
Capri: Compiler and Architecture Support for Whole-System
Persistence

Jungi Jeong∗
Purdue University

West Lafayette, Indiana, USA
jungijeong@purdue.edu

Jianping Zeng
Purdue University

West Lafayette, Indiana, USA
zeng207@purdue.edu

Changhee Jung
Purdue University

West Lafayette, Indiana, USA
chjung@purdue.edu

ABSTRACT
This paper investigates whole-system persistence (WSP) that en-
sures hassle-free crash consistency for all programs while simul-
taneously leveraging both advantages of the non-volatile memory
technologies: high-density and in-memory persistence. Despite the
promising characteristics, there are two challenges that must be
addressed to make WSP a reality. First, programs must be able to
resume the execution from where they had a failure. Second, failure
recovery must be offered to any program including the OS in a
transparent manner while minimizing persistence overheads.

To this end, this paper presents Capri, a compiler and architec-
ture co-designed scheme for region-level whole-system persistence.
First, the Capri compiler partitions program into a series of regions
whose boundaries serve as recovery points. Then, the Capri ar-
chitecture provides the regions with crash consistency through
hardware-based atomic updates. Finally, with the novel interplay
between the architecture and the compiler, Capri provides failure
atomicity on the cheap, i.e., with 0%, 12.4%, and 9.1% performance
overheads for SPEC CPU2017, STAMP, and Splash3 benchmarks,
respectively.

CCS CONCEPTS
•Hardware→ Emerging architectures; Emerging languages and
compilers.

KEYWORDS
whole-system persistence, compiler/architecture co-design

ACM Reference Format:
Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler
and Architecture Support for Whole-System Persistence. In Proceedings
of the 31st Int’l Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’22), June 27-July 1, 2022, Minneapolis, MN, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3502181.3531474

1 INTRODUCTION
Advanced non-volatile memory (NVM) technologies, such as In-
tel’s Optane PMem [3], provide both high-density and in-memory
persistence, realizing the full potential to unify the main memory
and storage devices. This leads to the advent of persistent memory

∗Now at Google.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9199-3/22/06.
https://doi.org/10.1145/3502181.3531474

programming for so-called partial-system persistence (PSP), e.g.,
Optane’s app-direct mode, where DRAM is used as the main mem-
ory while NVM serves as a persistent heap. In PSP, programmers
must delineate a piece of code which requires crash consistency
and explicitly manage both volatile and non-volatile data (objects)
using dedicated interfaces such as pmalloc or persistent transac-
tions [11, 17–19, 26, 29, 46, 78, 79]. However, the persistent memory
programming is difficult and often necessitates custom data struc-
ture design and application-specific recovery code tailored to par-
ticular data structures [28, 31, 42, 49, 65, 70], thus being limited to a
small set of programs such as in-memory index structures/databases
or key-value stores [4, 5, 12, 30, 38, 40, 41, 43, 56, 60, 77, 82].

1.1 Motivation
Unfortunately, this limitation hinders most users from readily tak-
ing advantage of both high-density and in-memory persistence of
NVM. With that in mind, as an alternative to the app-direct mode,
Intel proposes amemory mode, where DRAM is vertically integrated
as a cache on top of NVM. In particular, since NVM here is used as
the high-density yet volatile main memory [3], it does not provide
in-memory persistence at all. This implies that in the memory mode,
users have no choice but to put up with data loss in case of power
failure, unless they resort to the app-direct mode at the expense of
the persistent memory programming difficulty.

To solve the problems, this paper studies whole-system per-
sistence (WSP) that simultaneously enables high-density and in-
memory persistence and satisfies the following requirements. First,
WSP must be able to restore the entire system on failure recovery
no matter how deep the volatile cache and memory hierarchy is as
in off-chip DRAM cache as Optane’s memory mode. Second, fail-
ure recovery should be offered to any programs (instead of being
limited to in-memory databases and key-value stores) in a software-
transparent manner, which is desired as a variety of recent works
confirm that persistent programming is error-prone [20, 57–61, 67].

1.2 Limitation of state-of-the-art approaches
The key approach to achieving whole-system persistence is to flush
all data in volatile media (e.g., register files, CPU caches, and DRAM)
into non-volatile memory before the impending power failure. For
example, Narayanan et al. proposed to use residual energy and
persist all volatile status when power is about to be cut off [66].
Similarly, Intel recently announced extended ADR (eADR) support
that includes on-chip caches in the persistent domain [1]. However,
it turns out that eADR must secure an excessive amount of residual
energy [7] to persist the deep cache hierarchy of HPC manycore
processors, which gets worse for the off-chip DRAM cache as in
the memory mode of Intel Optane. Apart from that, eADR does

https://doi.org/10.1145/3502181.3531474
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502181.3531474

not protect other volatile states such as register files and internal
buffers in the processor pipeline. This limitation makes it practically
impossible to realize whole-system persistence at low cost.

1.3 Overall Design
To this end, this paper proposes Capri, a compiler and architecture
co-design scheme that achieves region-level whole-system persistence.
Capri partitions programs into a series of regions, where each region
boundary serves as a recovery point. For this purpose, the Capri
compiler inserts region boundary instructions to delineate the re-
gion formation. Furthermore, it instruments register-checkpointing
instructions required for resuming the power-interrupted programs
from the last committed and persisted region boundaries after fail-
ure recovery. Then, all store instructions within a region are care-
fully handled by hardware, which leverages the hardware non-
volatile proxy buffer as the safety net to prevent partial updates.
The proxy buffer guarantees that modified data in a region are
not released to the non-volatile main memory before the region is
completed.

Capri’s region formation and proxy buffer showcase a novel in-
terplay between compiler and architecture, enabling whole-system
persistence without program changes while simultaneously lever-
aging high-density and in-memory persistence. That is, the Capri
compiler uses the number of stores as a region criterion, i.e., the re-
sulting regions contain nomore than the threshold number of stores
therein (e.g., 256 by default, including both regular and checkpoint-
ing stores). This threshold determines the hardware proxy buffer
size and prevents overflow, rendering hardware design simpler.

Challenge #1: Stale Read Prevention. Previous studies with
two data paths to NVM (e.g., the regular data path through caches
and the new persist path from proxy buffers) have decided to drop
dirty cache blocks on their last-level cache eviction (from the regular
path) to simplify the sequential persist order [10, 25, 34, 35, 45,
64, 71]. However, such a design decision complicates the NVM
read operations—whenever searching data in NVM, it must look
up the proxy buffer simultaneously, increasing both read latency
and energy consumption. Such indirect read has been mitigated in
various ways, e.g., HW bloom filter [35, 64], cache coherence [45],
or speculation [34], but they all come at the cost of significant
hardware and software complexity.

Solution #1: Undo+Redo Logging. Capri eliminates the indi-
rect read problem by allowing NVM updates from the both dirty
cache writeback and the proxy buffer. Therefore, memory loads
and stores happen in the same way as the commodity architec-
ture. However, dirty cache writeback may break correctness by
persisting regions out of order (see Section 5.4). To preserve crash
consistency with this distinctive architecture, Capri uses undo+redo
logging that keeps data of both before and after the update. Thus,
even if the dirty cache writeback persists regions out of order, the
undo value (e.g., before the update) can safely restore the previous
state across a power failure.

Challenge #2: Checkpoint Overheads. By its nature, whole-
system persistence (in line with persistent memory programs [7, 8,
23, 25, 34, 45, 64, 71]) should come with performance overheads—
compared to volatile execution—and complex hardware changes

to control the persist order. For example, with WSP, all store in-
structions in a region must be reflected inside the non-volatile main
memory before proceeding to the next region. Furthermore, register-
checkpointing stores incur non-negligible pressure to NVM, leading
to a substantial slowdown. Therefore, the primary design goal of
Capri is to lengthen the region size as much as possible to lessen
checkpointing stores. The longer regions are desirable since they re-
duce the number of checkpointing stores and unburden the pipeline
by less dynamic instruction counts.

Solution #2: Compiler Optimizations. Capri reduces check-
point overheads via 1) region size extension and 2) unnecessary
checkpoints removal. First, we found that although a large num-
ber (e.g., 1k stores) is given as a threshold, many of the resulting
regions contain fewer stores due to short loops 1 in programs (see
Section 4.3 and Figure 11). In light of this, Capri presents specu-
lative loop unrolling that unrolls the loop even if iteration counts
are unavailable at compile time. In this way, the Capri compiler
significantly extends the region sizes for short loops in programs.
Second, Capri leverages existing compiler analysis to reduce check-
point overheads further [39], i.e., it removes register-checkpointing
stores if their register values can be reconstructed by other register
values at recovery time. Finally, Capri rearranges checkpointing
stores to prevent repeated checkpoints of the same register inside
the loop body.

1.4 Experimental methodology and evaluation
results

For evaluation, we used the full-system simulation mode of a cycle-
accurate architecture simulator [9]. Notably, we re-compiled the
entire Linux Kernel with our Capri compiler to include the OS in the
whole-system persistence domain. Our experiments demonstrate
that Capri accomplishes lightweight whole-system persistence only
causing 0%, 12.4%, and 9.1% performance overheads in a geometric
mean for SPEC2017, STAMP, and Splash3 benchmarks, respectively.
Although a naive approach may slow down the benchmark up to
2X, our novel architecture and compiler interaction achieves very
low performance overheads. Consequently, Capri makes it possible
to accommodate all programs as first-class citizen in the world of
persistence.

2 WHOLE-SYSTEM PERSISTENCE: DESIGN
GOALS

2.1 SW-Transparent Failure-Atomicity
We pursue an entirely transparent approach that does not require
program changes. The existing persistent applications in partial-
system persistence need to be re-written. For example, program-
mers should identify which data (e.g., objects) to place in NVM
and annotate them within transactions, such that the manually-
crafted recovery protocol can restore them to the correct and con-
sistent state. Unfortunately, ensuring failure-atomicity in persis-
tent applications often leads to a substantial change in applica-
tion design [60, 61]. Also, such modifications can be more error-
prone [20, 57–61, 67], breaking the failure-atomicity guarantee. To

1The loop body limits region sizes since it is challenging to measure the exact dynamic
store counts at the compile time if loop counts are unknown. See Section 4.3 for details.

make NVM programming more straightforward and less buggy,
multiple studies have presented frameworks that abstract com-
plex low-level techniques [24, 33, 44, 73] and spot potential buggy
codes [20, 57–61, 67]. On the other hand, this study aims to execute
programs without changes, eliminating error-prone modifications
with whole-system persistence.

2.2 Whole-System Failure-Atomicity
The second goal of this study is to provide failure-atomicity for
all applications by making the whole system persistent. Previous
proposals for partial-system persistence have been limited for the
following reasons. First, they protect and recover data only allocated
in NVM specified by programmers. This partial persistence results
in all volatile states in the register file, on-chip caches, and DRAM
disappearing when a power failure happens. Second, therefore,
the crash recovery necessitates restarting the program from the
beginning. However, such convention limits its applicability to
particular application domains such as in-memory databases [40, 43,
70] or key-value stores [12, 30, 38, 56, 77, 82], which are backed by
durable data structures [31, 42, 49, 65]. On the other hand, this study
targets whole-system persistence that restores the entire program
states from the register file to NVM and resumes them fromwhere they
were interrupted. Furthermore, these benefits are generally available
for even applications that do not have transactional semantics, such
as general-purpose CPU applications or multi-threaded scientific
workloads.

3 CAPRI: COMPILER/ARCHITECTURE
CO-DESIGN FORWHOLE-SYSTEM
PERSISTENCE

Capri pursues whole-system persistence while leveraging both
the high-density and non-volatility of NVM. That is, Capri tar-
gets the vertically integrated hybrid memory (e.g., Intel Optane’s
memory mode) that uses NVM as the main memory and DRAM
as hardware-managed off-chip caches. This section explains how
Capri guarantees region-level whole-system persistence without
program changes by 1) compiler-directed region partitioning and
2) architecture-enforced region failure-atomicity.

3.1 Region-level Whole-System Persistence
Capri provides region-level persistence that partitions the program
into a series of recoverable regions. At region boundaries, programs
produce checkpoints containing the current PC offset and live-
out register values (e.g., will be used in the following regions) so
that the recovery procedure can correctly restore register values.
Furthermore, data updated within a region by store instructions
must be persisted in NVM to proceed to the next region. In the end,
Capri restores the entire program state after a power failure using
checkpointed register values and data in NVM. Then, it resumes
programs from the beginning of the regionswhere they had a failure.
Note that checkpointed register values and NVM data are sufficient
to reconstruct the entire program state since the Capri architecture
guarantees all store instructions in each region recoverable from a
crash.

Core

L1DL1D

Core

On-chip Caches

Integrated Memory Controller

Off-chip

DRAM Cache
NVM Data

Phase #1 Store

Phase #2 Store

Proxy Path

...

Front-end

Proxy

Front-end

Proxy

Back-end

Proxy

Back-end

Proxy

Figure 1: Capri architecture overview. Capri uses NVM as the
main memory and DRAM as off-chip caches.

3.2 Compiler-directed Region Partitioning
The Capri compiler is responsible for placing region boundary
instructions and register-checkpointing stores. In particular, it uses
the number of stores as a region criterion to balance architecture
and compiler efforts. For example, it places region boundaries such
that the number of dynamic store instructions in each region does
not exceed the given threshold (e.g., 256 stores). Then, the core
hardware component in the Capri architecture—the non-volatile
proxy buffer (see Section 5.2)—is configured based on the threshold
used in the Capri compiler such that it prevents hardware overflow.

Along with the region boundary placement, the Capri compiler
calculates the minimal register set required for the recovery. First,
before proceeding to the next region, the Capri compiler performs
static analysis over the control flow graph to identify live-in regis-
ters to the next region. Then, it generates register-checkpointing
stores just like regular stores. In case of failure recovery, these
checkpointed registers are reloaded to restore the live-in register
set of the interrupted region.

3.3 Architecture-supported Region
Failure-Atomicity

Given the region formation and register-checkpointing stores delin-
eated by the Capri compiler, the Capri architecture ensures failure-
atomic execution for each region. Unlike previous studies that as-
sumed failure-atomic software [7, 8, 25, 34, 45, 64, 71], architecture
should provide atomic execution in a software transparent manner.
In particular, all stores in a region should become persistent in an
all-or-nothing-based manner before the next region persists, allow-
ing programs to restart from the beginning of the interrupt region
after failure recovery.

For this purpose, Capri supports two-phase atomic stores similar
to the hardware-based write-ahead logging approach [10, 22, 27,
35, 37, 68, 72]. Figure 1 shows Capri architecture and illustrates the
two-phase atomic store strategy with the decoupled proxy buffer
architecture. The front-end proxy buffer is placed alongside the L1
data cache, while the integrated memory controller contains the
back-end proxy buffer. Note that both the front- and back-end proxy
buffers are non-volatile (e.g., battery-backed SRAM buffers similar

to the previous study [7]). Having non-volatile proxy buffers is
critical to reducing the gap between volatile and persistent memory.

The two-phase atomic store guarantees failure-atomicity with
undo+redo logging. The undo+redo logging has an advantage over
undo or redo logging strategies. The first phase (colored orange
in Figure 1) generates proxy entries for all store instructions since
whole-system persistence considers all data as persistent data. Once
creating proxy entries of all stores in a region, the first phase com-
pletes. These proxy entries will travel through the proxy data path.
This uncacheable and separate path that directly connects the front-
end proxy to the per-core back-end in the memory controllers. The
proxy buffer guarantees that any store instructions are not reflected
on NVM until the first phase of atomic store completes. Therefore,
it is the safety net to prevent partial updates visible after failure
recovery. After the first phase completes, the second phase (colored
blue) copies proxy entries from the proxy buffer to NVM data. Note
that the Capri architecture ensures the first phase to happen before
the NVM updates while the second phase can occur at any time
after the first phase (see Section 5.1). Lastly, the Capri architecture
guarantees the in-order persistence of regions.

Since the front- and back-end proxy buffers are non-volatile
(e.g., battery-backed SRAMs), their contents are drained to NVM
at the time of power interrupt. Later, the recovery processes use
them to restore the consistent non-volatile main memory state (see
Section 5.4).

Lastly, to the best of our knowledge, supporting non-recoverable
operation such as I/O operations has been remained as the open
problem. That being said, since the Capri compiler places a region
boundary at the function calls, the function that implements I/O
operations is treated as a separate region—though it cannot be re-
covered due to the I/O operation. We believe that Capri can simply
handle I/O operations by checkpointing necessary status (e.g., be-
fore I/O operation starts). That way, the interruped I/O operation
can be restarted after recovery.

4 CAPRI COMPILER
The Capri compiler provides the region formation, which is the
building block of whole-system persistence in Capri. It primarily
performs two tasks on the binary. First, the Capri compiler parti-
tions the binary into fine-grained regions, considering the proxy
buffer capacity used as a safety net of the atomic store release. Then,
the compiler inserts checkpointing store instructions to preserve
the live-out registers to NVM.

Although compiler-directed region formation and checkpointing
stores are not new [15, 16, 32, 47, 52–55, 74, 84, 85], the interplay
between compiler and architecture makes Capri stand out among
the previous studies. In particular, the goal of the Capri compiler is
to delineate regions as large as possible and tominimize NVMwrites
(as checkpointing stores amplify NVMwrites) such that architecture
ensures failure atomicity without significant performance loss.

4.1 Region Formation
At first glance, region formation appears to be trivial; for example,
one can count the store instructions while traversing the control
flow graph (CFG) and insert boundaries before it exceeds a given

threshold. However, region formation is circularly dependent on cal-
culating the checkpoint set since checkpoint store instructions are
counted as regular stores. Thus, Capri cannot calculate the check-
point set and its location before determining the region boundaries.
As a result, placing region boundaries requires the binary contain-
ing register checkpoint stores, which in turn needs to identify the
boundaries first.

To break the circular dependence, Capri uses the following
heuristic. First, Capri considers all basic blocks in the CFG as ini-
tial regions and calculates the number of checkpoints to be instru-
mented in each region. In particular, Capri places a region boundary
at all the entry/exit points of functions and the beginning of each
loop header. Also, the Capri compiler considers memory fences and
atomic operations as region boundaries since they are critical to
guarantee correctness for multi-threaded programs [47, 55]. Then,
Capri splits the basic blocks if they have region boundaries in the
middle to ensure all regions starts at the beginning of basic blocks,
which helps compute the next step.

Next, while traversing the CFG, Capri attempts to combine initial
regions into larger regions as much as possible. By combining
them, Capri can remove many checkpoint instructions (i.e., stores)
because the registers can be no longer live-out to the later regions
after combining. The region criterion ensures that the number of
stores in each region will not overflow the threshold, including
the checkpoint stores. Moreover, Capri does not insert cache-flush
instructions (e.g., dccvap in ARM or clwb in X86).

4.2 Register-Checkpointing Stores
Capri leverages a novel compiler analysis to identify the minimal
register state necessary for restoring a recovery point (i.e., the most
recently committed region boundary) [53]. The checkpoint-set anal-
ysis investigates instructions that update registers and checkpoints
the resulting value if used in later regions. In particular, the Capri
compiler is interested in the last instructions that update the same
registers. If the compiler identifies those instructions, it inserts
checkpoint stores (i.e., regular store instructions with the regis-
ter values as operands) immediately following them to store the
updated values in a reserved memory location.

The checkpointed register values are used when recovering from
a power failure. They have fixed destination addresses such that
it is easily accessible through an index within an array during the
recovery process. For this purpose, the Capri compiler allocates a
global array where all registers have mapped into the dedicated
slots. For example, r0 is mapped into the index zero. This global
array checkpoint storage is feasible since the Capri compiler creates
checkpoints for the architectural register, which is statically fixed
in number. Please refer to Section 5.4 for the recovery protocol.

4.3 Extending Region with Speculative Loop
Unrolling

The Capri compiler guarantees that all regions have at most as
many stores as the threshold. However, this does not mean that
regions will have the exact threshold number of stores. Instead,
many regions have fewer stores than the threshold—because of short
loops in programs. For example, the compiler makes conservative
decisions when dealing with loops since it is challenging to measure

Loop Header

Region boundary Checkpoint r0

Loop Body

Loop Exit

(a) original loop

Loop Body

Loop Body

Loop Header

Loop Exit

Loop Exit

Loop Body

Loop Body

Loop Exit

Loop Exit

(b) traditional loop

unrolling cannot

unroll this loop

(c) Speculative

loop unrolling

(unroll count: 3)

Loop Header

Loop Body

Loop Exit

Figure 2: Capri speculatively unrolls the loop of static-
unknown iteration count.

the exact dynamic store counts at the compile time if loop counts
are unknown. Therefore, it places a region boundary in the loop
header, limiting the region size into the loop body, as shown in
Figure 2(a). Furthermore, as a result, the value of register 𝑟0 holding
the loop index variable is repeatedly checkpointed for every loop
iteration.

However, such short regions do not match the goal of the re-
gion formation that pursues as large region sizes as possible to
reduce persistence overheads. Capri aims to maximize the region
length since it reduces the register-checkpointing stores and the
region boundary instructions, which leads to unburdening the core
pipeline and the memory pressure.

To that end, Capri presents a novel loop unrolling strategy, spec-
ulative loop unrolling that can be applied even if iteration counts are
unknown at the compile time and thus can lengthen the region size.
Speculative loop unrolling duplicates the loop body and loop exit
condition simultaneously. Figure 2(c) illustrates the resulting code
with speculative unrolling when the unrolling count is 3. Since the
code size is extended with multiple loop bodies, the Capri compiler
can insert region boundaries that produce longer lengths while en-
forcing the region threshold (i.e., without overflowing). As a result,
with speculative loop unrolling, the Capri compiler forms almost 3x
longer regions and reduces checkpointing stores for register 𝑟0 by
3x as well. On the other hand, the traditional loop unrolling cannot
increase the region size if loop exit condition is not a static-known
constant, as shown in Figure 2(b).

However, this speculative loop unrolling strategy does not bene-
fit general purposes since it introduces complex control flow which
can hurt other compiler optimizations, e.g., instruction scheduling
and pointer analysis. That being said, this speculative loop unrolling
is particularly tailored for region-level whole-system persistence
where the larger region comes with better performance. Our evalua-
tion shows that the speculative loop unrolling improves benchmark
performance significantly.

4.4 Redundant Checkpoint Stores Elimination
The Capri compiler checkpoints live-in registers of regions to the
memory in case of failure recovery, which degrades the perfor-
mance and induces more memory writes which is harmful espe-
cially for NVM [13, 21, 36, 63, 75, 76, 80, 83, 84, 86]. This section

3: if (r1 > 0)

4: r2 = r3

Basic

Block 0

Basic Block 3

Basic

Block 2

Basic

Block 1

Recovery

Block

5: r2 = r1 + r3

 r1 = ld [1c]

 r3 = ld [2c]

if (r1 > 0)

 r2 = r3

else

 r2 = r1 + r3

Region0

Region1

Region2

5c: ckpt r24c: ckpt r2
......

1c: ckpt r1

2c: ckpt r3

... = r1, ... = r2, ... = r3

Region Boundary

Figure 3: Capri prunes checkpoints if they can be recon-
structed at the recovery time.

(new) ckpt r1

1c: ckpt r1

2c: ckpt r1

1 : r1 = ...

2 : r1 = ...

......

Basic

Block 1

Basic

Block 2

Region Boundary

Basic Block 3

Figure 4: Moving checkpoint stores out of a loop to prevent
repeated checkpoints of the same register.

describes compiler techniques to reduce the number of checkpoint
stores by 1) removing them if they can be reconstructed at the recov-
ery process and 2) moving them out of a loop to prevent repeated
checkpoints of the same register.

4.4.1 Optimal Checkpoint Pruning. Although the Capri compiler
identifies the minimal checkpoint set required for restoring a re-
gion (see Section 4.1), register-checkpointing stores can be further
reduced with the following key insight. Checkpoints can be omitted
if register values can be reconstructed using other checkpointed
values available at recovery time. Capri leverages the optimal check-
point pruning in the recent study [39]. The optimal pruning algo-
rithm detects unnecessary checkpoints and replaces them with
recovery codes to restore the pruned value.

Figure 3 shows how Capri removes the checkpoint stores and
generates the reconstruction code. Suppose that a system crash or
power failure happens in region #2. Region #2’s input registers r1,
r2, and r3 have been checkpointed in the prior regions, e.g., line 1c,
2c, and 4c/5c. Note that one of r2’s checkpoint at lines 4c and 5c
happens in region #1, depending on the path taken in the branch
at line 3. Here, Capri can safely remove both checkpoints at line
4c and line 5c since the checkpointed r1 and r3 can reconstruct
r2’s value, as illustrated in the recovery block in Figure 3. The
recovery block of region #2 executes the backward slice of the
pruned checkpoint, including the branch to reconstruct r2 according
to the checkpointed predicate r1, and jumps back to the recovery
PC, i.e., the beginning of region #2.

4.4.2 Moving Checkpoints Out Of Loops. For checkpoint stores
remaining after pruning, the Capri compiler explores opportunities

to further reduce the number of checkpoints by rearranging them.
In particular, checkpointing stores are necessary for persisting reg-
isters values used in the later regions to restore the recovery points,
which are the region boundaries. Therefore, the Capri compiler has
the freedom to rearrange or delay the checkpoint stores from the
original locations—immediately after the last load instruction up-
dating the register—down to any points before the region boundary
without any harm.

Capri leverages this observation to further reduce checkpointing
stores by moving checkpoint stores in a loop to out of it, similar to
loop invariant code motion (LICM) optimization. In Figure 4, the
Capri compiler moves r1’s checkpoint at line 2c out of a loop, reduc-
ing repeated checkpoints for the same register. In addition, another
checkpoint at line 1c can be removed since the r1’s checkpoint
moved to the region boundary.

5 CAPRI ARCHITECTURE
5.1 2-Phase Atomic Store with Undo+Redo

Logging
Capri uses the two-phase store protocol with undo+redo logging
to provide failure-atomicity. Using the undo+redo-based approach
brings the following advantages over undo- or redo-based ones.

5.1.1 Indirect Read-Free. The Capri architecture does not change
data movements within the regular memory hierarchy. Thus, it pro-
vides indirect read-free; memory loads and stores perform the same
way as the current architecture. On the other hand, the previous
redo logging approaches have dealt with the so-called indirect read
problem. In particular, since redo logging keeps newly updated
values in the log area before transactions or atomic regions commit,
a memory load at some levels must pay additional search overheads
to seek the latest value in the log.

The previous studies have proposed various ways to deal with
this problem. In common, they change the way program updates
NVM such that dirty cache blocks are silently dropped while only
the logs update them [10, 34, 45, 64]. For example, Jeong et al. and
Nalli et al. use HW bloom filters to reduce indirect reads [35] or
delay the reads [64]. In addition, Kolli et al. incorporate the cache
coherence to eliminate indirect reads [45]. Furthermore, Cai et al.,
introduces a fast buffer to minimize the search costs at the memory
controller [10], and Jeong et al. speculate that indirect reads are
not required because they have a rare chance to find the value in
the log [34]. On the other hand, Capri eliminates indirect reads
without altering the regular data path (i.e., not dropping dirty cache
blocks). Thus, the program never accesses the proxy buffer during
execution.

5.1.2 Asynchronous Region Persistence. Similar to the redo-based
approach, undo+redo logging provides asynchronous persistence.
Therefore, the Capri architecture enforces region-level persistence
(almost) without stalling or delaying program execution. Instead,
the persistence of store instructions happens in the background
while execution proceeds in the following region. This advantage
will be limited if using undo principle.

5.1.3 Compared to the previous undo+redo approach [68]. Although
the previous work has already employed the undo+redo principle in

addr(8B) Undo Data(64B) Redo Data(64B)type(1-bit)

addr(8B) Undo Data(64B) Redo Data(64B) Redo valid-bit(1-bit)type(1-bit)

(a) front-end proxy entry

(b) back-end proxy entry

Figure 5: Front-end and back-end proxy entries.

persistent memory [68], Capri has the following new contributions
over the previous work. First, Capri relies on a two-phase atomic
store to persist regions without explicit cache flushes. Hence, it does
not change the cache structure at all. In contrast, the previous study
periodically scans the cache hierarchy to flush dirty data to NVM
with hardware tag extension. Second, Capri aims for whole-system
persistence that makes any programs crash-consistent, while the
previous study assumes persistent applications with transactions.

5.2 Decoupled Proxy Buffer Architecture
The two-phase atomic store uses the proxy buffer as the safeguard
to prevent partial updates visible after failure recovery. That is,
each phase of store release is strictly ordered by intervening in the
proxy buffer as a bridge. Thus, before completing the first phase,
the second phase does not begin.

5.2.1 Front-End Proxy and the First Phase of Stores. The first phase
of the atomic store generates proxy entries that consist of the home
address and two cache lines (e.g., one for before and another for
after the update), as shown in Figure 5(a). Capri creates proxy
entries for every store instruction in the L1 data cache. In case of
a cache miss, it waits until the cache fetches and allocates a block.
Then, Capri obtains the old cache line (e.g., before the update) and
the new cache line (e.g., after the update) and stores them in the
front-end proxy buffer. Note that the front-end proxy will merge
proxy entries with the same address within a region. If not merged,
it appends the entry at the end of the front-end proxy buffer. The
first phase completes when all stores in regions create associated
proxy entries since the front-end proxy buffer is non-volatile.

It is essential to persist regions sequentially. To delineate regions
within the proxy buffer, region boundary instructions also occupy
the front-end proxy buffer. A single-bit indicator in the entry (e.g.,
type as shown in Figure 5) determines whether the entry is region
boundary. The region boundary entry contains no address and data,
but it only serves as a delimiter between entries. In addition, the
front-end proxy buffer does not merge proxy entries even if two
entries have the same address when they belong to the different
regions. This way, proxy entries in each region become persistent
in sequential order.

The front-end proxy buffer is a fixed and small non-volatile
buffer (e.g., battery-backed SRAMs). Please refer to Section 6.1 for
detailed information. The front-end proxy buffer flushes entries as
much as possible to make space so as not to block the pipeline. In
other words, the core pipeline does not stall as long as the front-end
proxy has space to allocate new entries.

Optimizations: Since the front-end proxy buffer pressures the
memory side with additional traffic, it is important to reduce the
size of proxy entries. To mitigate memory pressure derived from the
front-end proxy, Capri employs the following optimizations. First,

the front-end proxy buffer does not allocate entries for register-
checkpointing stores since their recovery protocol is different from
non-checkpointing (e.g., regular) stores (see Section 5.4 for the re-
covery protocol of Capri). Instead, Capri keeps dedicated register
file storage near the front-end proxy buffer. Hence, only regular
store instructions populate the front-end proxy buffer entries. Fur-
thermore, as a result of compiler-directed region partitioning, there
are many regions without stores. In this case, the front-end proxy
buffer does not allocate an entry for the region boundary to save
traffic to the back-end.

5.2.2 Back-End Proxy and the Second Phase of Stores. The second
phase of the atomic store moves data from the back-end proxy to
NVM home address (i.e., NVM is the non-volatile main memory).
The memory controller contains per-core back-end proxy buffers.
Figure 5(b) illustrates the back-end proxy entry. The back-end proxy
buffer receives proxy entries from the front-end through the proxy
data path, separated and dedicated data path for each core to each
back-end buffer. Note that the back-end does not flush entries until
it accepts the region boundary entry. Instead, once the back-end
receives the region boundary entry, it moves redo data of all proxy
entries of the given region depending on the redo valid-bit (see
Section 5.3 for discussion about the redo valid-bit). Lastly, Capri
performs the second phase of stores in the granularity of regions
(e.g., proxy entries between region boundary entries).

The interplay of architecture and compiler determines the back-
end proxy buffer sizes. Since the back-end proxy must be large
enough to accommodate all proxy entries of any given single region,
it must be greater or equal to the number of proxy entries multiplied
by the threshold given by the compiler. This requirement is essential
to provide the two-phase atomic store protocol. If the back-end
proxy does not buffer all proxy buffer entries of the region, partial
updates remain after crash recovery.

5.3 Enforcing the Persist Order
Capri proposes a distinctive architecture that allows both dirty
cache line writeback and separate data paths to update NVM, while
all related studies permit either only one of them to do so [10, 22,
25, 34, 35, 37, 45, 64, 68]. In particular, Capri does not guarantee
the persist order between the regular path (e.g., through on-chip
and off-chip caches) and proxy path. Hence, the persists between
two paths can come in any order, resulting in an inconsistent main
memory state if not properly handled. Although such inconsistency
does not harm crash consistency, it can leads to a stale read problem.

5.3.1 Stale Reads. Consider an example in Figure 6. The program
executes two regions that both modify address A to 10 and 20,
respectively. The proxy path generates separate proxy entries for
stores in regions #1 and #2 without merging since they belong
to different regions. On the other hand, two stores are merged in
the cache hierarchy. Hence, the regular path causes only a single
writeback request (assuming the MOESI coherence protocol to
minimize unnecessary writeback). Since cache writeback requests
tend to arrive later than proxy entries from the proxy path (or non-
temporal paths) [34, 71], the arrival order is ➊ ➜ ➋ ➜ ➌ in most
cases. If so, this persist order does not harm memory consistency,
and thus no stale reads happen most of the time.

...
...

A = 10

...
...

A = 20region #2

region #1

NVM

regulat-path

(on-chip & off-chip caches)
proxy-path

A=10

A=20

A=203 1

2

Program

Figure 6: The stale read problem due to unordered persist
between the regular and proxy paths.

However, for a rare chance, the order could change due to the
delayed second phase of a region or a particular access pattern in
the program that evicts the cache line quickly. In particular, ➊ ➜ ➌

➜ ➋ or ➌ ➜ ➊ ➜ ➋ can be possible (note that ➊ ➜ ➋ are always
serialized by the proxy path). For the former case (i.e., ➊ ➜ ➌ ➜

➋), it does not corrupt the correctness of Capri. Instead, the last
store (e.g., ➋) is unnecessary and thus wastes NVM bandwidth. On
the other hand, the latter case (i.e., ➌ ➜ ➊ ➜ ➋) causes stale reads
if the load request for A arrives between ➊ and ➋. In that case,
although the correct and latest value is 20, the load request reads
10 from NVM.

Although this misordering may cause stale reads, it does not
corrupt recovery. In particular, whether the power failure happens
in all combinations, Capri can always recover to the latest recovery
point (e.g., the region boundary) since the recovery procedure relies
on undo+redo logging. Please see Section 5.4 for more details.

5.3.2 Stale Read Prevention. Capri introduces two techniques that
manipulate the redo valid-bit in the proxy entry to prevent stale
reads. First, it scans the back-end proxy buffer when dirty cache
block writeback happens and unsets (e.g., invalidates) the redo valid-
bit of entries that match the address. Then, it skips proxy entries
with the redo valid-bit unset during the second phase atomic store.
For example, in two scenarios above (e.g., ➊ ➜ ➌ ➜ ➋ and ➌ ➜ ➊

➜ ➋ in Figure 6), Capri scans the back-end proxy buffer when the
dirty writeback (e.g., ➌) appears from the regular path and unsets
the redo valid-bit of A in the back-end proxy buffer. That way, the
last store (e.g., ➋) in the first example will not happen, saving NVM
bandwidth. Similarly, both proxy entries in regions #1 and #2 will
be skipped during the second phase store in the latter example.
Therefore, the stale read problem does not occur since NVM always
contains the latest value.

Second, when cache writeback occurs, Capri monitors the in-
coming entries from the proxy buffer to handle the case when the
back-end proxy buffer does not populate entries until the write-
back happens. For example, two entries (e.g., ➊ and ➋ in Figure 6)
are not populated yet when the writeback (e.g., ➌) appears. Then,
the scanning approach cannot mitigate the stale reads. Note that
this case is extremely infrequent if considering the latency of the
deep cache hierarchy, including on-chip and off-chip caches. Even
though such rare events occur, Capri can prevent the stale read
problem by monitoring the proxy path if the proxy entries to the
same address appear within the worst-case latency2. If ➊ and ➋

arrive within the window, their redo valid-bits are unset. Hence,

2The worst-case latency of the proxy path is determined in hardware design time
based on hardware specification. All packets are guaranteed to arrive to the destination
within this latency.

Capri does not copy them to NVM on the second phase of stores. If
not, the monitoring ends without doing anything.

5.4 Crash Recovery with Undo+Redo Logging
5.4.1 Recovery Protocol. Capri provides a safe recovery protocol
for whole-system persistence that does not require application-
specific recovery codes. That is, the operating system spawns re-
covery threads when the system reboots after failure. First, they
restore the main memory (NVM) state using proxy entries left in
the proxy buffer. In particular, Capri determines how to restore
regions depending on the two-phase store status (e.g., whether
the first phase has finished or not). For this purpose, the recovery
threads check the region boundary entry as it serves as the commit
marker. If one exists after data proxy entries, it indicates that the
region has been interrupted after completing the first phase. If not
found, the region did not finish the first phase. For regions that have
completed the first phase before failures, the recovery threads copy
redo data of proxy entries of the region to NVM. On the other hand,
regions that have not completed the first phase will be rollbacked.
In particular, undo data in proxy entries of these regions are used
to restore the value before executing them.

Second, the recovery threads restore the register values for each
physical core using the register checkpointing storage in NVM.
When the Capri compiler generates register-checkpointing stores,
their destination addresses are fixed since the number of architec-
tural registers is statically determined in the ISA. Hence, the recov-
ery threads reload the architectural register values using the prede-
fined mapping between the register file and physical addresses.

Once the recovery protocol completes failure recovery, programs
can resume from the beginning of the interrupted regions. Note
that restoring the non-volatile main memory and register values
in cores is sufficient for whole-system persistence since previous
regions have already persisted in the main memory.

5.4.2 Handling Cache Writeback. Capri guarantees sequential per-
sistence of regions for crash recovery. However, the dirty cache
writeback may break the sequential persist order of regions since
Capri allows NVM updates from both caches and proxy paths. For
example, Figure 7 illustrates the program executing two regions.
Suppose that region #1 completes the first phase stores while re-
gion #2 performs the first phase (Figure 7(a)). All back-end proxy
entries are already allocated on the right side of the figure. Then,
in Figure 7(b), the cache writeback updates address A before the
second phase of region #1 (e.g., proxy entries still exist). Hence, the
redo valid-bits of entries with address A become unset (see Sec-
tion 5.3). Next, in Figure 7(c), assume that a power failure happens
after region #1 completes two-phase atomic stores while region #2
does not finish the first phase. However, NVM is inconsistent as A
is supposed to be the value 10 updated by the store in region #1. As
shown in Figure 7(d), Capri can restore the value of A to 10 using
the undo data of proxy entries A in the proxy buffer.

6 EVALUATION
6.1 Methodology
We implemented compiler techniques described in Section 4 in the
LLVM 13.0 compiler infrastructure [48] and architecture support

regulat-path

(on-chip &

off-chip caches) proxy-path

VA 0 10

B 2 3

A

Region Boundary

10 20 V

V

...
...

...

A = 10

B = 3

...
...

A = 20
region

#2

region

#1

NVM

A = 0

B = 2
Program

Back-end Proxy Buffer

Addr Undo Redo R-Valid

(a) Region #1 completes the first phase stores while region #2 is in the middle of the
first phase.

A=20

regulat-path

(on-chip &

off-chip caches) proxy-path

NVM

A = 20

B = 2

IA 0 10

B 2 3

A

Region Boundary

10 20 I

V

...
...

...

A = 10

B = 3

...
...

A = 20
region

#2

region

#1

Program

Back-end Proxy Buffer

Addr Undo Redo R-Valid

(b) Cache writeback to A happens. Invalidate proxy entries in the back-end proxy
buffer that match address A.

...
...

...

A = 10

B = 3

...
...

A = 20
region

#2

region

#1

Program

Back-end Proxy Buffer

I

Addr Undo Redo R-Valid

A 10 20

B=3
A = 20

regulat-path

(on-chip &

off-chip caches) proxy-path

NVM

B = 3

(c) Region #1 completes the second phase stores, and a power failure happens.

...
...

...

A = 10

B = 3

...
...

A = 20
region

#2

region

#1

Program

Back-end Proxy Buffer

I

Addr Undo Redo R-Valid

A 10 20

A = 10

regulat-path

(on-chip &

off-chip caches) proxy-path

NVM

B = 3

(d) Crash recovery rollbacks A=10, which is the end of region #1, using the undo
value of A in the back-end proxy buffer.

Figure 7: Undo+redo logging enables crash recovery even
with unordered persists between regular and proxy paths.

Table 1: Simulator configuration.

Processor ARMv8 (64-bit) ISA, 2GHz, 8way-OoO
128/72-entry Ld/St Queue

L1 I/D Cache
32/32KB, 8-way, private
2ns hit latency
(1ns tag/1ns data latency)

L2 Cache
16MB, 16-way, shared
20ns hit latency
(10ns tag/10ns data latency)

Integrated Mem Ctrl. 32/64-entry DRAM read/write queue
32/16-entry NVM read/write queue

DRAM 8GB, DDR4 2400MHz
NVM 32GB, Read = 150ns, Write = 300ns
Proxy Path 20ns latency

explained in Section 5 in the gem5 simulator [9]. We conduct our
simulation with ARMv8 (64-bit) ISA, modeling an 8-core out-of-
order processor with the vertically-integrated hybrid memory such

50
5.

m
cf

r

53
1.

de
ep

sj
en

g
r

54
1.

le
el

a
r

50
8.

na
m

d
r

51
9.

lb
m

r

cp
u2

01
7

gm
ea

n

ge
no

m
e

in
tr

ud
er

la
by

ri
nt

h

ss
ca

2

va
ca

ti
on

st
am

p
gm

ea
n

ba
rn

es

fm
m

o
ce

an

ra
di

os
it

y

ra
yt

ra
ce

vo
lr

en
d

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
ti

al

ch
ol

es
ky ff

t lu

ra
di

x

sp
la

sh
3

gm
ea

n

ov
er

al
l

gm
ea

n

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

C
yc

le
s

(L
ow

er
is

b
et

te
r) 1.92 1.49 1.82 1.65 1.59

32 64 128 256 512 1024

Figure 8: Normalized execution cycles with different store thresholds.

50
5.

m
cf

r

53
1.

de
ep

sj
en

g
r

54
1.

le
el

a
r

50
8.

na
m

d
r

51
9.

lb
m

r

cp
u2

01
7

gm
ea

n

ge
no

m
e

in
tr

ud
er

la
by

ri
nt

h

ss
ca

2

va
ca

ti
on

st
am

p
gm

ea
n

ba
rn

es

fm
m

o
ce

an

ra
di

os
it

y

ra
yt

ra
ce

vo
lr

en
d

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
ti

al

ch
ol

es
ky ff

t lu

ra
di

x

sp
la

sh
3

gm
ea

n

ov
er

al
l

gm
ea

n

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

C
yc

le
s

(L
ow

er
is

b
et

te
r) 2.3 2.34 1.821.69 2.05 2.43 2.62 2.22

region +ckpt +unrolling +pruning +licm

Figure 9: Normalized execution cycles with different compiler optimizations.

as the memory mode of the Intel Optane [3]. Table 1 shows the
simulation configuration in detail. We configured the integrated
memory controller that governs DRAM and NVM with a separated
read/write queue. The hardware-managed DRAM cache has 64B
of cache block size [81] and uses a direct-mapped policy. Also, we
set the write-pending queue (WPQ) size of 16 entries [81] while
the WPQ is in the part of the persistent domain. The front-end
proxy buffer size is fixed to 32 entries (e.g., 4KB), while the number
of back-end proxy buffer entries is the same as the threshold. For
instance, the threshold of 256 requires 32KB per-core non-volatile
storage (e.g., battery-backed SRAMs) for the back-end proxy buffer.

We evaluated Capri with both single-threaded (SPECCPU2017 [6]
and STAMP [62]) and multi-threaded (Splash3 [69]) benchmarks.
All benchmarks were compiled with standard -O3 optimization,
and the default threshold number of stores in each region is 256.
We ran these benchmarks using the full-system simulation mode
of gem5 with ARM Linux Kernel 4.14.239 compiled with the Capri
compiler. Therefore, the operating system contains the region for-
mation and register-checkpointing stores. For SPEC CPU2017, we
fast-forwarded 10 billion instructions and simulated the following
2 billion instructions (excluding region boundary and checkpoint
store instructions). On the other hand, we simulated the entire pro-
gram execution for Splash3 and STAMP. Furthermore, we compiled
STAMP benchmarks as a sequential program. Lastly, all results are
normalized to the unmodified programs that do not have region
boundary instructions and checkpoint stores.

6.2 Performance Evaluation
Different Store Thresholds. Figure 8 shows execution cycles of

each benchmark from SPEC CPU2017, STAMP, and Splash3 while
varying the store thresholds used to determine the region formation
in the Capri compiler. In addition, we synergically applied compiler

optimizations such as speculative unrolling, checkpoint pruning,
and LICM and plotted the best combination of them.

The trend clearly shows that the larger thresholds (and thus
longer regions) provide better performance because of fewer check-
pointing stores and the less dynamic instruction count increase.
For example, there are clear performance improvements when in-
creasing the threshold from 32 to 64 for several benchmarks such as
508.namd_r from CPU2017, ssca2 from STAMP, and volrend, water-
nsquared, and water-spatial from Splash3. As a result, Capri, with
the threshold of 32, incurs a 20% slowdown compared to volatile ex-
ecution, while increasing the threshold to 64 halves the slowdown,
on average.

Finally, Capri incurs only a 5.1% performance overhead com-
pared to volatile programs—when the threshold is 256—with the
help of the novel Capri architecture. First, the front-end proxy buffer
effectively reduces the volatile and persistence gap while hiding
the data movement from the front to the back-end proxy in the
background. Furthermore, since Capri takes the indirect read-free
design, memory loads—which is more critical than stores in mod-
ern computer architecture—are never slowed down unlike prior
work [34, 45, 64].

Compiler Optimization. This section discusses how the Capri
compiler optimizations, i.e., speculative unrolling, checkpoint prun-
ing, and LICM, affect application performance. Figure 9 shows
execution cycles of the tested benchmarks while accumulatively
applying the compiler optimizations. For instance, the blue bars
indicate the performance overheads of placing region boundary
instructions without checkpointing stores (thus not failure atomic).
The yellow bars show the resulting overheads when checkpointing
stores are inserted on top of the region formation. Similarly, the
right-most purple bars correspond to the overheads of getting all
our compiler optimization techniques enabled.

50
5.

m
cf

r

53
1.

de
ep

sj
en

g
r

54
1.

le
el

a
r

50
8.

na
m

d
r

51
9.

lb
m

r

ge
no

m
e

in
tr

ud
er

la
by

ri
nt

h

ss
ca

2

va
ca

ti
on

ba
rn

es

fm
m

o
ce

an

ra
di

os
it

y

ra
yt

ra
ce

vo
lr

en
d

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
ti

al

ch
ol

es
ky ff

t lu

ra
di

x

0

20

40

60

80

100

A
vg

.
nu

m
b

er
of

in
st

ru
ct

io
ns

in
re

gi
on

s

316198

region +ckpt +unrolling +pruning +licm

Figure 10: Average number of instructions in regions.

50
5.

m
cf

r

53
1.

de
ep

sj
en

g
r

54
1.

le
el

a
r

50
8.

na
m

d
r

51
9.

lb
m

r

ge
no

m
e

in
tr

ud
er

la
by

ri
nt

h

ss
ca

2

va
ca

ti
on

ba
rn

es

fm
m

o
ce

an

ra
di

os
it

y

ra
yt

ra
ce

vo
lr

en
d

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
ti

al

ch
ol

es
ky ff

t lu

ra
di

x

0

5

10

15

20

A
vg

.
nu

m
b

er
of

st
or

e
in

st
ru

ct
io

ns
in

re
gi

on
s

27

region +ckpt +unrolling +pruning +licm

Figure 11: Average number of store instructions in regions.

First, our speculative loop unrolling turns out to be effective for
many of the benchmarks since it expands region lengths signifi-
cantly, as shown in Section 6.3. This speedup empirically proves that
most programs contain short loops—harmful for region-level whole-
system persistence, but Capri’s speculative loop unrolling effec-
tivelymitigates this challenge by lengthening the loop body. Second,
the best-performing set of our compiler optimization techniques
differ across the benchmarks—mainly due to the non-identical ap-
plication characteristics such as store density, live-out registers,
and how they are defined. In addition, although checkpoint pruning
and LICM techniques do not show noticeable speedup in geometric
mean, they reduce NVM writes and thus are particularly beneficial
in terms of improved power consumption and NVM endurance.

6.3 Region Formation
This section reports the average region length (e.g., the number
of instructions therein) and the average number of stores (includ-
ing checkpoints) in regions with different compiler techniques in
Figures 10 and 11, respectively. Region length directly relatd to
performance; for example, 508.namd, ssca2, and volrend show huge
speedup when region sizes grow by using speculative loop un-
rolling. Checkpoint pruning and LICM optimizations reduce the
region sizes since they remove checkpoint stores. Furthermore,
even if the Capri compiler takes 256 stores as the threshold number
to delineate the region boundaries, the resulting formation reveals
that each region has fewer stores than the threshold. These results
indicate that program structures such as loops and function calls
are frequently happening in program execution, limiting the effi-
ciency of the Capri’s region partitioning. Since it is expected to
reduce whole-system persistence costs with longer regions, our
future work is to devise a new algorithm to formulate regions with
having more instructions.

7 OTHER RELATEDWORK
Battery-Backed Buffers: Recent advances in persistent memory
technology propose to locate the battery-backed buffer close to
cores to reduce persistence overheads [1, 7, 23, 66]. For example, In-
tel announced enhanced-ADR (eADR) that includes on-chip caches
within the persistent domain [1]. This feature expects to show dras-
tic performance improvement by removing cache flush overheads
in persistent memory applications, although implementing eADR
turns out to be non-trivial [2]. Besides, whole-system persistence
requires similar hardware support that covers on-chip caches [66].
Furthermore, several research papers have proposed battery-backed
buffers in the cache hierarchy that substantially reduces the capaci-
tor size. For example, TSOPER uses a battery-backed buffer, atomic-
group buffer (AGB), between LLC and NVM [23]. BBB places it
alongside the L1 cache [7]. But, all these works need changes in
the cache coherence mechanisms while Capri does not. The BPB is
the proxy buffer to NVM that prevents partial updates rather than
serving demand loads.

Compiler-DirectedRegionPartitioning: Capri leverages com-
piler analysis to partition program into a series of recoverable
regions. Despite different region criteria and goals, prior studies
leverage such compiler-directed region partitioning, e.g., iDO [50]
and Penny [39] form side-effect-free idempotent regions for power
failure recovery and soft error recovery, respectively. Also, other
prior studies use a gated store buffer (SB) [16, 51, 55, 85]—as a
redo buffer—and split program into a series of regions with the
SB size in mind so that no region overflows the SB. For example,
Turnstile [55] and Turnpike [85] both take advantage of the SB-
aware region formation for soft error resilience, while CoSpec [16]
exploits the region formation to achieve crash consistency across
frequent power failure in energy harvesting systems [14–16, 51]

that do not have caches. On the other hand, Capri targets whole-
system persistence for general-purpose computing platform with
deep cache hierarchy.

8 CONCLUSION
To leverage both high-density and in-memory persistence benefits
of NVM, the users of Intel Optane are forced to select the app-
direct mode over the memory mode. As a result, only a handful of
applications can resort to the both benefits at the expense of persis-
tent programming difficulty. To address the limitation, this paper
introduced Capri, a compiler/architecture co-design scheme for
region-level whole-system persistence. Unlike partial-system per-
sistence, Capri makes any programs failure-atomic without source
code change while letting them enjoy both high-density and in-
memory persistence simultaneously. This guarantee is particularly
promising for the Optane users since Capri can free them from
all the headaches of persistent programming including notorious
crash consistency bugs. To achieve this, the Capri compiler gener-
ates recoverable regions while Capri architecture guarantees their
execution to be crash-consistent. Furthermore, Capri’s compiler
and architecture optimizations enable lightweight whole-system
persistence (5.1% average slowdown), thereby offering all programs
high-performance persistence with increased memory space.

ACKNOWLEDGMENTS
We would like to thank the HPDC reviewers for their insightful
comments and the members of the Purdue CompArch research
group for early discussions on the project. This work was supported
by NSF grants 1750503 (CAREER) and 1814430.

REFERENCES
[1] [n.d.]. eADR: New Opportunities for Persistent Memory Applica-

tions. https://software.intel.com/content/www/us/en/develop/articles/eadr-new-
opportunities-for-persistent-memory-applications.html.

[2] [n.d.]. From FLOPS to IOPS: The New Bottlenecks of Scientific Com-
puting. https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-
scientific-computing/.

[3] [n.d.]. Intel Optane Persistent Memory. https://www.intel.com/content/www/
us/en/products/memory-storage/optane-dc-persistent-memory.html.

[4] [n.d.]. Lenovo Memcached-pmem. https://github.com/lenovo/memcachedpmem.
[5] [n.d.]. PMEM Redis. https://github.com/pmem/redis/tree/3.2-nvml.
[6] [n.d.]. SPEC CPU2017. https://www.spec.org/cpu2017/.
[7] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and

Yan Solihin. 2021. BBB: Simplifying Persistent Programming using Battery-
Backed Buffers. In IEEE International Symposium on High-Performance Computer
Architecture (HPCA).

[8] Mazen Alwadi, Vamsee R. Kommareddy, Clayton Hughes, Simon D. Hammond,
and Amro Awad. 2020. Stealth-Persist: Architectural Support for Persistent
Applications in Hybrid Memory Systems. In IEEE International Symposium on
High Performance Computer Architecture (HPCA).

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News (2011).

[10] Miao Cai, Chance C. Coats, and Jian Huang. 2020. HOOP: Efficient Hardware-
Assisted Out-of-Place Update for Non-Volatile Memory. In ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).

[11] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-Volatile Memory Consistency. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA).

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[13] Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H Kang, and Yuan Xie.
2016. Architecture design with STT-RAM: Opportunities and challenges. In 6
21st Asia and South Pacific Design Automation Conference (ASP-DAC).

[14] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achieving
stagnation-free intermittent computation with boundary-free adaptive execution.
In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[15] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
Directed High-Performance Intermittent Computation with Power Failure Immu-
nity. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS).

[16] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler Di-
rected Speculative Intermittent Computation. In Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[17] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with next-Generation, Non-Volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[18] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through Byte-
Addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles (SOSP).

[19] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient
Algorithms for Persistent Transactional Memory. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[20] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible, and Com-
prehensive Bug Detection for Persistent Memory Programs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[21] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran Chen.
2008. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM
(MRAM) as a universal memory replacement. In 45th ACM/IEEE Design Automa-
tion Conference (DAC).

[22] Kshitij Doshi, Ellis Giles, and Peter Varman. 2016. Atomic persistence for SCM
with a non-intrusive backend controller. In IEEE International Symposium on
High Performance Computer Architecture (HPCA).

[23] Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and Stefanos Kaxiras.
2021. TSOPER: Efficient Coherence-Based Strict Persistency. In IEEE International
Symposium on High Performance Computer Architecture (HPCA).

[24] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and Pratap Sub-
rahmanyam. 2020. go-pmem: Native Support for Programming Persistent Mem-
ory in Go. In USENIX Annual Technical Conference (ATC).

[25] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen, Satish
Narayanasamy, and Thomas F. Wenisch. 2020. Relaxed Persist Ordering Us-
ing Strand Persistency. In Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA).

[26] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. 2019. Pisces: A Scalable and Efficient Persistent Transac-
tional Memory. In USENIX Annual Technical Conference (ATC).

[27] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed Logless
Atomic Durability with Persistent Memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[28] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
Ordered Durable Datastructures for Persistent Memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[29] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-Threaded Appli-
cations. In Proceedings of the Twelfth European Conference on Computer Systems
(EuroSys).

[30] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and
Steve Byan. 2018. Closing the Performance Gap Between Volatile and Persistent
Key-Value Stores Using Cross-Referencing Logs. In USENIX Annual Technical
Conference (ATC).

[31] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In Pro-
ceedings of the 16th USENIX Conference on File and Storage Technologies (FAST).

[32] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[33] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded Hardware Transactional Memory for a Hybrid
DRAM/NVM Memory System. In 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO).

[34] Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: Persistent Memory Specula-
tion (Strict Persistency Can Trump Relaxed Persistency). In Proceedings of the
International Conference on Architectural Support for Programming Languages and

https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://github.com/lenovo/memcachedpmem
https://github.com/pmem/redis/tree/3.2-nvml
https://www.spec.org/cpu2017/

Operating Systems.
[35] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018.

Efficient Hardware-Assisted Logging with Asynchronous and Direct-Update for
Persistent Memory. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[36] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and
Yuan Xie. 2010. Energy-and endurance-aware design of phase change memory
caches. In Design, Automation & Test in Europe Conference & Exhibition (DATE).
136–141.

[37] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Logging. In IEEE
International Symposium on High Performance Computer Architecture (HPCA).

[38] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory. In
17th USENIX Conference on File and Storage Technologies (FAST).

[39] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin Lee,
and Changhee Jung. 2020. Compiler-directed Soft Error Resilience for Lightweight
GPU Register File Protection. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[40] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won.
2016. NVWAL: Exploiting NVRAM in Write-Ahead Logging. In Proceedings of the
Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[41] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A High Performance Persistent Range Index Using
PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP).

[42] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. 2018. ClfB-Tree:
Cacheline Friendly Persistent B-Tree for NVRAM. ACM Transactions on Storage
14, 1, Article 5 (2018).

[43] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD).

[44] Apostolos Kokolis, Thomas Shull, and Josep Huang, Jian Torrellas. 2020. P-
INSPECT: Architectural Support for Programmable Non-Volatile Memory Frame-
works. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[45] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated persist ordering. In
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[46] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,
ChangwooMin, and Sudarsun Kannan. 2020. Durable Transactional Memory Can
Scale with Timestone. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[47] Marc de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012. Static Analysis
and Compiler Design for Idempotent Processing. In the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[48] Chris Lattnea and Vikram Adve. 2004. LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium on Code
Generation and Optimization (CGO).

[49] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.
2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage Technologies (FAST).

[50] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and
Changhee Jung. 2018. IDO: Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[51] Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for transpar-
ent consistency-aware checkpointing in intermittent energy-harvesting systems.
In 2016 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA).

[52] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler Directed Lightweight Soft Error Resilience. In Proceedings of the 16th
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES).

[53] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
Directed Lightweight Checkpointing for Fine-Grained Guaranteed Soft Error
Recovery. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC).

[54] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed soft error detection and recovery to avoid DUE and SDC via Tail-DMR.
ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2016).

[55] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Low-Cost
Soft Error Resilience with Unified Data Verification and Fine-Grained Recov-
ery for Acoustic Sensor Based Detection. In Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[56] Ruicheng Liu, Peiquan Jin, Xiaoliang Wang, Zhou Zhang, Shouhong Wan, and
Bei Hua. 2019. NVLevel: A High Performance Key-Value Store for Non-Volatile
Memory. In IEEE 21st International Conference on High Performance Computing

and Communications (HPCC).
[57] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz: Test

Case Generation for Persistent Memory Programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[58] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. 2020. Cross-Failure Bug Detection in Persistent Memory Pro-
grams. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[59] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019.
PMTest: A Fast and Flexible Testing Framework for Persistent Memory Programs.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[60] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent
Memcached: Bringing Legacy Code to Byte-Addressable Persistent Memory. In
9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage).

[61] Amirsaman Memaripour and Steven Swanson. 2018. Breeze: User-Level Access
to Non-Volatile Main Memories for Legacy Software. In IEEE 36th International
Conference on Computer Design (ICCD).

[62] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford Transactional Applications for Multi-Processing. In IEEE Inter-
national Symposium on Workload Characterization.

[63] Sparsh Mittal, Jeffrey S Vetter, and Dong Li. 2014. LastingNVCache: A technique
for improving the lifetime of non-volatile caches. In IEEE Computer Society Annual
Symposium on VLSI.

[64] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHIS-
PER. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[65] Moohyeon Nam, Hokeun Cha, Youngri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies (FAST).

[66] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence with
Non-volatile Memories. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[67] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: Healing Persis-
tent Memory Bugs without Doing Any Harm. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[68] Matheus A. Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but No Force:
Efficient Hardware Undo+Redo Logging for Persistent Memory Systems. In IEEE
International Symposium on High Performance Computer Architecture (HPCA).

[69] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS).

[70] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H. Noh.
2017. Failure-Atomic Slotted Paging for Persistent Memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[71] Sara Mahdizadeh Shahrai, Seyed Armin Vakil Ghahani, and Aasheesh Kolli. 2020.
(Almost) Fence-less Persist Ordering. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[72] Seunghee Shin, Satis K. Tirukkovalluri, James Tuck, and Yan Solihin. 2017. Pro-
teus: A Flexible and Fast Software Supported Hardware Logging approach for
NVM. In Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO).

[73] Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist: An Easy-
to-Use Java NVM Framework Based on Reachability. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[74] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multiscalar Pro-
cessors. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA).

[75] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. 2009. A novel ar-
chitecture of the 3D stacked MRAM L2 cache for CMPs. In IEEE 15th International
Symposium on High Performance Computer Architecture (HPCA).

[76] Farhad Tabrizi. 2007. The future of scalable stt-ram as a universal embedded
memory. Embedded. com, February (2007).

[77] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating Persistent
Memory and Controlling Them Remotely: An Exploration of Passive Disaggre-
gated Key-Value Stores. In USENIX Annual Technical Conference (ATC).

[78] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST).

[79] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Conference

on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS).

[80] JueWang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. 2013. i 2WAP: Improv-
ing non-volatile cache lifetime by reducing inter-and intra-set write variations.
In IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA).

[81] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile Memory Systems.
In Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[82] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In Proceedings of the USENIX
Conference on Usenix Annual Technical Conference (ATC).

[83] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Technologies (FAST).

[84] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[85] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight Soft Error Resilience for In-Order Cores. In 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[86] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. Energy reduction for
STT-RAM using early write termination. In IEEE/ACM International Conference
on Computer-Aided Design-Digest of Technical Papers.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Limitation of state-of-the-art approaches
	1.3 Overall Design
	1.4 Experimental methodology and evaluation results

	2 Whole-System Persistence: Design Goals
	2.1 SW-Transparent Failure-Atomicity
	2.2 Whole-System Failure-Atomicity

	3 Capri: Compiler/Architecture Co-Design for Whole-System Persistence
	3.1 Region-level Whole-System Persistence
	3.2 Compiler-directed Region Partitioning
	3.3 Architecture-supported Region Failure-Atomicity

	4 Capri Compiler
	4.1 Region Formation
	4.2 Register-Checkpointing Stores
	4.3 Extending Region with Speculative Loop Unrolling
	4.4 Redundant Checkpoint Stores Elimination

	5 Capri Architecture
	5.1 2-Phase Atomic Store with Undo+Redo Logging
	5.2 Decoupled Proxy Buffer Architecture
	5.3 Enforcing the Persist Order
	5.4 Crash Recovery with Undo+Redo Logging

	6 Evaluation
	6.1 Methodology
	6.2 Performance Evaluation
	6.3 Region Formation

	7 Other Related Work
	8 Conclusion
	Acknowledgments
	References

