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Abstract— In the future, deployable, teleoperated surgical
robots can save the lives of critically injured patients in bat-
tlefield environments. These robotic systems will need to have
autonomous capabilities to take over during communication
delays and unexpected environmental conditions during critical
phases of the procedure. Understanding and predicting the
next surgical actions (referred as “surgemes”) is essential for
autonomous surgery. Most approaches for surgeme recognition
cannot cope with the high variability associated with austere
environments and thereby cannot “transfer” well to field
robotics. We propose a methodology that uses compact image
representations with kinematic features for surgeme recognition
in the DESK dataset. This dataset offers samples for surgical
procedures over different robotic platforms with a high vari-
ability in the setup. We performed surgeme classification in two
setups: 1) No transfer, 2) Transfer from a simulated scenario
to two real deployable robots. Then, the results were compared
with recognition accuracies using only kinematic data with the
same experimental setup. The results show that our approach
improves the recognition performance over kinematic data
across different domains. The proposed approach produced a
transfer accuracy gain up to 20% between the simulated and
the real robot, and up to 31% between the simulated robot and
a different robot. A transfer accuracy gain was observed for
all cases, even those already above 90%.

I. INTRODUCTION

There is an increasing interest in using teleoperated sur-
gical robots for austere environments (such as directly on
the battlefield) since they can provide timely interventions
to patients with life-threatening injuries [1]. These systems
are sensitive to delays intrinsic to the limited bandwidth
of many austere environments [2], so there is a need for
platforms with semi-autonomous capabilities that can assist
the surgeon (or medic) when communication is hindered.
These systems require a high level understanding of their
state and environment to take over when required. In order
to effectively interpret the environment, it is helpful to
recognize the current and previous surgical actions, referred
to as ’surgemes’ [3], that are being preformed by the surgeon.
In fact, the accurate recognition of surgeme-like primitives is
valuable for many robot application domains beyond surgery,
such as manufacturing [4] or waste handling [5].
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The use of machine learning approaches for surgeme
recognition requires collecting a substantial amount of data,
which is challenging to obtain in austere settings [6]. Al-
ternatively, it would be desirable to leverage the abundance
of data available from more accessible environments to find
recurrent patterns and apply such insights to new scenarios
[7]–[9]. Hence, the knowledge learned from numerous ac-
cessible platforms could be transferred to deployable robotic
platforms in less hospitable environments. However, field
medical robots are diverse, holding different kinematic con-
figurations, workspaces, and operate under partially unknown
constraints. Such domain differences could hamper state-of-
the-art approaches and prevent models learned on one plat-
form to generalize across other platforms of disparate mor-
phologies [10]. Addressing such challenges involves coming
up with an effective transfer learning architecture than can
generalize over different robots and surgical settings.

This paper presents an approach for identifying surgemes
performed by a surgeon through teleoperation that can deal
with variable environments and minor shifts in robot hard-
ware. The proposed machine learning architecture leverages
both images and kinematic features to transfer knowledge
obtained from a surgical simulator to real deployable robots.
The features were designed to be applicable to any robotic
platform and surgical setup without the need of environment-
specific modeling. The architecture has been tested on a
surgeme classification task under two scenarios: (1) the
source and target data are from the same domain (e.g. same
robot) and (2) the source and target data come from different
domains (e.g. different robots). The use of robot kinematic
and visual data to improve knowledge transfer between dif-
ferent domains is a major enhancement over the current state-
of-the-art. The contributions of this paper can be summarized
as follows: i) a surgeme classification architecture has been
developed for settings with high variability; ii) the impact
of adding visual information to kinematic data for surgeme
recognition during a transfer scenario is demonstrated.

The rest of this work is presented as follows: Section II
discusses the prior work. Section III gives an overview of the
robotic dataset used. Section IV describes the methods used
for surgeme classification. Section V shows the experimental
setup and results. Section VI presents discussion, and Section
VII concludes the paper with a discussion on future work.



II. BACKGROUND AND RELATED WORK

Surgical skill modeling [11] consists of decomposing
surgical tasks into sets of finite, well defined and quantifiable
maneuvers. Such maneuvers can be used to create datasets
of surgical skills, and are referred to as surgemes [12].
Surgeme analysis has been used to model skill, to classify
tasks, and to assess proficiency [13]. Furthermore, surgeme
recognition provides the opportunity for feedback during
surgical training [14] [15]. Finally, surgeme classification has
been identified as a key step in robot automation [13] and is
transferable to other domains of robot autonomy.

Commonly adopted approaches for surgeme recognition
operate either on the user space or task space. In the task
space, robotic kinematic data have been matched to templates
using Hidden Markov Models (HMM), where the surgemes
correspond to one or more states of the HMM [16], [17],
[18]. Ahmidi et al. also used kinematics to compare bench-
marks on approaches for joint segmentation and classification
(sparse HMM, Markov semi-Markov conditional random
field, and skip-chain conditional random field) with feature-
based approaches such as bag of spatio-temporal features
and linear dynamical systems [19]. Other approaches that
use structured prediction include the use of a Skip-Chain
Conditional Random Field (SC-CRF) [20], and a Latent
Convolutional Skip-Chain Conditional Random Field (LC-
SC-CRF) [21].

The previously mentioned works were developed using
the JIGSAW dataset (JHU-ISI Gesture and Skill Assessment
Working Set) [7]. The JIGSAW dataset comprises synchro-
nized video and kinematic information for three procedures
preformed with the da Vinci Surgical System on a bench-
top model: suturing, knot tying, and needle passing. DiPietro
et al. used a recurrent neural network to classify kinematic
data for activity recognition based on the JIGSAW dataset
for surgeme classification and the MISTIC-SL dataset for
longer segments called maneuvers [9].

A limiting factor of the JIGSAW dataset is that it does
not contemplate variability in the environment or domain,
keeping a constant configuration of objects of interest, the
initial conditions of the task, and a single robot (the ‘da-
Vinci’). The lack of variability in task conditions hinders gen-
eralization and the capacity of transfer learning. In contrast,
Madapana et al. [8] used a transfer learning approach based
on models trained with kinematic data from a new dataset
called the DExterous Surgical SKill (DESK) dataset. Using
this dataset, the authors trained a model on a simulated robot
and applied it to different real robots. The approach obtained
55% accuracy in surgeme recognition over a teleoperated
surgical robot when trained only over simulation data and
achieved an improvement of 34% when a small percentage
of real data was added to the training set. The approach
demonstrated the power of transfer learning to augment
training in austere environments. Nonetheless, this approach
was based solely on kinematic information from the robot
and did not consider information related to the state of the
environment.

The DESK dataset is challenging because it offers high
variability by randomizing the object locations and initial
conditions of the tasks over three different robotic domains
(see Fig. 1). For applications with high variation in ob-
ject placement and appearance, image information is of
paramount importance, as it facilitates obtaining features
related to changes in the scene that the kinematic information
of the robot does not account for. Previous work on surgeme
segmentation and classification has included image infor-
mation, yielding equally good results as the kinematic ap-
proaches. These approaches demonstrate that both kinematics
and video data capture relevant information for activity
classification. The work in [22] modelled each surgeme video
clip as the output of a linear dynamical system, extracting
spatio-temporal features from each video to learn a bag-of-
features model. Other methods that employ both modali-
ties (e.g. kinematic and visual) have increased performance
of surgeme segmentation and recognition [18], achieving
better results than the structured learning approaches that
use kinematic data alone. However, these methods did not
evaluate the combination of kinematic and visual data to
improve transfer learning across domains. The addition of
image information allows to address challenging and diverse
settings where visual cues might be the unique information
available about the state of the environment.

We propose an architecture for surgeme classification
across different domains, that uses a compact image rep-
resentation with kinematic data. Our system is tested in a
transfer leaning scenario where models are trained using
simulation data and tested with two real robots. Section IV
describes the implementation details of the architecture.

III. DATASET DESCRIPTION

The dataset used in this paper is the DESK dataset
described in [8]1. This dataset provides synchronized RGB
images, depth and kinematic information for the peg transfer
task from multiple domains including two real robots (Taurus
II and YuMi) and a simulation environment (Taurus II), as
shown in Figure 1. The DESK dataset attempts to account
for the complexity of transfer learning between dissimilar
robots by introducing intentional variance in peg board
configuration and object size and appearance.

Fig. 1: Robotic system setup for peg transfer in the DESK dataset
1Available at https://github.com/nmadapan/Forward_

Project

https://github.com/nmadapan/Forward_Project
https://github.com/nmadapan/Forward_Project


The RGB video, the depth video and the kinematic data
are segmented according to surgemes observed in RGB video
frames. Additional variability is added to the dataset by
randomizing the pick and place locations for the pegs and
the orientation of the board, while leaving the order of the
pegs to be transferred unrestrained. In addition, successful
and failed surgemes are included in the dataset along with the
subsequent recovery maneuvers. From the DESK dataset, we
used Taurus simulator S1-S5 2 , Taurus S1-S8, and YuMi S1-
S8. Details of the surgeme statistics can be found in the Table
I. The dataset includes kinematics variables that represent
robot position, orientation and gripper status as shown in the
Table II.

TABLE I: Surgemes in the peg transfer task. The columns indicate
surgeme ID, name of the surgeme, number of instances present for
each surgeme for the simulator, real Taurus and the YuMi robot.

ID Surgeme name # Sim # Taurus # YuMi
S1 Approach peg 90 110 117
S2 Align & grasp 92 111 123
S3 Lift peg 91 111 123
S4 Transfer peg - Get together 84 111 117
S5 Transfer peg - Exchange 80 111 118
S6 Approach pole 76 109 117
S7 Align & place 75 107 116

TABLE II: Kinematic variables. Note that ts is the Unix times-
tamp, ~J is the vector of joint angles, ~p is the position vector (x,
y and z), ~θ be the Euler angles (yaw, pitch and roll), gs is the
gripper state of the end-effector and R be the 3 x 3 rotation matrix.
(adopted from DESK [8])

Taurus Taurus simulator YuMi
ID Variable ID Variable ID YuMi
1 ts 1 ts 1 ts

2-13 R and ~p 2-4 ~p 2-8 ~J
- 5-7 ~θ 9-11 ~p

14-16 ~p 8-14 ~J 12-20 R
17 gs 15 gs 21 gs

IV. METHODOLOGY

Our approach combines features extracted from video
image and kinematic data to perform transfer learning
in surgeme recognition. The approach is based on robot-
agnostic feature extraction that can be applied to different
environments in a transfer learning scenario.

An overview of our system architecture is given in figure
2. The proposed approach uses a pretrained Convolutional
Neural Network (CNN) to extract meaningful features from
video images. The images extracted from the videos were
resized from 1920× 1080 to a 228× 128. The experiments
in this paper are preformed using the CNN model ResNet18
[23] pre-trained on ImageNet. The last two layers (i.e.,
fully connected and softmax) of ResNet18 were removed
to create a high dimensional feature representation for each
video frame. The extracted features have dimensions of
1× 512× 4× 8, which were flattened to a single vector of
size N = 16384. Due to the large dimension in the output

2a subset from 8 mobile pegboard subjects [8]

of the ResNet18 model a dimensional reduction module was
required to reduce each image/frame features to a lower di-
mensional vector (M = 30, where M << N). Principal Com-
ponent Analysis (PCA) was used to reduce the dimension of
each frame image to a lower 30-dimensional vector. PCA is a
statistical method that applies an orthogonal transformation
to convert a set of observations into a set of uncorrelated
variables. Intuitively, this transformation extracts components
(i.e., features) with the largest possible variance and thus
helps classifiers to distinguish between different surgeme
classes.

In parallel, we extracted features from kinematic data
using a similar approach to the one proposed in the DESK
[8], by reducing the kinematic features from multiple do-
mains to the commonly shared features: position, orientation
and gripper status of the end-effector (14 features: seven
features in each arm). Since each surgeme instance consists
of a variable number of frames, we re-sampled (via linear
interpolation) the original instances to a fixed number of
frames (40) to generate a sequential feature instance for each
surgeme. In particular, for the kinematics, we concatenated
the 14 features corresponding to each frame, to create a
single 560 dimensional vector per surgeme (40× 7× 2).
On the other hand, for the video data, we concatenated the
30 features obtained after the PCA reduction into a single
feature vector of 1200 dimensions (40×30) that represents
each surgeme. Another PCA reduction was applied on the
1200-dimensional feature vector to obtain a 100-dimensional
feature vector for entire image sequence of 40 frames.

In our pipeline, visual features and kinematic features
came from different distributions. Thus, to take advantage of
both visual and kinematic modalities the supervised learning
algorithms were trained separately and their output class
probabilities were combined as shown in the following
equation:

P(C) = λPkin(C)+(1−λ )Pvideo(C), (1)

where C is the class and {Pkin(C), Pvideo(C)} are the prob-
abilities given by supervised learning models using kine-
matic and video features respectively. Here, λ is the hyper-
parameter (from 0 to 1), which modifies the contribution of
the models based on kinematics or video frames. When λ is
set to 0, the classification is based on video data alone. If λ =
1, the classification uses only kinematic data. Note that the
architecture allows to plug in different supervised machine
learning models for kinematics and video. Thus, the models
for video and kinematics can be designed separately. For
simplicity, in our experiments, the same supervised learning
model for both video and kinematic features was used.

The final feature set consists of the gripper’s position,
orientation, status (open/closed) and image features extracted
from the pre-trained ResNet18. These features are agnostic
to the robot. Hence, the same set can be used even when the
task or the robot varies. Having a common set of features
facilitates surgeme classification across different domains,
since it helps models to leverage on the information coming
from another domain.



Fig. 2: Architecture overview of the approach, M: Number of dimensional features extracted using pre-trained CNN, K: number of
kinematic features, N: number of image features after Dimensional reduction module.

V. EXPERIMENTS AND RESULTS

Experimental Setup: The proposed architecture was
tested over two scenarios: no-transfer scenario (train and
test data are obtained from the same domain), and domain-
transfer scenario (train on one domain and test on the other).
The complete domain transfer scenario used the Taurus
simulator (S) data or a combination of simulation and real
robot data (S+R) during training, while the algorithm was
tested entirely on the real robot data. A value α represents the
percentage of real data (i.e., target domain) that was added
to the simulator data (source domain) for the model training.
The rest of the real data (in the target domain) was used as
the testing set. Thus, α = 0 indicates a complete transfer.

Two supervised learning methods were tested: (1) Ran-
dom Forest (RF), and (2) Support Vector Machines (SVM),
using the scikit-learn [24] implementation. A five-fold cross-
validation approach was used with a data split of 80-20% for
training and testing respectively. Furthermore, hyperparam-
eter setting, we used a kernel = poly for SVM classifier.
For RF, we set n estimators = 200 (number of trees in the
forest), and maximum depth = 10. We set the combined
model’s hyper parameter λ to 0.5 for RF and to 0.8 for
SVM (empirical best).

Results: Table III shows the surgeme recognition results
using our approach for kinematics, video information and a
combination of both modalities for the non-transfer scenario.
Kinematic (Kin) features alone perform substantially better
than features based on video frames (Visual). RF performs
better than SVM for visual data achieving up to 63% accu-
racy on the Taurus real robot. Moreover, in most of the cases,
accuracies improved when both kinematic data and image
features are used (Kin+Visual). In general, adding visual data
improved the classification accuracy of surgemes compared
to the use of kinematic or visual data independently.

Two transfer learning scenarios were evaluated: (i) Taurus
simulator to Taurus real robot (Sim2Taurus) and (ii) Taurus
simulator to YuMi (Sim2YuMi). The accuracy results for
the domain-transfer scenario: simulator + real-robot (S+R)
are presented on Figure 3. The results show that kine-
matic+visual features surpass the accuracy and consistently
outperforms results that use only kinematic features.

Fig. 3: Performance comparison for transfer learning Sim2Taurus
(Random Forest). Overall transfer accuracy improved quickly and
it reaches over 93% with only 50% real data in the training. Details
in Table IV.

Figure 4 shows that the performance of both the (Visual)
and (Kin+Visual) data increases as we add more real-robot
data (YuMi) in the training (S+R). The improvement obtained
for the transfer learning scenario using (Kin+Visual) data is
higher than the knowledge transfer based on kinematic data
alone. Hence, when training data is limited on the target
domain, the addition of visual data from simulation could
help boost initial classification accuracy.

Table IV shows transfer accuracy for kinematic only
features (Kin)3, and both kinematic and visual features
(Kin+Visual). It also shows a percentage gain which is
calculated as

Gain =
A2−A1

A1
×100, (2)

where A1 and A2 are the accuracies using Kin features,
and Kin+Visual features, respectively. It can be observed
that adding visual features boosts the transfer accuracy in
both Sim2Taurus and Sim2YuMi robot settings achieving up

3Note that this paper used a subset of simulated data, and thus the
kinematic only transfer results are slightly different than that reported in [8].
For instance, RF accuracy from Sim2Taurus at α = 0 is 28% as compared
to previously reported 34%.



TABLE III: Classification accuracy on the no-transfer scenario using RF and SVM on kinematic only (Kin), visual only (Visual), and
both (Kin+Visual) features. In most cases adding visual features with kinematic features improve the accuracy.

RF SVM
Robot Kin Visual Kin+Visual Kin Visual Kin+Visual

Simulator (Taurus) 92.69 56.46 93.03 91.66 33.16 92.51
Taurus 94.68 63.77 96.49 91.43 35.19 92.73
YuMi 96.87 60.65 97.23 92.90 21.91 93.38

TABLE IV: Domain transfer accuracy (Random Forest) when the models are trained on the Taurus simulator robot and tested on real
robots (Taurus (Sim2Taurus) and YuMi (Sim2Yumi)). α is the percentage of real-robot data used in the training. Features: kinematic only
(Kin), visual only (Visual), and both (Kin+Visual).

Sim2Taurus Sim2Yumi
α(%) Kin Kin+Visual Gain(%) Kin Kin+Visual Gain(%)

0 27.92 33.51 20.00 14.20 14.80 4.24
1 41.94 47.05 12.19 25.64 33.78 31.75
2 49.27 55.22 13.17 37.42 43.07 15.08
3 50.74 56.22 10.82 39.03 46.84 20.00
4 63.65 66.62 4.67 50.38 54.14 7.46

10 78.93 82.54 4.57 74.73 73.40 -1.78
50 93.77 94.03 0.28 88.70 90.14 1.62
90 93.51 96.10 2.77 95.24 96.43 1.25

to 20% and 31% gain respectively. Another observation is
that the performance improvement is generally higher for
smaller α values. Intuitively, when the target domain data
is limited during training, visual information can play an
important role in increasing initial transfer accuracy. As more
target domain data is added to the training, both Kin and
Kin+Visual accuracy increase quickly. In particular, when
only 50% data is added to the simulator training, the accuracy
reaches over 93% and 88% for Sim2Taurus and Sim2YuMi
respectively.

Fig. 4: Performance comparison for transfer learning from
Sim2YuMi (Random Forest). Overall transfer accuracy improved
quickly and it reaches over 88% with only 50% real data in the
training. Details in Table IV.

VI. DISCUSSION

As shown in Section V, higher recognition was generally
achieved when the predicted label is obtained from both
kinematics and visual information. Even though recognition
accuracy was poorer when only visual features were used
for the classification model, adding visual to kinematic data
incremented recognition performance. Particularly, in the
experiment involving transfer learning across domains, vi-
sual information complemented and improved recognition in
transfer scenarios, especially in cases where there was little

to no available training information on the target domain. In
the no-transfer scenario, the recognition accuracy obtained
using only kinematic features was already above 90%, so
when visual features scores were included in the prediction,
results were only marginally higher.

Image features encode information about the motion of the
robot along with information about the scene, environment
and relevant objects. Thus, the image features can provide
knowledge about the aspects of the task that the kinematics
cannot account for. However, the encoded features of the
image provide a noisier representation for robot motion.
Since these features are obtained from a 2D image, which is
a projection of the 3D world, the input is already reducing the
dimensionality of the spatial data. In contrast, the kinematic
data is working at millimeter precision while the image that
was fed to the network represents the robot’s space at the
pixel level.

The extracted kinematic features make no assumptions on
the arm’s morphology. Thus, the approach can be applied
to different robotic systems facilitating a transfer learning
scenario. Additionally, the image features extraction module
of our architecture is not constrained to a particular CNN
model. Thus the ResNet18 can be replaced by other preferred
CNN based models.

Although image features extracted from a pre-trained CNN
network can be useful to extract meaningful features from
domains with limited training data, they fall short when
representing the common traits of objects of interest across
domains. This is currently a limitation of this work, since
the features that are obtained from the ResNet18 are not
particularly designed for surgical tasks. Leveraging these
commonalities across domains, beyond the differences in
environment appearance, might provide information particu-
larly helpful for the transfer learning scenario. For example,
between the simulated and the real robot environment, the
appearance of the peg is different although they share the
same role in the task.



VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a systematic way to incorporate
visual information to improve surgeme classification in sur-
gical robotic tasks. Several experiments were conducted
on datasets from three robotic domains. Results show that
the visual features improve the performance of surgeme
classification when used along with kinematic data. Currently
the features are combined using late fusion. Future work can
explore early fusion techniques to improve the classification
accuracy.

In the transfer scenario, the proposed approach improved
the knowledge transfer accuracy between domains by lever-
aging visual features effectively with the kinematic features
while requiring little data from the target domain. In partic-
ular, the visual data boosted the transfer accuracy between
simulator robot (Taurus) and a different robot (YuMi) by
up to 31% when little real data from the target was added
with the simulator data for training. For the case of transfer
between Taurus simulator to Taurus real robot, an increase
of up to 20% was achieved when incorporating visual data
to the model.
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