
Persistent Processor Architecture
Jianping Zeng
Purdue University

West Lafayette, IN, USA
zeng207@purdue.edu

Jungi Jeong*
Purdue University

West Lafayette, IN, USA
jungijeong@purdue.edu

Changhee Jung
Purdue University

West Lafayette, IN, USA
chjung@purdue.edu

ABSTRACT
This paper presents PPA (Persistent Processor Architecture), simple
microarchitectural support for lightweight yet performant whole-
system persistence. PPA offers fully transparent crash consistency
to all sorts of program covering the entire computing stack and
even legacy applications without any source code change or recom-
pilation. As a basis for crash consistency, PPA leverages so-called
store integrity that preserves store operands during program ex-
ecution, persists them on impending power failure, and replays
the stores when power comes back. In particular, PPA realizes the
store integrity via hardware by keeping the operands in a physical
register file (PRF), though the stores are committed. Such store
integrity enforcement leads to region-level persistence, i.e., when-
ever PRF runs out, PPA starts a new region after ensuring that all
stores of the prior region have already been written to persistent
memory. To minimize the pipeline stall across regions, PPA writes
back the stores of each region asynchronously, overlapping their
persistence latency with the execution of other instructions in the
region. The experimental results with 41 applications from SPEC
CPU2006/2017, SPLASH3, STAMP, WHISPER, and DOE Mini-apps
show that PPA incurs only a 2% average run-time overhead and
a 0.005% areal cost, while the state-of-the-art work suffers a 26%
overhead along with prohibitively high hardware and energy costs.

ACM Reference Format:
Jianping Zeng, Jungi Jeong*, and Changhee Jung. 2023. Persistent Processor
Architecture. In 56th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’23), October 28-November 1, 2023, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3613424.3623772

1 INTRODUCTION
Nonvolatilememory (NVM) technologies such as ReRAM [3, 13], 3D
XPoint [39], PCM [68, 121, 125, 139], and STT-MRAM [14, 47, 66, 74,
114] have emerged as alternatives to DRAM. Thanks to their byte-
addressability, high areal density, and in-memory persistence, they
are to be used as nonvolatile mainmemory (NVMM)—also known as
persistent memory (PMEM). That is, they can transparently replace
DRAM to accommodate persistent applications with large memory
footprint and obviate the need for serializing data in a block device
to survive power failure.

*Now at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623772

However, it is not easy to make this obvious use case (i.e., trans-
parent NVMM) in reality. For example, while Intel Optane persistent
memory (PMEM) [22, 62, 69, 144, 151] provides the transparent use
of PMEM calledmemory modewhere DRAM is used as the last-level
cache atop PMEM, the Optane manual states that the PMEM works
as volatile memory [50]. The Optane persistent memory is not persis-
tent at all; this is mainly due to the difficulty of maintaining crash
consistency in the memory mode1. As a result, under the memory
mode, users have no choice but to risk the loss of all PMEM data in
case of power failure.

Although PMEM offers app-direct mode where DRAM is used as
main memory and PMEM serves as persistent heap [50], it pawns
off the hard work of persistent programming on users, trading the
transparency for in-memory persistence. In this partial-system per-
sistence (PSP) model [11, 20, 21, 25, 35, 75, 128, 146], users must
delineate a part of code that requires persistence, rewrite the data
structures used therein with crash consistency and memory persis-
tency [32] in mind, and often devise application-specific recovery
code tailored to the data structures [40, 49, 70, 79, 106, 127]. Be-
sides, PSP requires dedicated PMEM allocation interfaces such as
pmalloc [23], rendering already error-prone persistent program-
ming more complex [29, 91–93, 96, 99, 110]. While using transac-
tions [10, 20, 72, 84, 140] or failure-atomic sections [11, 46, 51, 85]
mitigates the programming complexity, the resulting persistent pro-
gram is slower than the original one due to the undo/redo logging
involving persistence barrier (clwb and sfence for x86).

Given the limitations of PSP and the demand for transparent use
of PMEM without sacrificing the in-memory persistence and crash
consistency, there is an increasing interest in whole-system persis-
tence (WSP) [57, 107] which covers all sorts of applications—rather
than being limited to a small set of PSP application domains such as
in-memory index structures/databases and key-value stores. That
is, WSP is agnostic to program semantics yet capable of recovering
any kind of program from power failure no matter when it occurs!

One naive approach toWSP is flushing all volatile states (register
files, SRAM caches, and DRAM cache) to PMEM when power is
about to be cut off. For example, Narayanan et al. [107] propose
to use residual energy in uninterruptable power supply (UPS) and
persist all volatile data before impending power failure, which re-
quires a considerable amount of energy to be secured for flushing.
In a similar vein, Intel’s extended asynchronous DRAM refreshing
(eADR) flushes the entire cache contents to PMEM upon power
failure using a backup battery. However, eADR also leads to signifi-
cant energy cost requiring a bulky supercapacitor of 3400𝑚𝑚3 [4];
this situation gets even worse for a deeper cache hierarchy that is

1Since PMEM here is transparently used as main memory without any code change, it
is solely the architecture’s responsibility to flush data through the deep cache hierarchy
(L1∼DRAM caches) and keep PMEM states consistent across power failure for correct
recovery.

https://doi.org/10.1145/3613424.3623772
https://doi.org/10.1145/3613424.3623772

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

driven by ever-increasing working sets of data-intensive applica-
tions [12, 71]. Apart from the inability to persist other volatile states
such as registers, eADR cannot guarantee crash consistency for
PMEM’s memory mode—as it is unaffordable to reserve a sufficient
amount of energy for flushing the data of large DRAM cache to
PMEM; typical servers in data centers are equipped with more than
1TB DRAM. Given all this, it has been practically impossible to
achieve WSP on the cheap.

To this end, this paper presents Persistent Processor architecture
(PPA), the first of its kind to realize transparent, lightweight, and
performant WSP without recompilation for all program embracing
legacy software whose source code is unavailable. We found that
crash inconsistency is caused by unpersisted stores left behind
power failure and can be corrected by replaying (persisting) them
in the wake of the power failure. Suppose the program commits
3 stores (𝑠𝑡𝑟𝐴; 𝑠𝑡𝑟𝐵; 𝑠𝑡𝑟𝐶) in a row, and due to cache replacement,
the youngest 𝑠𝑡𝑟𝐶 is persisted in PMEM before the older ones.
Although this violates the program semantics if a power outage
occurs while others are cached, it is possible to fix the inconsistency
by replaying 𝑠𝑡𝑟𝐴 and 𝑠𝑡𝑟𝐵—unpersisted before the outage—when
power comes back. We can even relax this for simple hardware
implementation, i.e., rather than tracking the (un)persistence of
each individual store, PPA instead replays all 3 committed stores
and resumes the interrupted program following the last committed
instruction in the wake of the outage.

To achieve that, it is essential to preserve the registers of stores
(for replay) and other committed instructions (for resumption of the
interrupted program) across power failure. The implication is two-
fold: (1) PPA should prevent store registers from being overwritten;
this is so-called store-integrity [152]. (2) Both store registers and
other committed instruction registers must be able to survive power
outage, i.e., PPA should save the registers on the outage—using a
tiny capacitor whose energy is six orders of magnitude smaller
than what eADR requires—for the replay and the resumption in the
wake of the outage.

In particular, PPA realizes the store integrity in the core microar-
chitecture at a low cost. The key insight is that the values of store
registers are retained in the corresponding physical registers2 until
they are deallocated. For example, once the architectural register 𝑟0
of a store is renamed to a physical register 𝑝0, PPA can retrieve 𝑟0
by reading the value from 𝑝0 unless it is remapped and overwritten
by another instruction. To preserve the physical registers to which
architectural registers of stores are renamed, PPA proposes to delay
the deallocation of the physical registers—though the reorder buffer
(ROB) already commits the store instructions3. Recall that out-of-
order cores have a lot more physical registers than architectural
ones to minimize the stalls caused by the lack of physical registers
[33]; a physical register file (PRF) tends to be underutilized most of
the time since only a part of instructions in ROB (30% in our exper-
iments), e.g., loads and ALU operations, define new registers. Prior
work also observes this phenomenon, which leads to the advent
of simultaneous multi-threading (SMT) [102, 103, 136–138, 156],

2In an out-of-order processor, architectural registers are renamed to physical registers
via register renaming (see Section 2.1 for details).
3More precisely in the context of a unified PRF (Section 2.1), PPA does not deallocate the
physical registers of stores even after ROB commits them redefining their architectural
registers.

PRF bank switching [118], and physical register inlining [83]. The
takeaway is that due to PRF underutilization, PPA can delay the
deallocation of store registers with minimal run-time overhead.

Such register-renaming-based store integrity is a building block
of PPA enabling region-level persistence, where store integrity is
ensured within each region (epoch) [59] for crash consistency as
well as lightweight yet performant WSP. PPA dynamically delin-
eates the regions, performing region-level persistence and physical
register reclamation across their boundaries; whenever PRF runs
out, PPA starts a new region (epoch) with a persist barrier, which
ensures the committed stores of the prior region have already been
written to PMEM and reclaims those physical registers mapped by
the stores. To persist the stores of each region efficiently, PPA uses
asynchronous writeback overlapping them with the execution of
other instructions in the region as prior work [9, 54, 56, 60, 111, 130].
It turns out that the region size is long enough to fully hide the
store persistence latency, thanks to the large PRF of modern out-
of-order cores. If any region is interrupted by a power outage, PPA
checkpoints minimal architectural states, e.g., a part of PRF and
hardware structures related to register renaming [42]. In the wake
of the outage, PPA restores those checkpointed states, replays the
committed stores of the interrupted region, and resumes the pro-
gram from the last commit point before the outage—rather than
rolling back to the beginning of the interrupted region—for correct
and efficient recovery.

To evaluate PPA, we test it with 41 applications from SPEC
CPU2006/2017 [8, 43], SPLASH3 [123], STAMP [101], WHISPER
[105], and DOE Mini-apps [63, 135]. The experimental results show
that PPA incurs only an average of 2% run-time overhead compared
to the baseline (running original applications on PMEM’s mem-
ory mode lacking in-memory persistence and crash consistency
support). In summary, PPA makes the following contributions:

• PPA is the first lightweight yet performant whole-system
persistence that introduces minor modifications on the hard-
ware, e.g., 2 registers and 1 queue, and only needs a tiny
capacitor of 21.7 `J, unlike eADR that requires a supercapac-
itor of 550mJ.

• PPA outperforms the complex state-of-the-art compiler and
architecture codesign approach [57] in terms of all aspects,
such as run-time performance, energy requirement, and hard-
ware cost.

• PPA treats the underlying cache hierarchy as a black box,
thus being suitable for current/future caches with an arbi-
trary depth of the hierarchy, e.g., CXL (Compute Express
Link) based far persistent memory [34, 53, 61, 97, 98].

• PPA only incurs an average of 2% run-time overhead and
0.005% areal cost, which we believe paves the way to practi-
cal whole-system persistence for all, driving the revival of
persistent memory production with its cost-effectiveness.

2 BACKGROUND AND MOTIVATION
2.1 Register Renaming
Register renaming [26, 42, 44, 108], serving as a basis for PPA’s
store-integrity region formation, provides a way to eliminate false

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

register dependence and thus enables more instruction-level par-
allelism (ILP). To efficiently rename architectural registers, out-of-
order processors are equipped with a unified PRF as in Alpha 21264
[65], MIPS 10K [38], ARM Cortex A-series out-of-order cores [142],
RISC-V SonicBOOM [157], and modern Intel processors from Pen-
tium 4 onwards [131]. For renaming an instruction, the processor
picks a register from a Free List (tracking free physical registers)
and maintains such a mapping from architectural register to phys-
ical one in a register alias table (RAT), i.e., any data access to the
architectural register is referred to the corresponding physical reg-
ister by consulting the RAT. Once ROB retires the instruction, the
processor puts the mapping to a commit rename table (CRT) for
facilitating exception handling and debugging.

In particular, the physical register can only be reclaimed to the
Free List when a later instruction redefining the associated architec-
tural register gets retired from ROB—because the physical register
value is no longer used thereafter.

2.2 PSP vs WSP
PSP has been a de facto standard for server-class systems backed
with Intel Optane persistent memory (PMEM) to ensure the crash
consistency of their user applications. However, this paper argues
that PSP is inferior to WSP for 3 reasons: high performance over-
head, programming/maintenance burden, and the risk of losing all
system-level states upon power failure.

First, the app-direct mode of PMEM cannot take advantage of the
deep cache hierarchy despite the ever-increasing data footprint of
PSP applications. Our experiment (Section 7.2) indicates that due to
the inability to leverage DRAM as a cache, even an ideal PSP design
is significantly (up to 2.4x and 1.39x on average) slower than the
memory mode of PMEM for memory-intensive applications. Second,
PSP is not transparent and requires programmers either to redesign
their data structures with persistence and recoverability in mind—
incurring severe bugs during development [29, 91–93, 96, 99, 110]
andmaintenance costs in the future [5, 124, 130, 154]—or to leverage
transactions for mitigating the programming burden4. Third, PSP
can only recover the states of user applications and hence puts
operating systems at the risk of losing their entire states upon
power failure, whileWSP like PPA can ensure that the entire system
states are consistent across power failure; see Section 5 for details.

Not only does WSP eliminate PSP programming and mainte-
nance costs, but it also makes persistent applications faster with
the DRAM cache. Of course, for those using PMEM’s memory mode
to leverage the deep cache hierarchy, WSP offers them persistence
and crash consistency without hurting the transparency and per-
formance. This is particularly beneficial for HPC applications (e.g.,
Mini-apps) whose states must be saved to storage on a regular basis.
We believe that lightweight persistence/recoverability, e.g., PPA,
can enable performant application-level resilience—related to one
of the nation’s exascale challenges [58, 113, 160]—by obviating the
need for expensive periodic global checkpointing to storage.

4Either way, the resulting performance overhead is so significant that PSP cannot be
used for those who expect similar performance to that of running their applications in
PMEM’s memory mode.

2.3 Region-Level Persistence for WSP
Prior techniques [18, 152, 161] recently investigate region-level per-
sistence to provide crash consistency in energy harvesting systems
(EHSs) [15, 19, 86, 95] where WSP is the norm. These techniques
partition the program into a series of regions (akin to recoverable
epochs) where their boundaries serve as recovery points. Either
compiler [18, 152, 161] or hardware (this work) is responsible for
the region formation and the persistence of each region. In par-
ticular, each region should ensure that all its stores are persisted
before the next region starts so that the program can be recovered
by restarting the power-interrupted region upon power back.

However, such a region-level persistence scheme incurs a non-
negligible performance overhead, since the program must wait
at each region boundary for the preceding region to persist its
stores, i.e., pausing until they are all written back to nonvolatile
memory (NVM). While the prior work leverages ILP to overlap the
persistence latency with the execution of other instructions, they
still cause significant performance degradation—especially in the
presence of a more deep cache hierarchy—because their regions
are too short to fully hide the long latency with ILP.

2.4 Store Integrity for Performant WSP
The key observation PPA builds upon is that we can safely recover
the system states by replaying stores that are potentially unpersisted
before power outage. Although this principle has been investigated
and adapted by many prior approaches as a concept of atomic
stores with logging them all [9, 18, 56, 84, 140], the prior schemes
suffer from the problem of doubling NVM stores—known as write
amplification.

CPU2006 CPU2017 SPLASH3 STAMP All gmean
2 2
4 4
6 6
8 8

E
xe

cu
ti

on
S

lo
w

do
w

n

Figure 1: ReplayCache’s slowdown to the baseline (running
original applications on PMEM’s memory mode)

To achieve high-performance WSP, we make another observa-
tion that crash inconsistency is essentially caused by the mismatch
between the program order of committed stores and the order in
which their cache blocks are written back to NVM. To be specific,
a younger store might be evicted (persisted) to NVM while the
older ones are cached; if power failure happens before their per-
sistence, NVM status becomes inconsistent across the failure on
which the data of the older stores are lost since they have not been
persisted. This finding inspires us to recover the inconsistent NVM
status by rewriting only those potentially unpersisted stores to
NVM in the wake of the power failure—unlike traditional undo
loggings that checkpoint all stores. The upshot is that no matter
which random order of persisted stores is across power failure, it
is always possible to correctly recover by replaying all committed
stores left behind the failure and resuming from the last commit
point. Zeng et al. show that store replaying needs compilers to
prevent the store registers from being clobbered by following re-
definitions, which requires a special register allocator; they call
this store integrity in their energy harvesting work, ReplayCache
[152], and use compiler-based region-level persistence to divide the

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

NVM
M[100] = 0
Inconsistent

Checkpoint p0/p1,
CRT, MaskReg, and
Last Committed PC
to NVM

NVM
M[100] = 1

Re-execute store
str p0, [100]

resume

Recovered

Restore p0/p1, CRT, MaskReg,
and set PC to the Last
Committed PC

PhysRegs

Asyn
ch

ronous

persi
ste

nce
,

ac
hiev

ing I
LP

rename

PhysRegs
rename

CRT

r0 p0RAT

str r0, [100] /*r0 =1*/

r0 p0

r0 p1

Power on

Persist barrier

Power failure

commit

r0 = r0 + 1;

Mask
Reg

r0 p0

r0 p0

r0 = r0 * 2
p0 p0

Last Committed
PC

rename commit

Program
start

W
rit

e 1
 à

M
[10

0]
p1Free

List p1

r0 p1

r0 p1

p0

p0 p1

r0 p1

r0 p1

p0

Time

No reclamation
of masked p0

Old NVM status New NVM status

Figure 2: PPA overview; for store integrity, 𝑝0 is not recycled even after the multiplication commits

program to a series of regions where store integrity is enforced to
guarantee crash consistency.

Unfortunately, ReplayCache incurs too much performance over-
head (5x average slowdown as shown in Figure 1) when used to
achieve WSP for server-class cores; see Table 2. The reason is 2-
fold: (1) ReplayCache’s regions are so short (average 12 instructions
in regions) that they cannot accomplish enough ILP to hide the
region-level persistence latency through multi-level caches. That
is mainly due to the inherent issues of ReplayCache’s compiler
analyses, e.g., function calls/loops, scarce architectural registers,
and energy-aware region splitting for avoiding stagnation [17, 18]
in EHSs. Hence, the short region leads to frequent pipeline stalls at
each region boundary serving as a persist barrier; (2) ReplayCache
inserts clwb after each store to write it back to NVM, which dou-
bles the instruction count and places high pressure5 on store queue
whose overflow stalls the pipeline as well. Unlike ReplayCache,
PPA achieves performant WSP for server-class cores causing only
a 2% overhead (Section 7.1).

3 PPA OVERVIEW
PPA aims to achieve a lightweight WSP that works for a deep cache
hierarchy, where DRAM cache is used as in PMEM’s memory mode,
without sacrificing the transparency (i.e., keeping the entire soft-
ware stack as is and obviating the need for recompilation) and the
performance. PPA adopts store integrity for crash consistency, but
its novel hardware design for the integrity enforcement makes it
possible to realize a performant WSP at a low cost. In particular,
PPA leverages ample physical registers in out-of-order cores to pre-
serve store registers; it dynamically delineates the region (epoch)
boundary whenever physical registers run out. In this way, suffi-
ciently long store-integrity regions serve as the basis for failure
recovery, thus effectively hiding the store persistence latency.

Figure 2 depicts how PPA realizes WSP based on register renam-
ing of a modern out-of-order core6. In the figure, commit rename

5The clwb instruction occupies a store queue entry.
6We assume a server-class Intel Skylake core [30] though PPA can be generalized to
other out-of-order cores.

table (CRT), register alias table (RAT), and Free List are existing
microarchitectural components. CRT keeps the mapping from an
architecture register to a physical register for committed instruc-
tions, while RAT records that for in-flight instructions. The free
list maintains free registers for later renaming use. PPA proposes
MaskReg, a bit vector, to record which physical register is used
by prior committed stores and therefore should not be remapped
(overwritten) by the following redefinitions.

In Figure 2, upon renaming a destination architectural register
𝑟0 (i.e., △ 𝑟0 = 𝑟0 + 1), the processor removes a physical register 𝑝0
from the free list and puts the mapping from 𝑟0 to a physical register
𝑝0 into RAT as usual. Thus, for renaming the following store (⃝),
i.e., 𝑠𝑡𝑟 𝑟0, [100], the reference to 𝑟0 is replaced by 𝑝0. Once the
addition instruction commits (▲), making the defined value of 𝑟0
architecturally visible, the processor puts the mapping 𝑟0 → 𝑝0 in
CRT as usual. In particular, on the commit of the store (⃝), PPA
starts to track 𝑝0 in MaskReg, watching it for store integrity. When
the following redefinition of 𝑟0 is renamed (♢), the multiplication
instruction obtains 𝑝1—not 𝑝0 since it is already masked—from the
free list with RAT updated accordingly. Additional pipeline details
are deferred to Section 3.3.

3.1 Dynamic Region Formation
Similar to prior techniques [18, 152], PPA also provides region-
level persistence. However, what makes PPA stand out from them
is its ability to build regions dynamically without user interven-
tion, recompilation, and significant performance loss. PPA instead
leverages an existing microarchitectural feature to deliver the re-
gion formation with the store integrity enforced at a low cost. In
particular, PPA considers the number of free physical registers to
decide when to place a region boundary (persist barrier). As shown
in Figure 2, PPA places the boundary (barrier) when no free physi-
cal register is available at the renaming stage of the out-of-order
pipeline (). Once PPA ensures at each region boundary that the
committed stores of the finished region are all persisted, it reclaims
their physical registers with MaskReg cleared—before starting the
next region, as shown at the left bottom of the figure.

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

I-Cache Fetch Decode Register Renaming Dispatch &
Issue

ALU

Load/Store
Unit

Load Queue
(LQ)

Store Queue
(SQ) D-Cache

FP Unit

Vector
Unit

Register Alias
Table (RAT)

Physical
Register File

Reorder
Buffer (ROB)

MaskReg

Committed
Store Queue

(CSQ)

Core

Last Level Cache
(LLC)

DRAM

L1

iMC

PMEM

Core

L1

DRAM

iMC

PMEM

PC

Last Committed PC

Commit
Rename

Table (CRT)

Signal

Figure 3: PPA with Intel’s memory mode; rounded rectangles corresponds to new components, while thick lines to new signal or
data paths; shaded parts are JIT-checkpointed upon an outage (PPA checkpoints only those registers masked by MaskReg/CRT)

3.2 HW-Based Asynchronous Store Persistence
Although prior software-logging-based PSP techniques guarantee
consistent NVM status across power failure, they incur significant
performance overhead because of a persist barrier (e.g., clwb and
sfence in x86). In contrast, PPA does not block the pipeline execu-
tion while stores are being persisted to NVM. That is, once the data
being stored is merged into the L1 data cache (⃝ in Figure 2), the L1
data cache controller immediately asynchronously writes back the
resulting dirty cacheline to NVM in the background, keeping the
pipeline busy with other instruction executions in the meantime.

To ensure all stores prior to the end of a region are already
persisted in NVM before committing following instructions, PPA
treats every region boundary (the last instruction of each region) as
a special persist barrier. Therefore, the core pipeline waits until
the acknowledgment of persisting the region’s all prior stores in
NVM is received by the core before entering the next region. While
stalling the pipeline can lead to a slowdown due to the wasted
cycle time, our experimental results show that our hardware-based
store persistence has a minimal impact on the pipeline performance
due to long enough regions (see Section 7.5) and thus resulting in
negligible stall cycles at the end of regions (see Section 7.3).

3.3 Dynamic Enforcement of Stores Integrity
Figure 2 shows how PPA ensures store integrity on the fly during
the pipeline execution. Upon retiring 𝑠𝑡𝑟 𝑟0, [100] (⃝ in the figure)
whose 𝑟0 was renamed to 𝑝0, PPA masks 𝑝0 in MaskReg to notify
it is occupied by the store, which makes the target register of the
following multiplication instruction renamed to 𝑝1 (♢) instead of
𝑝0. Unlike conventional cores, upon retiring the multiplication (♦
𝑟0 = 𝑟0 ∗ 2) with updating CRT with 𝑟0 → 𝑝1, PPA does not
reclaim the physical register 𝑝0 which is associated with 𝑟0’s prior
definition 𝑟0 = 𝑟0 + 1—though its value can no longer be used
due to the retirement of the multiplication overwriting 𝑟0. That is
because 𝑝0 is masked as a committed store register in MaskReg,
and it should be preserved in case of power failure so that the store
can be replayed in the wake of the failure. In this way, PPA not
only guarantees store integrity in each region but also achieves
performant WSP with a much longer region size than the compiler-
based prior work [152], thus hiding the store persistence latency.

3.4 Checkpoint and Recovery Protocol
To achieve correct program execution across power outage, all the
store registers preserved by our register renaming trick must sur-
vive power failure. For this reason, PPA should maintain necessary
microarchitecture status such as CRT across the outage. Also, in the
wake of power failure, PPA should be able to resume the program
right after the last commit point behind the outage.

In light of this, PPA exploits just-in-time (JIT) checkpointing to
save minimal architectural states—e.g., physical register 𝑝0, CRT,
and the last committed PC as shown in Figure 2 (①)—to a designated
checkpoint storage in NVM, when power is about to be cut off.
Owing to its simplicity, PPA only requires a tiny capacitor to secure
energy for JIT checkpointing, while Narayanan’s [107] and eADR’s
demand a significantly large bulky Li-thin battery or supercapacitor
[4] (Section 7.13). When the power comes back, PPA first replays all
committed stores behind the failure, e.g., 𝑠𝑡𝑟 𝑝0, [100] in Figure 2
(②), and restores other checkpointed states such as CRT (③). Then,
PPA resumes the interrupted region from the latest uncommitted
instruction following the last committed PC to continue program
execution. More details are deferred to Section 4.5 and Section 4.6.

4 PPA IMPLEMENTATION DETAILS
Figure 3 shows PPA’s microarchitecture with its 3 newly added com-
ponents; Last Committed Program Counter (LCPC), Store Operands
Mask Register (MaskReg), and Committed Store Queue (CSQ). The
LCPC register keeps the PC of the last committed instruction so that
a power-interrupted program can resume thereafter in the wake of
power failure. Note that PPA does not save or recover architectural
status related to speculation, such as in-flight instructions in ROB.
The MaskReg comprises as many bits as the PRF size. Each set bit
of MaskReg indicates that the corresponding physical register has
been used as an operand of any committed store in the current
region and thus prevents those physical registers from being up-
dated by the following instructions of the region. Finally, the CSQ
is a circular FIFO queue for tracking committed stores per region.
When a store retires from ROB, a pair of (1) the index of the source
physical register and (2) the destination physical address of the
store is inserted into the rear position of CSQ.
Actions of PPA across an Outage: Upon a power outage, PPA
has 5 components (shaded in Figure 3) JIT-checkpointed in NVM:

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

CSQ, LCPC, CRT, MaskReg7, and the physical registers tracked by
CSQ/CRT. When power comes back, PPA (1) restores the check-
pointed registers, MaskReg, CRT, LCPC, and CSQ from NVM, (2)
scans CSQ entries from front to rear re-executing the stores com-
mitted before the outage8, (3) populates RAT with the restored CRT,
and (4) resumes the power-interrupted program right after LCPC.

Note that once a region is persisted at the boundary, i.e., the
pipeline receives an acknowledgment that all the committed stores
of the region have been persisted to NVM, PPA clears both the CSQ
and the MaskReg—reclaiming the store registers masked therein—
before starting the next region. Thanks to the long region size
(Section 4.1) and the asynchronous writebacks (Section 4.3), PPA
effectively hides the store persistence latency at each region end.

4.1 Enforcing Store Integrity Efficiently

• Architectural registers: r1, r2, r3
• Physical registers: p1, p2, p3, p4
• Original mapping: r1->p1, r2->p2, r3->p3
• Free list is {p4} initially

Raw Instructions RATFree ListRenamed
Instructions

WAR Dependence

Persist Barrier

I1: add r1, r2, r3
I2: str r1,[r2,r3]

I3: sub r2, r3, r1

I1: add p4, p2, p3
I2: str p4,[p2,p3]

I3: sub p1, p3, r4

{p4} r1 r2 r3
p1 p2 p3
p4 p2 p3
p4 p2 p3
p4 p1 p3

r1 r2 r3
p4 p2 p3
p4 p2 p3
p4 p1 p3
p4 p1 p3

{ }
{p1}

Action

rename I1
rename I2&
commit I1

{ }rename I3
commit I3

CRT

{p2}

Figure 4: Impact of register renaming on the region length
At first glance, forming store-integrity-preserving regions seems

easy, i.e., placing a region boundary right before the redefinition of
store registers to preserve their values within a region. For example,
placing a region boundary (persist barrier) after store 𝐼2 in Figure 4
ensures store integrity and post-crash consistency but yields short
regions because of a write-after-read (WAR) dependence on store
register 𝑟2. A sophisticated compiler approachmight form relatively
longer regions by renaming the redefinitions of previous store
registers—unless architectural registers run out—as in ReplayCache
[152]. However, the prior approach [152] to store integrity still
generates short regions due to a limited number of architectural
registers, e.g., 16 general-purpose registers in x86. The crux of the
problem is that ReplayCache pays for persist barrier overheads so
often at each end of such short regions.

0 40 80 120 160
(a)

0.00
0.25
0.50
0.75
1.00

Pr
ob

ab
ilit

y

CPU2006 CPU2017 Mini-app SPLASH3 WHISPER STAMP

0 20 40 60 80 100 120
(b)

0.00
0.25
0.50
0.75
1.00

Figure 5: (a): CDF of free integer registers; (b) CDF of free
floating-point registers

Fortunately, the out-of-order cores already have the ability to
eliminate WAR dependence with register renaming [42], e.g., re-
naming 𝑟2 to 𝑝1 for the subtraction 𝐼3 in Figure 4. That way the
7MaskReg should be JIT-checkpointed as well to prevent store registers therein from
being recycled even after power comes back.
8Even if some stores might have already been persisted, there is no harm to execute
them again as each store is idempotent [27, 48, 67, 87, 88, 90, 155].

pipeline can execute 𝐼3 without redefining a register 𝑟2, thus ob-
viating the need for the persist barrier after the store 𝐼2—unlike
the prior approach [152] that needs the barrier to persist the store
before 𝐼3—forming longer regions than it can.

Note that the number of physical registers is much larger than
that of architectural registers and that they are often idle. Figure
5 shows that CDFs of free integer and floating-point registers—
sampled every cycle9—respectively. For example, 75% of the pro-
gram execution cycles, the baseline core has 138/110 integer/floating-
point registers not utilized for CPU2006. As such, PPA’s region size
can be sufficiently long to hide the persistence latency of stores in
each region without incurring slowdown a lot.

4.2 Forming Longer Regions at a Low Cost

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

Raw Instructions RAT Free
List
{}

MaskReg

I1: add p4, p2, p3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

Renamed Instructions

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

r1 r2 r3
p4 p2 p3

{p1}I1: add p4, p2, p3
I2: str p4,[p2,p3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

Rename I1, mapping r1 to p4, free list becomes empty

Rename I2, commit I1, and free p1 associated with previous
definition of r1 to free list

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4: mul r1, r2, r3

{}I1: add p4, p2, p3
I2: str p4,[p2,p3]
I3: sub p1, p3, p4
I4: mul r1, r2, r3

Rename r2 of I3 to p1 and commit store I2, marking p2, p3,
and p4 in MaskReg, populating a CSQ entry for committed store I2

I1: add r1, r2, r3
I2: str r1,[r2,r3]
I3: sub r2, r3, r1
I4’:persist barrier
I4: mul r1, r2, r3

I1: add p4, p2, p3
I2: str p4,[p2,p3]
I3: sub p1, p3, r4
I4’:persist barrier
I4: mul r1, r2, r3

Commit I3 but not to reclaim masked p2. Fail to rename r1
of I4 due to no free register; insert a persist barrier

CRT

r1 r2 r3
p4 p2 p3

r1 r2 r3
p1 p2 p3

r1 r2 r3
p4 p2 p3

p2
p3
p4

r1 r2 r3
p4 p2 p3

r1 r2 r3
p4 p1 p3

{}p2
p3
p4

r1 r2 r3
p4 p1 p3

r1 r2 r3
p4 p1 p3

Commit I3

Commit I1

Figure 6: Dynamic region partitioning by physical register
file size; the free list shows its status after the action

With the above observation in mind, PPA proposes a minimal
change to the instruction pipeline so that it enforces store integrity
during the execution of each region. That is, PPA dynamically par-
titions program to a series of regions by placing a region boundary,
i.e., a persist barrier, upon a pipeline stall at the renaming stage; if a
register-defining instruction cannot be renamed due to the lack of a
free physical register in free list, PPA injects a persist barrier right
before the instruction (see Figure 6 for details). Once the pipeline
retires the persist barrier at the boundary of a region, i.e., all its
stores are already sure to have persisted, PPA acknowledges the re-
naming stage to reclaim the physical registers masked by MaskReg,
clears it, and resumes the pipeline to start the next region.

Figure 6 shows a step-by-step example of how to perform dy-
namic region formation while preserving registers of stores. We
assume a 4-bit MaskReg for total 4 physical registers 𝑝1 − 𝑝4. Ini-
tially, MaskReg is empty, and 𝑝1 − 𝑝3 are occupied by previous
definitions of register 𝑟1−𝑟3, and a free list contains only 𝑝4. When
renaming 𝑟1 of the addition instruction 𝐼1 at step ①, PPA maps
9We measure the number of free physical registers every cycle at the renaming stage
of an OoO core (Table 2).

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

𝑟1 to the only free physical register 𝑝4 and updates the RAT and
the free list accordingly. Then, at step ②, when renaming a store
instruction 𝐼2, the references to architectural registers are replaced
by physical registers as usual. At the same time, the pipeline retires
𝐼1 instruction, deallocating 𝑝1 associated with 𝑟1’s previous defini-
tion (not shown in the figure) and updating the CRT with 𝑟1 → 𝑝4.
At step ③, the pipeline renames 𝑟2 of 𝐼3 to 𝑝1, with RAT and the
free list correspondingly updated, and commits the store 𝐼2 setting
the bits of 𝑝2 − 𝑝4 in MaskReg to 110 and populates a CSQ entry in
its back position for the committed store 𝐼2.

In particular, at step ④ where the pipeline commits 𝐼3 and re-
names 𝐼4, PPA takes different actions from the traditional out-of-
order pipeline that allows 𝑝2 to be remapped. PPA does not deallo-
cate physical register 𝑝2 associated with 𝑟2’s previous definition
(not shown in the figure), though 𝐼3 commits redefining 𝑟2. This
is because 𝑝2 is masked in𝑀𝑎𝑠𝑘𝑅𝑒𝑔 as a store operand. However,
at this moment, there is no physical register in the free list, which
makes PPA fail to rename the register 𝑟1 of 𝐼4. Thus, PPA injects a
persist barrier here as a region boundary right before instruction
𝐼4. Once the barrier gets retired, PPA reclaims all masked physical
registers 𝑝2 − 𝑝4 to the free list, clears MaskReg, and starts a new
region allowing them to be reused therein.
Full CSQ as an Implicit Region Boundary: If CSQ becomes full,
PPA cannot accommodate stores anymore, thus being unable to
replay them for power failure recovery. Thus, PPA treats this event
as a virtual region boundary where it waits for all prior stores to be
persisted. Once the core receives the acknowledgment of persisting
all prior stores, PPA starts a new region with CSQ and MaskReg
cleared. Our experiment (Section 7.9) shows that a 40-entry CSQ
rarely overflows, thus incurring a minimal performance impact.

4.3 Region-Level Asynchronous Persistence
In addition to preserving store registers for their integrity in each
region, PPA also ensures that its stores are persisted to NVM be-
fore moving on to the next region. Instead of leveraging cacheline
writeback instruction (clwb in x86) that has a lot of drawbacks, as
shown in Table 1, e.g., occupying a store queue entry for each store,
requiring inter-core snooping, and not being able to flush data from
core to NVM main memory through a DRAM cache above, PPA
leverages the asynchronous store writeback which effectively takes
it off the critical path [9, 54, 56, 60, 111, 130]. That is, when the data
being stored is merged into L1 data cache after cache coherence
transactions are completed, an asynchronous store persistence op-
eration is generated in the write buffer (WB)11 of L1 data cache and
then issued by its controller. The implication is 2-fold: (1) the store
persistence happens in the background while the core continues
the execution of following instructions, achieving ILP; (2) once a
store persistence operation is issued, all other cores already have
up-to-date memory data.

Unlike clwb, i.e., a cacheline writeback instruction that occu-
pies a store buffer entry, PPA instead uses a counter register in
the L1 data cache controller to record the number of stores being
persisted, rather than tracking each individual store with clwb; the
10While MaskReg could record all operand registers of each store, we opt to keep only
a data register as an optimization. See Section 4.6 for more details.
11WB already exists in Intel processors sitting between L1D and L2 cache for buffering
dirty cacheline eviction.

Table 1: Comparison between PPA and CLWB

Store Queue Occupied Single Store Tracking Snooping Reaching NVM
CLWB in x86 ✓ ✓ ✓ ✗

PPA ✗ ✗ ✗ ✓

counter increases for each store performed and decreases every
time the controller receives the acknowledgment of the writeback
completion. In particular, to lower write traffic towards NVM, PPA
performs persist coalescing [130] on the WB for the data being per-
sisted. That is, a younger store being persisted is merged with the
old unpersisted one of the same address sitting in the WB. This is
correct because persist barriers ensure that the WB’s data—to be
persisted—are from the same region, and the stores of the following
regions are not performed yet.

When the counter hits zero, the controller tells the core that
all prior stores in a region are persisted to NVM, allowing both
CSQ and MaskReg to be cleared. In this way, PPA determines if
the pipeline needs to stall at the region boundary by simply com-
paring the counter with zero. Although such a stall might slow
down the pipeline by waiting for the counter to be zero at each
region boundary, it turns out that the performance impact is not
significant. The reason is that the region-level persistence latency
is fully overlapped with the execution of other instructions in the
long regions dynamically formed by PPA (Section 7.3). Moreover,
PPA’s asynchronous store writeback does not generate coherence
traffic—since each core is responsible for its own writeback—thus
reducing the persistence latency further.

r1 r2 r3
p3 p2 p4

RATMaskReg
p1 p2 p3 p4
0 1 0 1

I1: add p2, ...
...

I2: str p4, [p2,4]
I3: sub p3, p4, 1
I4’:persist barrier
I4: mul r1, r1, 8

Renamed Instructions
r1 r2 r3
X p2 p4

CRT

p1 p2 p3 p4
4 10

PRF

PC

LCPC

I3 I4’
ROB

I2:(p4,#8)
CSQ

N
VM

Power_Fail

JIT Checkpointing Controller

R/W
 Port

Control
Path Data

PathControl FSM

Source Index
Generator

NVM Address
Generator

Control Signals

Source_Index NVM_Addr

Clock

Reset

Core_Rd NVM_Wr

Ckpt_All

Idle

Read Write

Power_Fail

Ckpt_All
== 1

Read_Finish

Offset

Base

ADD

DFF Source_Index
NVM_Addr

Control FSM Source Index/NVM Address Generator

Ckpt_All == 0

Stop_Pipeline

Figure 7: JIT Checkpointing logic; gray parts are check-
pointed before impending power failure

4.4 Lightweight Hardware for Recovery
To achieve highly energy-efficient checkpointing and recovery, PPA
needs to checkpoint only essential architectural statuses, e.g., a part
of physical registers used by committed stores or linked with com-
mitted instructions in the interrupted region, committed stores of
the region, CRT, and program counter (PC) of the latest committed
instruction, upon power failure. With checkpointing such minimal
states, we can still restore consistent memory status by re-executing

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

those stores and then resume the program execution following the
latest committed instruction.

To facilitate this, PPA proposes a simple yet hardware-efficient
FIFO queue called committed store queue (CSQ) and Last Commit-
ted PC (LCPC). Each CSQ entry keeps the source physical register
index and the destination (physical) address of committed stores
in program order, and LCPC gets updated with the PC value after
committing an instruction. Note that CSQ and LCPC do not affect
the existing pipeline’s timing logic at all because they are out of the
critical path. More importantly, CSQ is organized with a read/write
port eliminating an expensive CAM structure, making a large CSQ
realistic; we only need 40 CSQ entries at most as shown in Section
7.9 though. During normal program execution, the port is used to
populate a CSQ entry in its rear position and to checkpoint the
entire CSQ to NVM upon power failure. Finally, PPA clears CSQ
at each region boundary as with MaskReg emptied, i.e., when all
committed stores in the finished region become persistent in NVM,
before moving on to the next region.

4.5 Just-In-Time (JIT) Checkpointing on Power
Failure

To ensure correct program recovery across power failure, PPA
should checkpoint necessary states when power is about to be cut
off. Figure 7 shows how such just-in-time checkpointing works with
its circuitry implementation; upon the delivery of Power_Fail sig-
nal, PPA saves the contents of its 5 structures to NVM, i.e.,MaskReg,
commit rename table (CRT), committed store queue (CSQ), a part
of PRF, and last committed PC (LCPC). Note that PPA only check-
points those physical registers marked by CRT or CSQ entries in
that neither free registers (𝑝1 in the figure) nor uncommitted regis-
ters (𝑝3 defined by 𝐼3) affect correct program recovery. Similarly,
PPA does not have to checkpoint any other status of in-flight in-
structions, e.g., their RAT and ROB entries. This is because PPA can
resume the execution of power-interrupted program from the latest
uncommitted instruction following LCPC, when power comes back.

As with prior work on JIT checkpointing [36, 94, 95, 120, 126,
133, 143] developed for energy-harvesting systems [6, 16, 19, 152]
to realize power failure recovery, PPA implements a controller that
governs checkpointing and recovery12 operations, according to
each signal delivered on power failure and its wake-up. As shown
in the middle of Figure 7, the controller consists of 3 components:
(1) Control Finite State Automaton (FSM), (2) Source Index Generator
(SIG), and (3) NVM Address Generator (NAG). FSM is responsible
for generating control signals to checkpoint PPA’s 5 structures, i.e.,
MaskReg, CRT, CSQ, PRF, and LCPC, into their storage in NVM.
During the checkpointing process, FSM triggers SIG and NAG that
share the same logic—shown in the bottom right of the figure—for
the sum of the inputs Base and Offset to determine (1) what to be
checkpointed and (2) where to save in the NVM, respectively.

It is worth noting that PPA activates its checkpointing controller
only on power failure, and therefore it is out of the critical path most
of the time as long as power is on, i.e., PPA does not have to optimize
the controller’s circuitry for latency. This allows PPA to keep the
controller’s hardware design simple by sequentially checkpointing

12Recovery operations are not shown in Figure 7 as they are the opposite of check-
pointing operations.

PPA’s 5 structures13 one entry at a time. To illustrate, as shown
at the bottom left of Figure 7, FSM is triggered upon Power_Fail
to transit from Idle stage to Stop_Pipeline stage, where PPA stops
the core pipeline to preserve the contents of the 5 structures. Then,
FSM moves to Read stage, raising the read signal Core_Rd on the
control path so that the entry indexed by SIG can be read in each of
5 structures across which Base and Offset are properly updated.
Upon the delivery of Read_Finish signal, FSM enters Write stage
enabling the write signal NVM_Wr to write the data to the NVM
address generated by NAG. Once the writing is done, FSM either
goes back to Read stage or exits to Idle provided if Ckpt_All is
activated, i.e., all 5 structures are completely checkpointed.

To realize the above sequential checkpointing while maintaining
a low hardware complexity, PPA exploits the existing non-temporal
path [24] in x86 processors to deliver data to NVM—other than
introducing a new data path. This indicates that PPA checkpoints
its 5 structures at an 8-byte granularity as with their entry size
(Section 7.12). Likewise, FSM reads PRF and CRT at an 8-byte gran-
ularity, which seems possible given that they are implemented with
SRAM [38, 132, 157]. The takeaway is that the aforementioned JIT-
checkpointing logic is lightweight, i.e., a few hundred logic gates,
keeping the overall hardware cost of PPA minimal (Section 7.12).

4.6 Power Failure Recovery Protocol
To achieve correct program recovery, in the wake of power failure,
PPA restores MaskReg, CRT, and checkpointed physical registers
by reloading their data from NVM as an opposite operation of the
JIT checkpointing. PPA then re-executes those potentially unper-
sisted stores by reading the CSQ entries checkpointed in NVM.
To be specific, for each CSQ entry, PPA gets both the data value
by retrieving the restored PRF with an index of the checkpointed
physical register and the destination address. That way, PPA writes
the data value to the target address. Finally, PPA resets the PC to the
instruction following the LCPC to continue the program execution.

5 INTERACTIONWITH OS
This section describes how PPA interplays with the rest of the
computing stack, such as the operating systems (OS), to enable
system-level crash consistency.

Handling I/O Operations: To the best of our knowledge, sup-
porting irrevocable operations such as I/O remains an open problem.
PPA can be extended to have a battery-backed buffer for crash-
consistent I/O operations. In this way, PPA considers any store to
the buffer as persisted.

Context Switching: PPA treats context switching as is without
any special consideration. In particular, PPA does not differentiate
between kernel code and user program thanks to the benefits of
WSP. While keeping context switching as is, PPA still guarantees
correct process (de)scheduling and resumption. That is because PPA
ensures that the architectural states, e.g., stores and architectural
registers, of a descheduled process are crash-consistent by follow-
ing PPA ’s JIT checkpoint and recovery protocol. That being said,
PPA might have an indirect impact on performance, provided that

13The order in which the structures are visited does not affect the correctness of
checkpointing and recovery.

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

a region boundary is introduced during context switching. In real-
ity, such a case rarely occurs because PPA forms reasonably long
regions (see Section 7.5), keeping the frequency of encountering re-
gion boundaries low. Even if the case occurs, i.e., PRF runs out in the
middle of the context switching, and the resulting region boundary
incurs the region-level persistence overhead, PPA can still mini-
mize the stall cycles at the boundary leveraging the asynchronous
store persistence, e.g., only a few stall cycles occur on average (see
Section 7.3). It turns out that they are negligible compared to typical
context switching overhead (e.g., 5-20 `𝑠) [134, 141, 145]. Conse-
quently, the context-switching performance would practically be
the same with PPA.

Interrupt Handling and System Calls: There is no special
treatment of PPA for Interrupt handling14 and system calls—that
rely on trap instructions (syscall in x86_64)—for the same rea-
son above. That is, PPA guarantees that any architectural state is
consistent across power failure. As such, PPA can resume interrupt
handlers and system calls exactly from the power failure point
without rollback. For an interrupt handler that encounters power
failure in the middle of the execution, PPA can recover all commit-
ted but unpersisted stores and architectural registers and resume
the handler from the last commit point in the wake of the failure.

6 DISCUSSION
Recovery for Multi-Cores: To guarantee correct recovery for
multi-threaded applications on multi-core processors, we assume
data-race-free (DRF) applications as required from the C/C++11
onward. DRF implies that conflicting accesses should be explic-
itly ordered by a synchronization primitive, e.g., serializing them
in a lock-protected critical section or leveraging an RMW (read-
modify-write) instruction. PPA treats all synchronization primitives,
including atomics and fences, as a region boundary so that their
actions comply with PPA’s original recovery protocol in case of
power failure; for each synchronization primitive running on a
core, it cannot be committed until all stores of its region are sure to
have been persisted to NVM with the CSQ of the core emptied. For
example, the stored data before a lock release can exist in the CSQ
of at most one core. The implication is two-fold: (1) there cannot be
multiple pending stores to the same address in the CSQs of different
cores due to the absence of data races; (2) thus, we may replay stores
in the cores’ CSQs in an arbitrary order, which still achieves correct
recovery—because each core’s CSQ entries are disjoint with any
other core’s CSQ entries. That is, PPA can restore consistent NVM
states of DRF applications—though it lets each core perform the
recovery protocol (Section 4.6) individually—without maintaining
the recovery order among the cores.
Memory Consistency Model: Although PPA is evaluated with
X86 ISA (total store ordering), it works well for other consistency
models, e.g., relaxed memory ordering (RMO) in ARM and RISC-V,
because PPA leaves load/store unit (LSQ) as is by proposing a tiny
CSQ. One might think of gating those retired stores in store buffer
(SB) without merging them to L1 cache as an alternative. However,
it complicates the hardware design and limits the performance
optimizations of RMO for 3 reasons: (1) region-level persistence

14We use the term interrupt to describe software exception and hardware interrupt.

prohibits inter-region store coalescing and out-of-order store write-
back from SB to L1 data cache; (2) it is hard to enlarge the SB size
for hiding long memory latency. That is because SB’s CAM search-
ing structure is expensive, and it must provide data within L1-hit
time, which would otherwise complicate the scheduling loads with
variable latency; (3) data being stored exists in both SB and PRF,
wasting the energy to checkpoint the same data twice.
In-Order Cores and ROB-Style Register Renaming:Our design
can be easily extended to provide WSP for both cores by accom-
modating data values (rather than indexes to PRF as in the current
PPA) and destination addresses of committed stores in the CSQ as
usual. Across power failure, the CSQ entries can be checkpointed
and thus restored to recover inconsistent NVM status via replaying.
Multiple Memory Controller (MC) Support: PPA naturally sup-
ports multiple memory controllers without any hassle. This is be-
cause PPA only moves on to the next region once all stores of the
prior region are persisted in NVM with the help of region-level per-
sistence (Section 4.3); this makes it impossible to persist a younger
store (in program order) destined to a near MC before the older one
to a far MC, if the two stores are separated in different regions. Even
if the stores exist in the same region and its power failure exposes
the possible ordering violation, PPA replays them all together with
other stores of the power-interrupted region in the wake of the
failure. Consequently, either way PPA prevents crash inconsistency
from occurring in the presence of multiple MCs.

7 EVALUATION AND ANALYSIS
All programs are compiled with -O3 flag and are statically linked.
We use the Clang/LLVM 13.0.1 compiler [76, 77] to build the base-
line binaries with default compilation flags. We implement the
same ReplayCache region formation in the same compiler to build
store-integrity binaries with disabling ReplayCache’s energy-aware
region splitting to enlarge the region size as much as possible.

Table 2: Microarchitectural Parameters

Component Configuration
Full System Mode Ubuntu 18.04 and Linux Kernel 5.4.46

Processor
8-core 4-width x86_64 OoO processor at 2GHz.

Unified PRF, ROB/IQ/SQ/LQ/Integer PRF/Floating-Point PRF:
224/97/56/72/180/168

L1I private 32KB, 8-way, 64B block, 3 cycles
L1D private 64KB, 8-way, 64B block, 4 cycles, write back

L2 shared 16MB, 16-way, 64B block, inclusive,
44 cycles, write back

DRAM Cache (LLC) shared direct-mapped, 4GB, DDR4 2400 8x8

PMEM 32GB, Read = 175ns/Write = 90ns,
16-entry WPQ [147, 148], 2.3GB/s write bandwidth [148]

CSQ 40-entry FIFO queue

We use the cycle-accurate simulator gem5 [7] to model an 8-core
(one thread per hardware core) x86_64 Skylake-X processor with
two integrated memory controllers, each of which manages a DRAM
as an off-chip direct-mapped cache as with PMEM’s memory mode.
Table 2 shows the details of the microarchitectural parameters.

To measure the impact of PPA on varying programs, we choose 6
benchmark suites, e.g.,CPU2006/2017 [8, 41, 43, 82], SPLASH3 [123],
STAMP [101], WHISPER [105], and Mini-apps [63, 135], which
represent different application domains from CPU performance
benchmarks, shared-memory multi-core systems, transactional ap-
plications, key-value stores, to memory-intensive programs.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

Table 3: Data inputs for DOE Mini-apps and WHISPER apps

Application Short Description Simulation
Data Input

Memory
Footprint

LULESH [63] High instruction and
memory-level parallelism. -s 100 664MB

XSBench [135] Stress memory system
with little computations. -s small 241MB

PC [73] Update in hash-table. 8 100000 196MB
RB [73] Insert/delete nodes in a red-black tree. 8 100000 166MB
SPS [73] Swap random entries of an array. 8 200000 264MB
TATP [73] update_location transaction. 8 100000 287MB
TPCC [73] add_new_order transaction. 8 100000 110MB

r20w80 [100] Memcached with 20% reads and 80% writes -m 1000 -t 8 189MB
r50w50 [100] Memcached with 50% reads and 50% writes -m 1000 -t 8 189MB

We simulate the entire SPLASH3/STAMP/WHISPER program
in the full system (FS) mode of gem5 with 8 cores by default. To
stress the memory system and demonstrate the benefits of enabling
DRAM as a cache, we use reference inputs to simulate SPEC CPU
applications and the data inputs specified in Table 3 for Mini-apps
and WHISPER. Additionally, we modify the source code of WHIS-
PER applications to increase the key/value sizes, keeping their data
footprint large enough; see Table 3. Similarly, we follow the prior
work [105] using Memcached 1.6.18 [100] as a server and memaslap
from libMemcached 1.0.18 [2] as a client to initiate 8 threads send-
ing 10000 requests to the server. For each memaslap request, we test
two ratios of read-to-write operations: 20/80 and 50/50 for write-
intensive and read-intensive. In particular, we set the key and value
sizes of Memcached to 64 bytes and 1KB, respectively. We follow
the same way as prior work [27, 28, 80, 89, 122, 129, 153] to fast
forward the first 5 billion instructions and then simulate the next 1
billion instructions with a detailed CPU model.

7.1 Run-time Overhead Analysis

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean
dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean
cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean
p

c
rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean
bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean
lulesh
xsb

ench
gm

ean
all

gm
ean

1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

2.1

PPA Capri

Figure 8: Normalized slowdown of PPA and Capri to the base-
line (original binaries running on PMEM’s memory mode);
lower is better; 40 CSQ entries

As a comparison, Figure 8 presents run-time overheads of PPA
and the state-of-the-art WSP—Capri [57] which incurs high hard-
ware costs due to the separate FIFO persist path between the core
and NVM and the complex undo+redo logging structures; see Table
6 for the comparison. To be practical, we set the persist path band-
width of Capri to 4GB/s instead of its original unrealistic 32GB/s15.
PPA incurs an average of 2% overhead, while Capri incurs a 26%
overhead due to its 11x shorter regions than that of PPA; see Section
7.5. Note that PPA only incurs a slightly high overhead for rb of
WHISPER due to the relatively higher write traffic towards NVM,
as confirmed in Figure 15 and Figure 18.

We also compare PPA and PMEM’s memory mode to the DRAM-
only system with a 32GB DRAM. Figure 9 depicts that PPA and the
15We get Capri’s source code and figure out its default persist path bandwidth is
32GB/s.

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean
dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean
cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean
p

c
rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean
bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean
lulesh
xsb

ench
gm

ean
all

gm
ean

1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

PPA Memory Mode

Figure 9: Normalized slowdown to a DRAM-only systemwith
32GB volatile memory; lower is better
memory mode are 16% and 14% slower than the system only with
a 32GB DDR4 DRAM, respectively. The results are encouraging
in that PPA’s cost of making the DRAM-only system persistent is
comparable to the run-time overhead of PMEM’s memory mode
that does not offer persistence. In particular, lbm and pc incur e.g.,
44% and 58% overheads, respectively. That is because they have
poor locality and thus the DRAM cache only increases the critical
path of their memory accesses with a lot of misses.

7.2 Comparison to Partial-System Persistence

astar

lbm

lib
quan

m
ilc

gm
ean

p
c

rb sps

tatp

tp
cc

r20w
80

r50w
50

gm
ean

lulesh

xsb
ench

gm
ean

all
gm

ean

1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 WHISPER Mini-apps

2.4 1.8
PPA eADR/BBB

Figure 10: Normalized slowdown of PPA and eADR/BBB
(ideal PSP) to the baseline (running original program on
PMEM’s memory mode); lower is better

To demonstrate the benefits of enabling DRAM as a cache for
the applications with high L2 miss rates (ranging from 18% to
100%), we compare PPA to an optimized version of BBB [4] whose
performance is close to that of eADR, representing the upper-bound
performance of a PSP scheme. Figure 10 shows that PPA incurs
only an average of 3% run-time overhead for these programs, while
BBB/eADR slows down the programs by 1.39x on average and up
to 2.4x for libquantum. Notably, PPA underperforms BBB/eADR
slightly for rb. The reason is two-fold: (1) PPA leads to higher
contention in WPQ (Section 7.7) due to the store persistence; (2)
rb exhibits high locality (4% L2 miss rate) and thus has less write
traffic towards NVM for the baseline.

7.3 Analysis of Stall Cycles at Region End

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean

dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

0.0 0.0

1.0 1.0

2.0 2.0

3% 3%

#
S

ta
ll

C
yc

le
s

at
R

eg
io

n
E

nd

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

6.1%

8.1%

Figure 11: Stall cycles at the end of regions as a percentage
of their execution time; lower is better

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Figure 11 shows the average ratio of the stall cycles occurred at
the end of each region to the execution cycles of that region. Thanks
to the sufficiently long region size (i.e., high ILP for hiding store
persistence latency), PPA only increases the stall cycle ratio of the
baseline (PMEM’s memory mode) by 0.21% on average, showcasing
why PPA incurs a low run-time overhead, i.e., 2% on average. Figure
11 also shows why PPA incurs a relatively higher overhead for
water-ns and water-sp; the reason is that, as shown in the figure,
these two applications have more stall cycles, i.e., 6.1% and 8.1%,
respectively due to their shorter regions and more stores therein
(see Figure 13).

7.4 Impact on PRF Pressure

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean

dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

0.0 0.0

0.5 0.5

1.0 1.0

1.5% 1.5%

S
ta

ll
C

yc
le

s
In

cr
ea

se

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

Figure 12: Increase in stall cycles at the renaming stage when
the core is out of physical registers; lower is better

For both the baseline (PMEM’s memory mode) and PPA, we
measure the number of stall cycles due to the lack of physical
registers in the renaming stage of the simulated core. Figure 12
highlights that PPA incurs negligible extra stall cycles (0.07%) on
average compared to the baseline. The reason is two-fold: (1) The
core pipeline stall caused by running out of free registers rarely
occurs due to the sufficient amount of free registers (see Figure 5).
(2) Although the stall happens, PPA tends to spend minimal cycles
at the end of regions (see Figure 11) and thus quickly deallocates
their reserved registers for later use.

7.5 Dynamic Region Characteristics

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean

dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

0 0

500 500

1000 1000

1500 1500

2000 2000

#
In

st
ru

ct
io

ns
P

er
R

eg
io

n

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

Others Stores

Figure 13: Average number of stores and others in regions

To demonstrate why PPA incurs such a low run-time overhead,
we measure the number of stores and others in each region. As
shown in Figure 13, each region has 301 other and 18 store instruc-
tions on average thanks to the abundant free registers, while Capri’s
average region size is only 29. As a result, PPA has enough room to
keep the pipeline busy while asynchronously persisting the data be-
ing stored to NVM without waiting at each region boundary. Note
that some applications, e.g., bzip2 and libquantum, have smaller
region sizes due to their heavy register usage.

7.6 Sensitivity to Deeper Cache Hierarchy
To evaluate the sensitivity to deeper cache hierarchy, i.e., 3-level
SRAM caches atop DRAM cache, we add a shared 16MB 16-way

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean

dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

1.000 1.000

1.025 1.025

1.050 1.050

1.075 1.075

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

1.1

PPA-L3

Figure 14: Normalized slowdown of PPA to the baseline when
using L3 cache atop DRAM cache; lower is better
set-associative L3 cache of 44-cycle hit latency to both PPA and
the baseline (PMEM’s memory mode). We also alter the existing
L2 cache in Figure 2 to a private L2 with 14-cycle hit latency and
1MB. Figure 14 shows that PPA incurs a negligible overhead (1%)
even when the L3 cache is used atop DRAM cache thanks to PPA’s
sufficiently long region size (see Section 7.5) that can cover the
extended store persistence latency through the hierarchy.

7.7 Sensitivity to WPQ Size
astar
lbm
lib

quan
m

ilc
gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

1.0 1.0

1.1 1.1

1.2 1.2

E
xe

cu
ti

on
S

lo
w

do
w

n
CPU2006 SPLASH3 WHISPER Mini-apps

1.4

WPQ-8

WPQ-16 (default)

WPQ-24

Figure 15: PPA’s normalized slowdown varying WPQ size
from 8 to 24; lower is better

To see the impact of the NVMwrite pending queue (WPQ) on the
performance of PPA, we vary theWPQ size from 8 to 24 formemory-
intensive applications of CPU2006/Mini-apps and multi-threaded
applications. As shown in Figure 15, PPA still incurs a low overhead
(8%) though the WPQ size decreases to 8. This is because many
applications exhibit high L2 write miss rates indicating already high
pressure on the WPQ for the baseline. As such, the negative effect
of extra write traffic caused by PPA’s store writeback is amortized.
Note that PPA incurs a higher overhead for some applications, e.g.,
rb, water-ns, and water-sp., as setting WPQ size to 8. The reason
is two-fold: (1) they have low L2 miss rates indicating low run-time
execution time for the baseline; (2) the store writeback leads to
high pressure on WPQ due to more generated write traffic to it.
Fortunately, the extra write traffic can be absorbed by enlarging
the WPQ size to the default (16).

7.8 Sensitivity to PRF Size

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps all gmean1.00 1.00

1.05 1.05

1.10 1.10

1.15 1.15

1.20 1.20

E
xe

cu
ti

on
S

lo
w

do
w

n

RF-80/80

RF-100/100

RF-120/120

RF-140/140

RF-180/168 (PPA)

IceLake-280/224

Figure 16: PPA’s normalized slowdown varying RF sizes;
lower is better

To show how PRF size affects PPA’s performance, we vary the
PRF size from 80/80 to 280/224 (integer/floating-point PR count).
As shown in Figure 16, PPA incurs less overhead with a larger PRF.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

Note that even with the smallest PRF size of 80/80, PPA still forms
sufficiently long regions and thus incurs an average of only 12%
overhead owing to the underutilization of the PRF size. Interestingly,
the benefit of the large PRF diminishes once its size increases beyond
the default. This is because the default PRF setting already has
enough amount of free registers to form long regions covering the
persistence latency. Notably, with PRF size 80/80, PPA incurs about
30% run-time overhead for some programs, e.g.,hmmer, lbm, lu-cg,
and tpcc, since (1) PPA requires at least 65/68 integer/floating-point
registers for their normal execution, and (2) the programs have
intensive memory writes, ending up with putting high pressure on
the PRF.

7.9 Sensitivity to CSQ Size

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps all gmean1.00 1.00
1.02 1.02
1.04 1.04
1.06 1.06
1.08 1.08

E
xe

cu
ti

on
S

lo
w

do
w

n

CSQ-10 CSQ-20 CSQ-30 CSQ-40 (default) CSQ-50

Figure 17: PPA’s normalized slowdown with varying CSQ
size; lower is better

To investigate the proper size of the CSQ, we vary the CSQ size
from 10 to 50. As shown in Figure 17, the CSQ size has a minimal
impact on PPA’s performance since there are an average of only 18
stores in each region (see Figure 13). In light of this, we set the CSQ
size to 40 by default such that the core pipeline encounters as less
pipeline stalls as possible caused by the CSQ overflow; it is cheap
to enlarge the size of the CSQ to 40 because of its simple structure.

7.10 Sensitivity to PMEMWrite Bandwidth

astar
lbm
lib

quan
m

ilc
gm

ean

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

lulesh
xsb

ench
gm

ean
all

gm
ean

1.0 1.0

1.1 1.1

1.2 1.2

1.3 1.3

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 SPLASH3 WHISPER Mini-apps

1GB/s 2.3GB/s (default) 4GB/s 6GB/s

Figure 18: Normalized slowdown of PPA with varying NVM
write bandwidth; lower is better

To show how PMEMwrite bandwidth affects PPA’s performance,
we vary theNVMwrite bandwidth from 1GB/s to 6GB/s formemory-
intensive CPU2006/Mini-apps, SPLASH3, and WHISPER bench-
marks. To be practical, PPA sets the default bandwidth to 2.3GB/s
according to the empirical Intel PMEM analysis [148]. As shown
in Figure 18, PPA still incurs an average of only 7% overhead even
for 1GB/s write bandwidth. Once the write bandwidth goes up be-
yond the default, PPA keeps its performance overhead as low as 2%
thanks to the long regions hiding the potential pipeline stalls upon
full WPQ. It is worth noting that PPA incurs a relatively higher
overhead for SPLASH and WHISPER programs with 1GB/s band-
width. This is because different threads of these multi-threaded
applications always compete for the shared WPQ and the lower
bandwidth exacerbates the competition. Note that some applica-
tions, e.g., water-ns, water-sp, and rb, are more sensitive to the

write bandwidth due to their inherent less memory writeback traffic
(i.e., they exhibit high locality).

7.11 Sensitivity to Thread Count

cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean

p
c

rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean

bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean
all

gm
ean

1.0 1.0
1.1 1.1
1.2 1.2

E
xe

cu
ti

on
S

lo
w

do
w

n

SPLASH3 WHISPER STAMP

8 16 32 64

Figure 19: Normalized slowdown of PPA with varying thread
count from 8 to 64 for multi-threaded apps; lower is better

To study the impact of PPA on cache coherence, we vary the
thread count and scale up the NVM WPQ/shared L2 size propor-
tionally. Figure 19 shows that the resulting performance impact is
quite small; PPA still maintains high performance, i.e., an average
of 2%–6% overheads for 8–64 threads. PPA incurs slightly higher
overheads for water-ns, water-sp, and Memcached (r20w80) with
more threads due to the increasing stall cycles taken for thread
synchronization.

7.12 Hardware Cost Analysis
PPA introduces a 64-bit LCPC register, a 348-bit vector register
MaskReg due to the PRF size (348), and a 40-entry CSQ. Each CSQ
entry records a pair of 9 (⌈𝑙𝑜𝑔3482 ⌉)-bit index to a physical register
and a 48-bit physical address. To facilitate JIT checkpointing, we
round the size of PPA’s proposed structures to the nearest multiple
of 8 bytes such that their entry size is 8 bytes. We then use these
numbers to calculate their hardware overheads (see Table 4).

Table 4: PPA’s hardware overheads

Area (`𝑚2) Access Latency (ns) Dynamic Access (pJ)
64-bit LCPC 12.20 0.057 0.00034

384-bit MaskReg 74.03 0.067 0.00029
40-entry CSQ 547.84 0.07 0.00025

We use CACTI 7.0 [104] to estimate the hardware cost of PPA’s
proposed hardware structures with a 22 nm process technology
node. Table 4 showcases PPA’s low hardware costs in terms of chip
area, access latency, and power consumption. In summary, PPA’s
proposed hardware structures only occupy 0.005% chip area of an
Intel Xeon server core (11.85 𝑚𝑚2 after excluding its shared L2
cache); the core area size is calculated with McPAT [81].

7.13 Energy and Latency for JIT Checkpointing
Upon impending power loss, PPA checkpoints CSQ, LCPC, CRT,
MaskReg, and a part of PRF marked by entries of CSQ or CRT in
NVM. We assume 16 architectural integer registers and 32 architec-
tural floating-point registers. Therefore, we need to checkpoint at
most 88 physical registers (40 in CSQ and 48 in CRT).
Energy Consumption: We assume that the checkpointed hard-
ware structures are based on SRAM. To estimate the energy con-
sumption, we leverage prior work [4, 109, 117]. They measure the
energy cost per memory operation by using an external power
meter while executing carefully designed microbenchmarks. These

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

microbenchmarks are used to observe the energy consumption of
only data movement between core and memory and minimize the
impact of other architectural optimizations and non-memory oper-
ations. It turns out that 11.839 nJ/byte is necessary for accessing
data in SRAM cells and moving it from core to NVM. Therefore,
we need to secure 21.7 `J to JIT checkpoint 1838 bytes of data con-
sidering the worst case that each physical register has 128-bit data.
However, the ideal PSP scheme BBB [4] and Intel’s eADR require
a supercapacitor of 775 `J and 550 mJ, which are 36.5 and 25943x
larger than ours, respectively.

Table 5: Comparison of Energy requirement for JIT flushing

PPA (WSP) Capri [57] (WSP) LightPC [78] (PSP)
Energy

Consumption 21.7`J 0.6mJ 189mJ

Volume
(SuperCap/Li-thin) 0.06𝑚𝑚3/0.0006𝑚𝑚3 1.57𝑚𝑚3/0.016𝑚𝑚3 527.8𝑚𝑚3/5.3𝑚𝑚3

Ratio to Core Size
(SuperCap/Li-thin) 0.005/ 5 × 10−5 0.14/0.0014 44.5/0.45

We leverage the prior work [4] to calculate the required size of su-
percapacitor [162] and Li-thin battery [119]. These two battery tech-
niques have an energy density of 10−4𝑊ℎ/𝑐𝑚3 and 10−2𝑊ℎ/𝑐𝑚3,
respectively. Table 5 shows that PPA needs a 0.06𝑚𝑚3 supercapac-
itor or a 0.0006𝑚𝑚3 Li-thin battery, which occupies 0.5%/0.0005%
of an Intel server core (11.85𝑚𝑚2), respectively.
Checkpointing Time: PPA’s JIT-checkpointing controller can
persist 8 bytes of data per cycle thanks to its simple structure (see
Section 4.5). According to our RTL synthesis results with TSMC 22
nm technology, the controller only requires 144 D flip-flops with
88 two-input logic gates. Therefore, the controller takes 114.9 ns to
read 1838 bytes of data. Along with the write bandwidth (2.3GB/s)
of PMEM [52] in our simulations, PPA needs only 0.91 `s to flush
the 1838 bytes data to PMEM upon power failure.
Comparison of Energy Consumption: We calculate the energy
consumption of a single core equipped with WSP Capri or PSP
LightPC [78] to highlight the low energy requirement of PPA. Upon
power failure, Capri flushes data in its battery-backed redo buffers
(54KB per core) to NVM with 11.839 nJ per byte [4], thus costing
0.6mJ per core. Likewise, LightPC flushes volatile data of only user
processes in architectural registers (4224 bytes of 16 GPRs and 32
XMM registers), L1D cache (64KB), and L2 cache (16MB) all the way
to NVM, leading to a high energy consumption of 189 mJ; LightPC
uses PCM as main memory.

8 RELATEDWORK
Many prior PSP schemes [1, 4, 6, 9, 31, 37, 45, 51, 55, 64, 78, 85, 112,
115, 116, 122, 128, 146, 149, 150, 158] have offered user program per-
sistency with crash consistency guaranteed. However, they require
substantial programming burden in that users have to understand
the underlying memory persistency model [73] and carefully write
the code with crash consistency in mind. Moreover, the schemes
often cause high run-time overhead (software approaches [140]) or
significant logic complexity (hardware approaches [159]).

To this end, Narayanan et al. [107] propose the first WSP that
flushes all volatile data, e.g., architectural registers/caches/DRAM
contents, to NAND flash storage upon an impending power outage.
Unfortunately, the just-in-time (JIT) checkpointing of all the data

requires a considerable amount of energy to be secured always,
which is in need of an expensive uninterruptible power supply
(UPS). To lower the energy consumption, Capri [57] proposes a
crash consistency mechanism based on hardware-managed redo
buffers that only require a capacitor for their JIT checkpointing.
In particular, Capri compiler partitions the input program into a
series of recoverable regions so that their stores never overflow
the buffer. During the region execution, Capri persists the data
being stored in the region by moving them from the redo buffer
to NVM through the non-temporal path [24], bypassing the cache
hierarchy completely. However, Capri still suffers expensive chip
area/energy overheads due to per-core capacitor-backed redo buffer
(each requiring 54 KB). On the other hand, ReplayCache [152],
another WSP scheme for energy harvesting systems, incurs high
run-time overhead with the frequent pipeline stalls at the end of
compiler-formed store-integrity regions.

In summary, the overheads of the prior WSP schemes are so
significant that they cannot enable a lightweight yet performant
WSP.With the store integrity implemented using the simple register
renaming trick, PPA achieves high-performance WSP for all at a
negligible hardware cost. As shown in Table 6, PPA outperforms
all prior WSP schemes in terms of all comparison criteria.

Table 6: Comparison of PPA to prior WSP approaches

WSP [107] Capri [57] ReplayCache [152] PPA

Hardware Complexity Extremely
High High No Low

Energy Requirement Extremely
High High Low Low

Recompilation No Yes Yes No
Transparency Yes Yes Yes Yes

Enable DRAM Cache Yes Yes No Yes
Enable Multi-MCs Yes No Yes Yes

9 CONCLUSION
This paper proposes PPA, the first microarchitectural approach to
WSP. As a basis for crash consistency and lightweight WSP, PPA
realizes so-called store integrity in the out-of-order core pipeline.
That is, PPA prevents store registers from being overwritten and dy-
namically partitions program to a series of regions whose boundary
is delineated when the physical register file runs out. Upon im-
pending power failure, PPA checkpoints the minimal architectural
states including the preserved store registers using a tiny capacitor.
When power comes back, PPA restores the checkpointed states,
replays (persists) the stores of the power-interrupted region, and
resumes the program following the latest committed instruction be-
fore the failure. Experimental results with 41 applications highlight
the benefits of PPA causing only a 2% average run-time overhead
and 0.005% chip areal cost. We believe that PPA lays the foundation
for WSP and pave the way to realizing it for all.

ACKNOWLEDGMENTS
We thank anonymous reviewers and our shepherd for their valuable
comments as well as Purdue CompArch research group members
for early discussions on the project. We also appreciate Xianfei
Jia helping with the RTL implementation of PPA’s JIT checkpoint-
ing controller. This work was supported by NSF grants 2001124
(CAREER), 2153749, and 2314681.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

REFERENCES
[1] Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim. 2022. ASAP:

architecture support for asynchronous persistence. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 306–319.

[2] Brian Aker. 2011. libMemcached - a open source C/C++ library for the mem-
cached server. https://libmemcached.org/libMemcached.html.

[3] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory
(ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010), 2237–2251.

[4] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and
Yan Solihin. 2021. BBB: Simplifying Persistent Programming using Battery-
Backed Buffers. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 111–124.

[5] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
Bztree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[6] Abhishek Bhattacharyya, Abhijith Somashekhar, and Joshua San Miguel. 2022.
NvMR: non-volatile memory renaming for intermittent computing. In Proceed-
ings of the 49th Annual International Symposium on Computer Architecture. 1–13.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[8] James Bucek, Klaus-Dieter Lange, et al. 2018. Spec cpu2017: Next-generation
compute benchmark. In Companion of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering. ACM, 41–42.

[9] Miao Cai, Chance C Coats, and Jian Huang. 2020. Hoop: Efficient hardware-
assisted out-of-place update for non-volatile memory. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 584–
596.

[10] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng Wu, Ste-
fanie Chiras, and Siddhartha Chatterjee. 2008. Software transactional memory:
Why is it only a research toy? Commun. ACM 51, 11 (2008), 40–46.

[11] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging locks for non-volatile memory consistency. ACM SIGPLAN Notices
49, 10 (2014), 433–452.

[12] CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data. Information
sciences 275 (2014), 314–347.

[13] Yangyin Chen. 2020. ReRAM: History, status, and future. IEEE Transactions on
Electron Devices 67, 4 (2020), 1420–1433.

[14] Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H Kang, and Yuan
Xie. 2016. Architecture design with STT-RAM: Opportunities and challenges.
In 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 109–114.

[15] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. CapOS: Capacitor Error
Resilience for Energy Harvesting Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 11 (2022), 4539–4550.

[16] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achiev-
ing stagnation-free intermittent computation with boundary-free adaptive ex-
ecution. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 331–344.

[17] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
directed high-performance intermittent computation with power failure immu-
nity. In 2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 40–54.

[18] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler di-
rected speculative intermittent computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412.

[19] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee
Jung. 2023. Write-Light Cache for Energy Harvesting Systems. In Proceedings
of the 50th Annual International Symposium on Computer Architecture. 1–13.

[20] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories. ACM SIGARCH
Computer Architecture News 39, 1 (2011), 105–118.

[21] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles. 133–146.

[22] Intel Corporation. [n.d.]. Memory Optimized for Data-Centric Work-
loads. https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

[23] Intel Corporation. [n.d.]. Persistent memory programming. https://pmem.io.
[24] Intel Corporation. 2023. Intel® 64 and IA-32 Architectures Software Developer’s

Manual. (2023).
[25] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient

algorithms for persistent transactional memory. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures. 271–282.

[26] José-Lorenzo Cruz, Antonio González, Mateo Valero, and Nigel P Topham. 2000.
Multiple-banked register file architectures. In Proceedings of the 27th annual
international symposium on Computer architecture. 316–325.

[27] Marc De Kruijf and Karthikeyan Sankaralingam. 2011. Idempotent proces-
sor architecture. In 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 140–151.

[28] Marc De Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent code gen-
eration: Implementation, analysis, and evaluation. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 1–12.

[29] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, flexible, and compre-
hensive bug detection for persistent memory programs. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 503–516.

[30] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha
Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. 2017.
Inside 6th-generation intel core: New microarchitecture code-named skylake.
IEEE Micro 37, 2 (2017), 52–62.

[31] Alexander Freij, Huiyang Zhou, and Yan Solihin. 2023. SecPB: Architectures for
Secure Non-Volatile Memory with Battery-Backed Persist Buffers. In 2023 IEEE
International Symposium on High Performance Computer Architecture (HPCA-29).

[32] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy,
Peter M Chen, and Thomas F Wenisch. 2018. Persistency for synchronization-
free regions. ACM SIGPLAN Notices 53, 4 (2018), 46–61.

[33] Gonzalez Gonzalez, Adrián Cristal, Daniel Ortega, Alexander Veidenbaum, and
Mateo Valero. 2004. A content aware integer register file organization. ACM
SIGARCH Computer Architecture News 32, 2 (2004), 314.

[34] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct access,{High-Performance} memory disaggregation with {DirectCXL}.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 287–294.

[35] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2019. Pisces: A scalable and efficient persis-
tent transactional memory. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19). 913–928.

[36] Yizi Gu, Yongpan Liu, YiqunWang, Hehe Li, and Huazhong Yang. 2016. NVPsim:
A simulator for architecture explorations of nonvolatile processors. In 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 147–152.

[37] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed logless
atomic durability with persistent memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 466–478.

[38] Linley Gwennap. 1994. MIPS R10000 uses decoupled architecture. Microprocessor
Report 8, 14 (1994), 18–22.

[39] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. 2017. Platform
storage performance with 3D XPoint technology. Proc. IEEE 105, 9 (2017),
1822–1833.

[40] Swapnil Haria, Mark D Hill, and Michael M Swift. 2020. MOD: Minimally
ordered durable data structures for persistent memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 775–788.

[41] Muhammad Hassan, Chang Hyun Park, and David Black-Schaffer. 2021. A
reusable characterization of the memory system behavior of SPEC2017 and
SPEC2006. ACM Transactions on Architecture and Code Optimization (TACO) 18,
2 (2021), 1–20.

[42] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[43] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[44] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, et al. 2001. The microar-
chitecture of the Pentium® 4 processor. In Intel technology journal. Citeseer.

[45] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz. 2023. Zhuque:
Failure is Not an Option,{it’s} an Exception. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). 833–849.

[46] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical persistence for multi-threaded
applications. In Proceedings of the Twelfth European Conference on Computer
Systems. 468–482.

[47] Yiming Huai et al. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges
and prospects. AAPPS bulletin 18, 6 (2008), 33–40.

[48] Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul Haq Sifat,
Burhanuddin Bharmal, Jiabin Huang, RyanWilliams, Haibo Zeng, and Changhee
Jung. 2023. RTailor: Parameterizing Soft Error Resilience for Mixed-Criticality
Real-Time Systems. In 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE.

[49] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Technologies (FAST 18).

[50] Intel. 2020. Intel Optane DC Persistent Memory Quick Start Guide.
https://www.intel.com/content/dam/support/us/en/documents/memory-and-
storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-

https://libmemcached.org/libMemcached.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Quick-Start-Guide.pdf.
[51] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-atomic

persistent memory updates via JUSTDO logging. ACM SIGARCH Computer
Architecture News 44, 2 (2016), 427–442.

[52] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent mem-
ory module. arXiv preprint arXiv:1903.05714 (2019).

[53] JEDEC. 2022. CXL Consortium and JEDEC Sign MOU Agree-
ment to Advance DRAM and Persistent Memory Technology.
https://www.jedec.org/news/pressreleases/cxl-consortium-and-jedec-
sign-mou-agreement-advance-dram-and-persistent-memory.

[54] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded Hardware Transactional Memory for a Hybrid
DRAM/NVM Memory System. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 525–538.

[55] Jungi Jeong and Changhee Jung. 2021. PMEM-spec: persistent memory specu-
lation (strict persistency can trump relaxed persistency). In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 517–529.

[56] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018.
Efficient hardware-assisted logging with asynchronous and direct-update for
persistent memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 520–532.

[57] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
71–83.

[58] William M Jones, John T Daly, and Nathan DeBardeleben. 2012. Application
monitoring and checkpointing in hpc: looking towards exascale systems. In
Proceedings of the 50th Annual Southeast Regional Conference. 262–267.

[59] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
persist barriers for multicores. In Proceedings of the 48th International Symposium
on Microarchitecture. 660–671.

[60] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic durability in non-volatile memory through hardware logging. In 2017
IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 361–372.

[61] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute
express link for memory expansion (CXL-SSD). In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems. 45–51.

[62] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges and
solutions for fast remote persistent memory access. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 105–119.

[63] Ian Karlin, Jeff Keasler, and J Robert Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[64] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg
Ganger. 2017. Viyojit: Decoupling battery and DRAM capacities for battery-
backed DRAM. ACM SIGARCH Computer Architecture News 45, 2 (2017), 613–
626.

[65] Richard E Kessler. 1999. The alpha 21264 microprocessor. IEEE micro 19, 2
(1999), 24–36.

[66] AV Khvalkovskiy, Dmytro Apalkov, S Watts, Roman Chepulskii, RS Beach,
Adrian Ong, X Tang, A Driskill-Smith, WH Butler, PB Visscher, et al. 2013. Basic
principles of STT-MRAM cell operation in memory arrays. Journal of Physics D:
Applied Physics 46, 7 (2013), 074001.

[67] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin
Lee, and Changhee Jung. 2020. Compiler-directed soft error resilience for
lightweight GPU register file protection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 989–1004.

[68] Nam Sung Kim, Choungki Song, Woo Young Cho, Jian Huang, and Myoung-
soo Jung. 2019. LL-PCM: Low-latency phase change memory architecture. In
Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[69] Wook-Hee Kim, RMadhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A High Performance Persistent Range Index Using
PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM. 424–439.

[70] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. 2018. ClfB-Tree:
Cacheline Friendly Persistent B-Tree for NVRAM. ACM Trans. Storage, Article
5 (2018), 17 pages.

[71] Martin Kleppmann. 2017. Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. " O’Reilly Media, Inc.".

[72] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F Wenisch.
2016. High-performance transactions for persistent memories. In Proceedings of
the Twenty-First International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 399–411.

[73] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M Chen, and Thomas F Wenisch. 2016. Delegated persist ordering.

In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–13.

[74] Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipa-
truni, Sreenivas Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and
Hong Wang. 2018. Density tradeoffs of non-volatile memory as a replacement
for SRAM based last level cache. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 315–327.

[75] R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,
ChangwooMin, and Sudarsun Kannan. 2020. Durable transactional memory can
scale with timestone. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems.
335–349.

[76] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD conference, Vol. 5.

[77] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[78] Sangwon Lee, Miryeong Kwon, Gyuyoung Park, and Myoungsoo Jung. 2022.
LightPC: hardware and software co-design for energy-efficient full system per-
sistence. In Proceedings of the 49th Annual International Symposium on Computer
Architecture. 289–305.

[79] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.
2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage Technologies (FAST 17).

[80] Lin Li, Vijay Degalahal, Narayanan Vijaykrishnan, Mahmut Kandemir, and
Mary Jane Irwin. 2004. Soft error and energy consumption interactions: A data
cache perspective. In Proceedings of the 2004 international symposium on Low
power electronics and design. 132–137.

[81] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual ieee/acm international symposium on microarchitecture. 469–480.

[82] Ankur Limaye and Tosiron Adegbija. 2018. A workload characterization of
the SPEC CPU2017 benchmark suite. In 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 149–158.

[83] Mikko H Lipasti, Brian R Mestan, and Erika Gunadi. 2004. Physical register
inlining. ACM SIGARCH Computer Architecture News 32, 2 (2004), 325.

[84] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, YongweiWu,Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building durable transactions with
decoupling for persistent memory. ACM SIGPLAN Notices 52, 4 (2017), 329–343.

[85] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh,
and Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for non-
volatile memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 258–270.

[86] Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for
transparent consistency-aware checkpointing in intermittent energy-harvesting
systems. In 2016 5th Non-Volatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 1–6.

[87] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler directed lightweight soft error resilience. ACM Sigplan Notices 50, 5
(2015), 1–10.

[88] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed lightweight checkpointing for fine-grained guaranteed soft error recov-
ery. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 228–239.

[89] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Low-cost
soft error resilience with unified data verification and fine-grained recovery
for acoustic sensor based detection. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Press, 25.

[90] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2017. Compiler-
directed soft error detection and recovery to avoid DUE and SDC via Tail-DMR.
ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2017), 32.

[91] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz: test
case generation for persistent memory programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems. 487–502.

[92] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. 2020. Cross-failure bug detection in persistent memory
programs. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 1187–1202.

[93] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019.
PMTest: A fast and flexible testing framework for persistent memory programs.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 411–425.

[94] Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma,
Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie, et al. 2015. Ambient
energy harvesting nonvolatile processors: from circuit to system. In Proceedings

https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.jedec.org/news/pressreleases/cxl-consortium-and-jedec-sign-mou-agreement-advance-dram-and-persistent-memory
https://www.jedec.org/news/pressreleases/cxl-consortium-and-jedec-sign-mou-agreement-advance-dram-and-persistent-memory

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Jianping Zeng, Jungi Jeong*, and Changhee Jung

of the 52nd Annual Design Automation Conference. 1–6.
[95] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li,

Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile proces-
sors. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 526–537.

[96] Virendra J Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent
memcached: Bringing legacy code to byte-addressable persistent memory. In
9th {USENIX} Workshop on Hot Topics in Storage and File Systems (HotStorage
17).

[97] Chris Mellor. 2022. CXL-led big memory taking over from age of SAN. https:
//blocksandfiles.com/2022/06/20/cxl-led-big-memory/.

[98] Chris Mellor. 2022. Redis is ready for CXL memory pooling. https://
blocksandfiles.com/2022/07/20/redis-cxl-memory-pooling/.

[99] AmirsamanMemaripour and Steven Swanson. 2018. Breeze: User-level access to
non-volatile main memories for legacy software. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 413–422.

[100] memcached organization. 2017. memcachd - a distributed memory object
caching system. http://memcached.org/.

[101] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan
Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. 2007. An effec-
tive hybrid transactional memory system with strong isolation guarantees. In
Proceedings of the 34th annual international symposium on Computer architecture.
69–80.

[102] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. 1999. Ilp
versus tlp on smt. In Proceedings of the 1999 ACM/IEEE Conference on Supercom-
puting. 37–es.

[103] Alessandro Morari, Carlos Boneti, Francisco J Cazorla, Roberto Gioiosa, Chen-
Yong Cher, Alper Buyuktosunoglu, Pradip Bose, and Mateo Valero. 2012. SMT
malleability in IBM POWER5 and POWER6 processors. IEEE Trans. Comput. 62,
4 (2012), 813–826.

[104] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 1 (2009), 1–24.

[105] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. 2017. An analysis of persistent memory use with WHISPER.
ACM SIGPLAN Notices 52, 4 (2017), 135–148.

[106] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok
Nam. 2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies (FAST 19).

[107] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In
Proceedings of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems. 401–410.

[108] Vignyan Reddy Kothinti Naresh, David J Palframan, and Mikko H Lipasti. 2011.
CRAM: Coded registers for amplified multiporting. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture. 196–205.

[109] Debasish Nayak, Debiprasad Priyabrata Acharya, and Kamalakanta Mahapatra.
2016. An improved energy efficient SRAM cell for access over a wide frequency
range. Solid-State Electronics 126 (2016), 14–22.

[110] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: healing per-
sistent memory bugs without doing any harm. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems. 401–414.

[111] Tri M Nguyen and David Wentzlaff. 2018. PiCL: A software-transparent, per-
sistent cache log for nonvolatile main memory. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 507–519.

[112] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L Miller. 2019.
Ssp: Eliminating redundant writes in failure-atomic nvrams via shadow sub-
paging. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 836–848.

[113] Bogdan Nicolae, Adam Moody, Gregory Kosinovsky, Kathryn Mohror, and
Franck Cappello. 2021. Veloc: Very low overhead checkpointing in the age of
exascale. arXiv preprint arXiv:2103.02131 (2021).

[114] Byoungchan Oh, Nilmini Abeyratne, Nam Sung Kim, Jeongseob Ahn, Ronald G
Dreslinski, and Trevor Mudge. 2022. Rethinking DRAM’s page mode with
STT-MRAM. IEEE Trans. Comput. (2022).

[115] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM: leveraging
persistent memory from a GPU. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 142–156.

[116] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2023. Scoped Buffered
Persistency Model for GPUs. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 2. 688–701.

[117] Dhinakaran Pandiyan and Carole-Jean Wu. 2014. Quantifying the energy cost
of data movement for emerging smart phone workloads on mobile platforms. In
2014 IEEE International Symposium on Workload Characterization (IISWC). IEEE,
171–180.

[118] Kimish Patel, Wonbok Lee, and Massoud Pedram. 2007. Active bank switching
for temperature control of the register file in a microprocessor. In Proceedings
of the 17th ACM Great Lakes symposium on VLSI. 231–234.

[119] David Pech, Magali Brunet, Hugo Durou, Peihua Huang, Vadym Mochalin,
Yury Gogotsi, Pierre-Louis Taberna, and Patrice Simon. 2010. Ultrahigh-power
micrometre-sized supercapacitors based on onion-like carbon. Nature nanotech-
nology 5, 9 (2010), 651–654.

[120] Keni Qiu, Mengying Zhao, Zhenge Jia, Jingtong Hu, Chun Jason Xue, Kaisheng
Ma, Xueqing Li, Yongpan Liu, and Vijaykrishnan Narayanan. 2020. Design in-
sights of non-volatile processors and accelerators in energy harvesting systems.
In Proceedings of the 2020 on Great Lakes Symposium on VLSI. 369–374.

[121] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In 2009 42nd Annual
IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, 14–23.

[122] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur
Mutiu. 2015. ThyNVM: Enabling software-transparent crash consistency in
persistent memory systems. In 2015 48th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 672–685.

[123] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 101–111.

[124] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner.
2015. nvm malloc: Memory Allocation for NVRAM. Adms@ Vldb 15 (2015),
61–72.

[125] Dipanjan Sengupta, Qi Wang, Haris Volos, Ludmila Cherkasova, Jun Li, Guil-
herme Magalhaes, and Karsten Schwan. 2015. A framework for emulating
non-volatile memory systemswith different performance characteristics. In
Proceedings of the 6th ACM/SPEC International Conference on Performance Engi-
neering. 317–320.

[126] Sophiane Senni, Lionel Torres, Gilles Sassatelli, and Abdoulaye Gamatie. 2016.
Non-volatile processor based on MRAM for ultra-low-power IoT devices. ACM
Journal on Emerging Technologies in Computing Systems (JETC) 13, 2 (2016),
1–23.

[127] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H. Noh.
2017. Failure-Atomic Slotted Paging for Persistent Memory. In Proceedings of
the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[128] Sara Mahdizadeh Shahri, Seyed Armin Vakil Ghahani, and Aasheesh Kolli.
2020. (Almost) Fence-less Persist Ordering. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 539–554.

[129] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilker-
son, Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex
address patterns. In Proceedings of the 48th International Symposium on Microar-
chitecture. 141–152.

[130] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A flexible and fast software supported hardware logging approach for
nvm. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. 178–190.

[131] Dezso Sima. 2000. The design space of register renaming techniques. IEEE micro
20, 5 (2000), 70–83.

[132] CORPORATE SPARC International, Inc. 1994. The SPARC architecture manual
(version 9). Prentice-Hall, Inc.

[133] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2016. A Ferroelectric
Nonvolatile Processor with 46𝑚𝑢s System-Level Wake-up Time and 14𝑚𝑢s
Sleep Time for Energy Harvesting Applications. IEEE Transactions on Circuits
and Systems I: Regular Papers 64, 3 (2016), 596–607.

[134] Kun Suo, Yong Shi, Chih-Cheng Hung, and Patrick Bobbie. 2021. Quantifying
context switch overhead of artificial intelligence workloads on the cloud and
edges. In Proceedings of the 36th Annual ACM Symposium on Applied Computing.
1182–1189.

[135] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench-the development and verification of a performance abstraction for
Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

[136] Nathan Tuck and Dean M Tullsen. 2003. Initial observations of the simultaneous
multithreading Pentium 4 processor. In 2003 12th International Conference on
Parallel Architectures and Compilation Techniques. IEEE, 26–34.

[137] Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous multi-
threading: Maximizing on-chip parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture. 392–403.

[138] Dean M Tullsen, Jack L Lo, Susan J Eggers, and Henry M Levy. 1999. Support-
ing fine-grained synchronization on a simultaneous multithreading processor.
In Proceedings Fifth International Symposium on High-Performance Computer
Architecture. IEEE, 54–58.

[139] Vineet Veer Tyagi and DPCM Buddhi. 2007. PCM thermal storage in buildings:
A state of art. Renewable and sustainable energy reviews 11, 6 (2007), 1146–1166.

https://blocksandfiles.com/2022/06/20/cxl-led-big-memory/
https://blocksandfiles.com/2022/06/20/cxl-led-big-memory/
https://blocksandfiles.com/2022/07/20/redis-cxl-memory-pooling/
https://blocksandfiles.com/2022/07/20/redis-cxl-memory-pooling/
http://memcached.org/

Persistent Processor Architecture MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[140] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[141] Daniel Waddington and Jim Harris. 2018. Software challenges for the changing
storage landscape. Commun. ACM 61, 11 (2018), 136–145.

[142] WeiWang and Tanima Dey. 2011. A survey on arm cortex a processors. Retrieved
March (2011).

[143] Yiqun Wang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao, Mei-Fang
Chiang, Yanxin Yan, Baiko Sai, and Huazhong Yang. 2012. A 3us wake-up time
nonvolatile processor based on ferroelectric flip-flops. In 2012 Proceedings of the
ESSCIRC (ESSCIRC). IEEE, 149–152.

[144] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 496–508.

[145] Chun-Feng Wu, Yuan-Hao Chang, Ming-Chang Yang, and Tei-Wei Kuo. 2020.
When storage response time catches up with overall context switch overhead,
what is next? IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39, 11 (2020), 4266–4277.

[146] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: log less,
re-execute more. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 346–
359.

[147] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. 2022. ASAP: A
Speculative Approach to Persistence. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 892–907.

[148] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-
son. 2020. An empirical guide to the behavior and use of scalable persistent
memory. In 18th {USENIX} Conference on File and Storage Technologies ({FAST}
20). 169–182.

[149] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Hai Jin, Xiaofei Liao, and Yan Solihin.
2022. Preserving Addressability Upon GC-Triggered Data Movements on Non-
Volatile Memory. ACM Transactions on Architecture and Code Optimization
(TACO) 19, 2 (2022), 1–26.

[150] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin,
and Yan Solihin. 2023. SpecPMT: Speculative Logging for Resolving Crash
Consistency Overhead of Persistent Memory. (2023).

[151] Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A Low-Cost Mechanism
to Enable Restoration of Secure Non-Volatile Memories. Technical Report. Sandia

National Lab.(SNL-NM), Albuquerque, NM (United States).
[152] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon

Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 170–182.

[153] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turn-
pike: Lightweight Soft Error Resilience for In-Order Cores. In The 54th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Press.

[154] Jin Zha, Linpeng Huang, Linzhu Wu, Sheng-an Zheng, and Hao Liu. 2016. A
consistency mechanism for NVM-Based in-memory file systems. In Proceedings
of the ACM International Conference on Computing Frontiers. 197–204.

[155] Yida Zhang and Changhee Jung. 2022. Featherweight soft error resilience for
GPUs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 245–262.

[156] Yilin Zhang and Wei-Ming Lin. 2016. Efficient resource sharing algorithm for
physical register file in simultaneous multi-threading processors. Microproces-
sors and Microsystems 45 (2016), 270–282.

[157] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
boom: The 3rd generation berkeley out-of-order machine. In Fourth Workshop
on Computer Architecture Research with RISC-V, Vol. 5.

[158] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P Jouppi. 2013.
Kiln: Closing the performance gap between systems with and without per-
sistence support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. 421–432.

[159] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P Jouppi. 2013.
Kiln: Closing the performance gap between systems with and without per-
sistence support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. 421–432.

[160] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. 2012. A scalable double
in-memory checkpoint and restart scheme towards exascale. In IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops (DSN 2012).
IEEE, 1–6.

[161] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
2023. SweepCache: Intermittence-Aware Cache on the Cheap. In MICRO-56:
56th Annual IEEE/ACM International Symposium on Microarchitecture.

[162] Yanwu Zhu, Shanthi Murali, Meryl D Stoller, KJ Ganesh, Weiwei Cai, Paulo J
Ferreira, Adam Pirkle, Robert M Wallace, Katie A Cychosz, Matthias Thommes,
et al. 2011. Carbon-based supercapacitors produced by activation of graphene.
science 332, 6037 (2011), 1537–1541.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Register Renaming
	2.2 PSP vs WSP
	2.3 Region-Level Persistence for WSP
	2.4 Store Integrity for Performant WSP

	3 PPA Overview
	3.1 Dynamic Region Formation
	3.2 HW-Based Asynchronous Store Persistence
	3.3 Dynamic Enforcement of Stores Integrity
	3.4 Checkpoint and Recovery Protocol

	4 PPA Implementation Details
	4.1 Enforcing Store Integrity Efficiently
	4.2 Forming Longer Regions at a Low Cost
	4.3 Region-Level Asynchronous Persistence
	4.4 Lightweight Hardware for Recovery
	4.5 Just-In-Time (JIT) Checkpointing on Power Failure
	4.6 Power Failure Recovery Protocol

	5 Interaction with OS
	6 Discussion
	7 Evaluation and Analysis
	7.1 Run-time Overhead Analysis
	7.2 Comparison to Partial-System Persistence
	7.3 Analysis of Stall Cycles at Region End
	7.4 Impact on PRF Pressure
	7.5 Dynamic Region Characteristics
	7.6 Sensitivity to Deeper Cache Hierarchy
	7.7 Sensitivity to WPQ Size
	7.8 Sensitivity to PRF Size
	7.9 Sensitivity to CSQ Size
	7.10 Sensitivity to PMEM Write Bandwidth
	7.11 Sensitivity to Thread Count
	7.12 Hardware Cost Analysis
	7.13 Energy and Latency for JIT Checkpointing

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

