls as possible caused by the CSQ overflow; it is cheap
to enlarge the size of the CSQ to 40 because of its simple structure.

7.10 Sensitivity to PMEMWrite Bandwidth
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Figure 18: Normalized slowdown of PPA with varying NVM
write bandwidth; lower is better

To show how PMEMwrite bandwidth affects PPA’s performance,
we vary theNVMwrite bandwidth from 1GB/s to 6GB/s formemory-
intensive CPU2006/Mini-apps, SPLASH3, and WHISPER bench-
marks. To be practical, PPA sets the default bandwidth to 2.3GB/s
according to the empirical Intel PMEM analysis [148]. As shown
in Figure 18, PPA still incurs an average of only 7% overhead even
for 1GB/s write bandwidth. Once the write bandwidth goes up be-
yond the default, PPA keeps its performance overhead as low as 2%
thanks to the long regions hiding the potential pipeline stalls upon
full WPQ. It is worth noting that PPA incurs a relatively higher
overhead for SPLASH and WHISPER programs with 1GB/s band-
width. This is because different threads of these multi-threaded
applications always compete for the shared WPQ and the lower
bandwidth exacerbates the competition. Note that some applica-
tions, e.g., water-ns, water-sp, and rb, are more sensitive to the

write bandwidth due to their inherent less memory writeback traffic
(i.e., they exhibit high locality).

7.11 Sensitivity to Thread Count
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Figure 19: Normalized slowdown of PPA with varying thread
count from 8 to 64 for multi-threaded apps; lower is better

To study the impact of PPA on cache coherence, we vary the
thread count and scale up the NVM WPQ/shared L2 size propor-
tionally. Figure 19 shows that the resulting performance impact is
quite small; PPA still maintains high performance, i.e., an average
of 2%–6% overheads for 8–64 threads. PPA incurs slightly higher
overheads for water-ns, water-sp, and Memcached (r20w80) with
more threads due to the increasing stall cycles taken for thread
synchronization.

7.12 Hardware Cost Analysis
PPA introduces a 64-bit LCPC register, a 348-bit vector register
MaskReg due to the PRF size (348), and a 40-entry CSQ. Each CSQ
entry records a pair of 9 (⌈𝑙𝑜𝑔3482 ⌉)-bit index to a physical register
and a 48-bit physical address. To facilitate JIT checkpointing, we
round the size of PPA’s proposed structures to the nearest multiple
of 8 bytes such that their entry size is 8 bytes. We then use these
numbers to calculate their hardware overheads (see Table 4).

Table 4: PPA’s hardware overheads

Area (`𝑚2) Access Latency (ns) Dynamic Access (pJ)
64-bit LCPC 12.20 0.057 0.00034

384-bit MaskReg 74.03 0.067 0.00029
40-entry CSQ 547.84 0.07 0.00025

We use CACTI 7.0 [104] to estimate the hardware cost of PPA’s
proposed hardware structures with a 22 nm process technology
node. Table 4 showcases PPA’s low hardware costs in terms of chip
area, access latency, and power consumption. In summary, PPA’s
proposed hardware structures only occupy 0.005% chip area of an
Intel Xeon server core (11.85 𝑚𝑚2 after excluding its shared L2
cache); the core area size is calculated with McPAT [81].

7.13 Energy and Latency for JIT Checkpointing
Upon impending power loss, PPA checkpoints CSQ, LCPC, CRT,
MaskReg, and a part of PRF marked by entries of CSQ or CRT in
NVM. We assume 16 architectural integer registers and 32 architec-
tural floating-point registers. Therefore, we need to checkpoint at
most 88 physical registers (40 in CSQ and 48 in CRT).
Energy Consumption: We assume that the checkpointed hard-
ware structures are based on SRAM. To estimate the energy con-
sumption, we leverage prior work [4, 109, 117]. They measure the
energy cost per memory operation by using an external power
meter while executing carefully designed microbenchmarks. These
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microbenchmarks are used to observe the energy consumption of
only data movement between core and memory and minimize the
impact of other architectural optimizations and non-memory oper-
ations. It turns out that 11.839 nJ/byte is necessary for accessing
data in SRAM cells and moving it from core to NVM. Therefore,
we need to secure 21.7 `J to JIT checkpoint 1838 bytes of data con-
sidering the worst case that each physical register has 128-bit data.
However, the ideal PSP scheme BBB [4] and Intel’s eADR require
a supercapacitor of 775 `J and 550 mJ, which are 36.5 and 25943x
larger than ours, respectively.

Table 5: Comparison of Energy requirement for JIT flushing

PPA (WSP) Capri [57] (WSP) LightPC [78] (PSP)
Energy

Consumption 21.7`J 0.6mJ 189mJ

Volume
(SuperCap/Li-thin) 0.06𝑚𝑚3/0.0006𝑚𝑚3 1.57𝑚𝑚3/0.016𝑚𝑚3 527.8𝑚𝑚3/5.3𝑚𝑚3

Ratio to Core Size
(SuperCap/Li-thin) 0.005/ 5 × 10−5 0.14/0.0014 44.5/0.45

We leverage the prior work [4] to calculate the required size of su-
percapacitor [162] and Li-thin battery [119]. These two battery tech-
niques have an energy density of 10−4𝑊ℎ/𝑐𝑚3 and 10−2𝑊ℎ/𝑐𝑚3,
respectively. Table 5 shows that PPA needs a 0.06𝑚𝑚3 supercapac-
itor or a 0.0006𝑚𝑚3 Li-thin battery, which occupies 0.5%/0.0005%
of an Intel server core (11.85𝑚𝑚2), respectively.
Checkpointing Time: PPA’s JIT-checkpointing controller can
persist 8 bytes of data per cycle thanks to its simple structure (see
Section 4.5). According to our RTL synthesis results with TSMC 22
nm technology, the controller only requires 144 D flip-flops with
88 two-input logic gates. Therefore, the controller takes 114.9 ns to
read 1838 bytes of data. Along with the write bandwidth (2.3GB/s)
of PMEM [52] in our simulations, PPA needs only 0.91 `s to flush
the 1838 bytes data to PMEM upon power failure.
Comparison of Energy Consumption: We calculate the energy
consumption of a single core equipped with WSP Capri or PSP
LightPC [78] to highlight the low energy requirement of PPA. Upon
power failure, Capri flushes data in its battery-backed redo buffers
(54KB per core) to NVM with 11.839 nJ per byte [4], thus costing
0.6mJ per core. Likewise, LightPC flushes volatile data of only user
processes in architectural registers (4224 bytes of 16 GPRs and 32
XMM registers), L1D cache (64KB), and L2 cache (16MB) all the way
to NVM, leading to a high energy consumption of 189 mJ; LightPC
uses PCM as main memory.

8 RELATEDWORK
Many prior PSP schemes [1, 4, 6, 9, 31, 37, 45, 51, 55, 64, 78, 85, 112,
115, 116, 122, 128, 146, 149, 150, 158] have offered user program per-
sistency with crash consistency guaranteed. However, they require
substantial programming burden in that users have to understand
the underlying memory persistency model [73] and carefully write
the code with crash consistency in mind. Moreover, the schemes
often cause high run-time overhead (software approaches [140]) or
significant logic complexity (hardware approaches [159]).

To this end, Narayanan et al. [107] propose the first WSP that
flushes all volatile data, e.g., architectural registers/caches/DRAM
contents, to NAND flash storage upon an impending power outage.
Unfortunately, the just-in-time (JIT) checkpointing of all the data

requires a considerable amount of energy to be secured always,
which is in need of an expensive uninterruptible power supply
(UPS). To lower the energy consumption, Capri [57] proposes a
crash consistency mechanism based on hardware-managed redo
buffers that only require a capacitor for their JIT checkpointing.
In particular, Capri compiler partitions the input program into a
series of recoverable regions so that their stores never overflow
the buffer. During the region execution, Capri persists the data
being stored in the region by moving them from the redo buffer
to NVM through the non-temporal path [24], bypassing the cache
hierarchy completely. However, Capri still suffers expensive chip
area/energy overheads due to per-core capacitor-backed redo buffer
(each requiring 54 KB). On the other hand, ReplayCache [152],
another WSP scheme for energy harvesting systems, incurs high
run-time overhead with the frequent pipeline stalls at the end of
compiler-formed store-integrity regions.

In summary, the overheads of the prior WSP schemes are so
significant that they cannot enable a lightweight yet performant
WSP.With the store integrity implemented using the simple register
renaming trick, PPA achieves high-performance WSP for all at a
negligible hardware cost. As shown in Table 6, PPA outperforms
all prior WSP schemes in terms of all comparison criteria.

Table 6: Comparison of PPA to prior WSP approaches

WSP [107] Capri [57] ReplayCache [152] PPA

Hardware Complexity Extremely
High High No Low

Energy Requirement Extremely
High High Low Low

Recompilation No Yes Yes No
Transparency Yes Yes Yes Yes

Enable DRAM Cache Yes Yes No Yes
Enable Multi-MCs Yes No Yes Yes

9 CONCLUSION
This paper proposes PPA, the first microarchitectural approach to
WSP. As a basis for crash consistency and lightweight WSP, PPA
realizes so-called store integrity in the out-of-order core pipeline.
That is, PPA prevents store registers from being overwritten and dy-
namically partitions program to a series of regions whose boundary
is delineated when the physical register file runs out. Upon im-
pending power failure, PPA checkpoints the minimal architectural
states including the preserved store registers using a tiny capacitor.
When power comes back, PPA restores the checkpointed states,
replays (persists) the stores of the power-interrupted region, and
resumes the program following the latest committed instruction be-
fore the failure. Experimental results with 41 applications highlight
the benefits of PPA causing only a 2% average run-time overhead
and 0.005% chip areal cost. We believe that PPA lays the foundation
for WSP and pave the way to realizing it for all.
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