
Expanding Holographic Embeddings
for Knowledge Completion

Yexiang Xue? Yang Yuan† Zhitian Xu? Ashish Sabharwal‡

? Dept. of Computer Science, Purdue University, West Lafayette, IN, USA
† Dept. of Computer Science, Cornell University, Ithaca, NY, USA
‡ Allen Institute for Artificial Intelligence (AI2), Seattle, WA, USA

Abstract

Neural models operating over structured spaces such as knowledge graphs require
a continuous embedding of the discrete elements of this space (such as entities)
as well as the relationships between them. Relational embeddings with high
expressivity, however, have high model complexity, making them computationally
difficult to train. We propose a new family of embeddings for knowledge graphs
that interpolate between a method with high model complexity and one, namely
Holographic embeddings (HOLE), with low dimensionality and high training
efficiency. This interpolation, termed HOLEX, is achieved by concatenating several
linearly perturbed copies of original HOLE. We formally characterize the number of
perturbed copies needed to provably recover the full entity-entity or entity-relation
interaction matrix, leveraging ideas from Haar wavelets and compressed sensing. In
practice, using just a handful of Haar-based or random perturbation vectors results
in a much stronger knowledge completion system. On the Freebase FB15K dataset,
HOLEX outperforms originally reported HOLE by 14.7% on the HITS@10 metric,
and the current path-based state-of-the-art method, PTransE, by 4% (absolute).

1 Introduction

Relations, as a key concept in artificial intelligence and machine learning, allow human beings as
well as intelligent systems to learn and reason about the world. In particular, relations among multiple
entities and concepts enable us to make logical inference, learn new concepts, draw analogies, make
comparisons, etc. This paper considers relational learning for knowledge graphs (KGs), which often
contain knowledge in the form of binary relations, such as livesIn(Bill Gates, Seattle). A number of
very large KGs, with millions and even billions of facts, have become prominent in the last decade,
such as Freebase [3], DBpedia [2], YAGO [11], WordNet [17], and WebChild [25].

KGs can be represented as a multigraph, where entities such as Bill Gates and Seattle are nodes,
connected with zero or more relations such as livesIn and likes. Facts such as livesIn(Bill Gates,
Seattle) form typed edges, with the relation—in this case livesIn—being the edge type. In particular,
we are interested in the knowledge completion task for KGs: Given an existing KG, we would like to
use statistical machine learning tools to extract correlations among its entities and relations, and use
these correlations to derive new knowledge about them.

Compositional vector space models, also referred to as matrix or tensor factorization based methods,
have proven to be highly effective for KG completion [e.g., 4, 5, 7, 8, 12, 14–16, 18, 19, 22–24, 27].
In these models, entities and relations are represented as (learned) vectors in a high dimensional space,
and various forms of compositional operators are used to determine the likelihood of a candidate fact.
A good design of the compositional operator is often key to the success of the model. Such design

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

must balance computational complexity against model complexity. Not surprisingly, embedding
models capable of capturing rich correlations in relational data often have limited computational
scalability. On the other hand, models that can be trained efficiently are often less expressive.

We focus on two compositional operators. The first is the full tensor product [18], which captures
correlations between every pair of dimensions of two embedding vectors in Rd, by considering their
outer product. The resulting quadratic (d2) parameter space makes this impractical even for modestly
sized KGs. The second is the circular correlation underlying holographic embedding or HOLE [19],
which is inspired by holographic models of associated memory. Notably, HOLE keeps the parameter
space linear in d by capturing only the sum along each diagonal of the full tensor product matrix.

Our main contribution is a new compositional operator that combines the strengths of these two
models, resulting in much stronger knowledge completion system. Specifically, we propose expanded
holographic embeddings or HOLEX, which is a collection of models that interpolates between
holographic embeddings and the full tensor product.

The idea is to concatenate l ≥ 1 copies of the HOLE model, each perturbed by a linear vector,
allowing various copies to focus on different subspaces of the embedding. HOLEX forms a complete
spectrum connecting HOLE with the full tensor product model: it falls back to HOLE when l = 1
and all entries in the perturbation vector are non-zero, and is equivalent to the full tensor product
model when l = d, the embedding dimension, and all perturbation vectors are linearly independent.

We consider two families of perturbation vectors, low frequency Haar wavelets [6, 10] and random
0/1 vectors. We show that using the former corresponds to considering sums of multiple subsequences
of each diagonal line of the full product matrix, in contrast to the original holographic embedding,
which sums up the entire diagonal. We find that even just a few low frequency vectors in the Haar
matrix are quite effective in practice for HOLEX. When using the complete Haar matrix, the length
of the subsequences becomes one, thereby recovering the full tensor product case. Our second family
of perturbation vectors, namely random 0/1 vectors, corresponds to randomly sub-selecting half the
rows of the tensor product matrix in each copy. This is valuable when the full product matrix is
sparse. Specifically, using techniques from compressed sensing, if each diagonal line is dominated
by a few large entries (in terms of absolute values), we show that a logarithmic number of random
vectors suffice to recover information from these large entries.

To assess its efficacy, we implement HOLEX using the framework of ProjE [22], a recent neural
method developed for the Freebase FB15K knowledge completion dataset [3, 5], where the 95%
confidence interval for statistical significance is 0.3%. In terms of the standard HITS@10 metric,
HOLEX using 16 random 0/1 vectors outperforms the original HOLE by 14.7% (absolute), ProjE by
5.7%, and a path-based state-of-the-art method by 4%.

2 Preliminaries

We use knowledge graphs to predict new relations between entities. For example, given entities
Albany and the New York State, possible relationships between these two entities are CityIn and
CapitalOf. Formally, let E denote the set of all entities in a KG G. A relation r is a subset of E × E ,
corresponding to all entity pairs that satisfy the relation. For example, the relation CapitalOf contains
all (City, State) pairs in which the City is the capital of that particular State. For each relation r, we
would like to learn the characterization function for r, φr(s, o), which evaluates to +1 if the entity
pair (s, o) is in the relation set, otherwise, -1. Notice that s and o are typically asymmetrical. For
example, Albany is the capital of the New York State, but not the other way around. Relations can be
visualized as a knowledge graph, where the nodes represent entities, and one relation corresponds to
a set of edges connecting entity pairs with the given relation.

As mentioned earlier, compositional embeddings are useful models for prediction in knowledge
graphs. Generally speaking, these models embed entities as well as relations jointly into a high
dimensional space. Let s ∈ Rds , o ∈ Rdo , r ∈ Rdr be the embeddings for entities s and o, and the
relation r, respectively. Compositional embeddings learn a score function σ(.) that approximates the
posterior probability of φr(s, o) conditioned on the dataset Ω:

Pr (φr(s, o) = 1 | Ω) = σ(s,o, r). (1)

Many models have been proposed with different functional forms for σ [e.g., 4, 5, 8, 12, 15, 16,
18, 19, 22–24, 27]. A crucial part of these models is the compositional operators they use to

2

capture the correlation between entities and relations. Given entities (and/or relations) embeddings
a = (a0, . . . , ada−1)′ ∈ Rda and b = (b0, . . . , bdb−1)′ ∈ Rdb , a compositional operator is a function
f : Rda × Rdb → Rdf , which maps a and b into another high dimensional space1. Such operators
are used to combine the information from the embeddings of entities and relations to predict the
likelihood of a particular entity-relation tuple in the score function. A good compositional operator
not only extracts information effectively from a and b, but also trades it off with model complexity.

One approach is to use vector arithmetic operations, such as (weighted) vector addition and
subtraction used by TransE [5], TransH [27], and ProjE [22]. One drawback of this approach is that
the embedding dimensions remain independent in such vector operations, preventing the model from
capturing rich correlations across different dimensions. Another popular compositional operator is to
concatenate the embeddings of relations and entities, and later apply a non-linear activation function
to implicitly capture correlations [8, 23].

Given the importance of capturing rich correlations, we focus on two representative compositional
operators that explicitly model the correlations among entities and relations: the full tensor product
and the holographic embedding, described below.

Full Tensor Product Many models, such as RESCAL [18] and its compositional training exten-
sion [9] and Neural Tensor Network [24], take the full tensor product as the compositional operator.
Given two embedding vectors a, b ∈ Rd, the full tensor product is defined as a⊗ b = abT , i.e.,

[a⊗ b]i,j = aibj . (2)

The full tensor product captures all pairwise multiplicative interactions between a and b. Intuitively,
a feature in a ⊗ b is “on” (with large absolute value), if and only if the corresponding features in
both a and b are “on”. This helps entities with multiple characteristics. For example, consider an
entity Obama, who is a man, a basketball player, and a former president of the US. In the embeddings
for Obama, we can have one dimension firing up when it is coupled with Chicago Bulls (basketball
team), but a different dimension firing up when coupled with the White House.

However, this rich expressive power comes at a cost: a huge parameter space, which makes it difficult,
if not impossible, to effectively train a model on large datasets. For example, for RESCAL, the score
for a triple (s, r, o) is defined as:

σ(s,o, r) = grandsum
(
(a⊗ b) ◦Wr

)
(3)

where Wr ∈ Rd×d is the matrix encoding for relation r, ◦ refers to the Hadamard product (i.e., the
element-wise product), and grandsum refers to the sum of all entries of a matrix. With |R| relations,
the number of parameters is dominated by the embedding of all relations, totaling d2|R|. This quickly
becomes infeasible even for modestly sized knowledge graphs.

Holographic Embedding HOLE provides an alternative compositional operator using the idea of
circular correlation. Given a, b ∈ Rd, the holographic compositional operator h : Rd × Rd → Rd

produces an interaction vector of the same dimension as a and b, with the k-th dimension being:

hk(a, b) = [a ? b]k =

d−1∑
i=0

aib(i+k) mod d. (4)

Figure 1 (left) provides a graphical illustration. HOLE computes the sum of each (circular) diagonal
line of the original tensor product matrix, collapsing a two-dimensional matrix into a one-dimensional
vector. Put another way, HOLE still captures pairwise interactions between different dimensions of a
and b, but collapses everything along a each individual diagonal and retains only the sum for each
such ‘bucket’. The HOLE score for a triple (s, r, o) is defined as:

σ(s,o, r) = (s ? o) · r (5)

where · denotes dot-product. This, requires only d|R| parameters for encoding all relations.2

1A composition operator can be between two entities, or between an entity and a relation.
2As discussed later, our improved reimplementation of HOLE, inspired by recent work [22], uses a slight

variation for the tail-prediction (a.k.a. object-prediction) task, namely σ(s,o, r) = [s ? r] · o. Analogously for
head-prediction (a.k.a. subject-prediction).

3

Figure 1: (Left) Visualization of HOLE, which collapses the full tensor product M = ab′ into a
vector by summing up along each (circular) diagonal line, depicted with the same color. (Middle)
HOLE perturbed with a vector c, where each row of M is multiplied with one entry in c prior to the
holographic operation. (Right) HOLEX using the first two Haar vectors. When M has dimension
d× d, this is equivalent to returning a 2× d matrix that sums up along each half of each diagonal
line, depicted by the same color.

The circular correlation used in Holographic embedding can be seen as a projection of the full tensor
product by weighting all interactions the same along each diagonal line. Given its similarity to
(circular) convolution, the actual computation can be carried out efficiently with the fast Fourier
transformation (FFT): h(a, b) = F−1

(
F(a) ◦ F(b)

)
. As before, ◦ refers to element-wise product.

F is the discrete Fourier transform. (x) represents the complex conjugate of x.

3 Expanding Holographic Embeddings

Is there a model that sits in between HOLE and the full tensor product, and provides a better trade-off
than either extreme between computational complexity and model complexity? We present Expanded
Holographic Embeddings or HOLEX, which is a collection of models with increasing complexity
that provides a controlled way to interpolate HOLE and the full tensor product. Given a fixed vector
c ∈ Rd, we define the perturbed holographic compositional operator for a, b ∈ Rd as:

h(a, b; c) = (c ◦ a) ? b. (6)
As before, ◦ represents the Hadamard product and the score for a triple (s, r, o) is computed by taking
the dot product of this composition between two elements (e.g., s and o) and a d-dimensional vector
encoding the third element (e.g., r). In other words, the k-th dimension of h now becomes:

hk(a, b; c) = [(c ◦ a) ? b]k =

d−1∑
i=0

ciaib(i+k) mod d. (7)

In practice, vector c is chosen prior to training. As depicted in Figure 1 (middle), HOLEX visually
first forms the full tensor product of a and b, then multiplies each row with the corresponding
dimension in c, and finally sums up along each (circular) diagonal line. Computationally, HOLEX

continues to benefit from the use of fast Fourier transform: h(a, b; c) = F−1
(
F(c ◦ a) ◦ F(b)

)
.

On one hand, HOLEX falls back to HOLE if we only use one perturbation vector with all non-zero
entries. This is because one can always rescale a to subsume the effect of c.

On the other hand, we can expand HOLE to more complex models by using multiple perturbation
vectors. Suppose we have l vectors c0, . . . , cl−1. The rank-l HOLEX is defined as the concatenation
of the perturbed holographic embeddings induced by c0, . . . , cl−1, i.e.,

h(a, b; c0, . . . , cl−1) = [h(a, b; c0), h(a, b; c1), . . . , h(a, b; cl−1)]. (8)
For simplicity of notation, let matrix Cl denote (c0, . . . , cl−1) and write h(a, b;Cl) to represent
h(a, b; c0, . . . , cl−1). Treating each h(a, b; ci) as a column vector, the entire expanded embedding,
h(a, b;Cl), is a d× l matrix. For the tail-prediction task (analogously for head-prediction), the final
rank-l HOLEX score for a triple (s, r, o) is defined as:

σ(s, r,o) =

l∑
j=0

h(s, r; cj) · o. (9)

4

Importantly, this expanded embedding has the same number of parameters as HOLE itself.3

We start with a basic question: Does rank-l HOLEX capture more information than rank-l′ when
l > l′? The answer is affirmative if c0, . . . , cl−1 are linearly independent. In fact, Theorem 1
shows that under this setting, rank-d HOLEX is equivalent to the full tensor product up to a linear
transformation.

Theorem 1. Let a, b ∈ Rd, l = d, and R be the matrix of the full tensor product matrix arranged
according to diagonal lines, i.e., Ri,j = aib(i+j) mod d. Then rank-d HOLEX satisfies:

h(a, b;Cd) = RTCd.

Note that this linear transformation is invertible if Cd has full rank. In other words, learning a rank-d
expanded holographic embedding is equivalent to learning the full tensor product. As an example,
consider the RESCAL model with score function rT(s⊗ o). This is an inner product between the
relation embedding r and the full tensor product matrix (s ⊗ o) between the subject and object
entities. Suppose we replace the tensor product matrix (s⊗ o) with the full expanded holographic
embedding h(s,o;Cd), obtaining a new model rTh(s,o;Cd). Theorem 1 states that the original
tensor product matrix (s ⊗ o) is connected to h(s,o;Cd) via a linear transformation, making the
two embedding models, rT(s⊗ o) and rTh(s,o;Cd), essentially equivalent.

3.1 Low Rank Holographic Expansions

Theorem 1 states that if we could afford d perturbation vectors, then HOLEX is equivalent to the full
tensor product (RESCAL) matrix. What happens if we cannot afford all d perturbation vectors? We
will see that, in this case, HOLEX forms a collection of models with increasingly richer representation
power and correspondingly higher computational needs. Our goal is to choose a family of perturbation
vectors that provides a substantial benefit even if only a handful of vectors are used in HOLEX.

Different choices of linearly independent families of perturbation vectors extract different information
from the full RESCAL matrix, thereby leading to different empirical performance. For example,
consider using the truncated identity matrix Ik×d, i.e., the first k columns of the d × d identity
matrix, as the perturbation vectors. This is equivalent to retaining the first k major diagonal lines
of the full RESCAL matrix and ignoring everything else in it. Empirically, we found that using
Ik×d substantially worsened performance. Our intuition is that such a choice is worse than using
perturbation vectors that condense information from the entire RESCAL matrix, i.e., vectors with a
wider footprint. We consider two such perturbation families, Haar and random 0/1 vectors.

The following example illustrates the intuition behind such wide-footprint vectors being a better
fit for the task than Ik×d. Consider the tuple 〈Alice, review, paper42〉. When we embed Alice
and paper42 as entities, it may result in the i-th embedding dimension being indicative of a person
(i.e., this dimension has a large value whenever the entity is a person) and the j-th dimension being
indicative of an article. In this case, the (i, j)-th entry of the interaction matrix will have a large value
for the pair 〈Alice, paper42〉, signaling that it fits the relation “review”. If the (i, j)-th entry is far
away from the main diagonal, it will be zeroed out (thus losing the information) when using Ik×d for
perturbation, but captured by vectors with a wide footprint.

3.1.1 Perturbation with Low Frequency Haar Vectors

The Haar wavelet system [6, 10] is widely used in signal processing. The 2 × 2 Haar matrix H2

associated with the Haar wavelet is shown on the left in Figure 2, which also shows H4. In general,
the 2n× 2n Haar matrix H2n can be derived from the n× n Haar matrix Hn as shown on the right
in Figure 2, where ⊗k represents the Kronecker product and I the identity matrix.

Haar matrices have many desirable properties. Consider multiplying H4 with a vector a. We can
see that the inner product between the first row of H4 and a gives the sum of the entries of a (i.e.,∑3

i=0 ai). The inner product between the second row of H4 and a gives the difference between the

3While we discuss expansion in the context of HOLE, it is evident from Eq. (9) that one can easily generalize
the notion (even if not the theoretical results that follow) to any embedding method that can be decomposed
as σ(s, r,o) = g(f(s, r),o), or a similar decomposition for another permutation of s, r,o. In this case, the
expanded version would simply be

∑l
j=0 g(f(cj ◦ s, r),o).

5

H2 =

(
1 1
1 −1

)
H4 =

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 H2n =

(
Hn ⊗k [1, 1]
In ⊗k [1,−1]

)

Figure 2: Haar matrices of order 2, 4, and 2n.

sum of the first half of a and the second half (
∑1

i=0 ai −
∑3

i=2 ai). Importantly, we can infer the
sum of each half of a by examining these two inner products. Generalizing this, consider the first 2k

rows of Hd, referred to as the (unnormalized) 2k Haar wavelets with the lowest frequency. If we
split vector a into 2k segments of equal size, then one can infer the partial sum of each segment by
computing the inner product of a with the first 2k rows of Hd.

This view provides an intuitive interpretation of HOLEX when using perturbation with low frequency
Haar vectors. In fact, we can prove that HOLEX using the first 2k rows of Hd yields an embedding
that contains the partial sums of 2k equal-sized segments along each (circular) diagonal line of the
tensor product matrix. This is stated formally in Proposition 1. The case of using the first two rows of
Hd is visually depicted in the rightmost panel of Figure 1.
Proposition 1. Let 1 ≤ k ≤ K, d = 2K , l = 2k,Hl and Hd be Haar matrices of size l and
d, respectively, and Hd,k be a matrix that contains the first l rows of Hd. h(a, b;H ′d,k) is the
compositional operator for HOLEX using Hd,k as perturbation vectors. Let R be the full tensor
product matrix arranged according to diagonal lines, i.e., Ri,j = aib(i+j) mod d. Define:

W =
1

l
HT

l h(a, b;HT
d,k)

Then, W captures the partial column sums of R. In other words, Wi,j is the sum of entries from
Rdi/l,j to Rd(i+1)/l−1,j , where all indices start from 0.

Proposition 1 formalizes how HOLEX forms an interpolation between HOLE and the full tensor
product as an increasing number of Haar wavelets is used as perturbation vectors. While HOLE
captures the sum along each full diagonal line, HOLEX gradually enriches the representation by
adding subsequence sums as we include more and more rows from the Haar matrix.

3.2 Projection with Random 0/1 Vectors

We next consider random perturbation vectors, each of whose entries is sampled independently and
uniformly from {0, 1}. As suggested by Figure 1 (middle), HOLE perturbed with one such random
0/1 vector is equivalent to randomly zeroing out roughly half the d rows (corresponding to the 0s in
the vector) from the tensor product matrix, before summing along each (circular) diagonal line.

0 20 40 60
0

20

40

60
0.2

0.4

0.6

0.8 norm
alized value

0 20 40 600.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
va

lu
e

Figure 3: Sparse nature of full 64× 64 RESCAL matrices learned from the FB15k dataset. The heat
map on the left shows a typical entity-relation matrix, i.e., a particular s⊗ r. The plot on the right
shows the average magnitudes of the entries in each (circular) diagonal line, normalized so that the
largest entry in each diagonal is 1, sorted in decreasing order, and averaged over the entire dataset.

Random vectors work particularly well if the full tensor product matrix is sparse, which turns out
to often be the case. Figure 3 illustrates this sparsity for the FB15K dataset. The heat map on the
left highlights that there are relatively few large (dark) entries overall. The plot on the right shows
that each circular diagonal line, on average, is dominated by very few large entries. For example, on

6

average, the 5th largest entry (out of 64) has a magnitude of only about half that of the largest. The
values decay rapidly. This is in line with our expectation that different entries of the RESCAL matrix
carry different semantic information, not all of which is generally relevant for all entity-relation pairs.

To understand why random vectors are suitable for sparse interactions, consider the extreme but
intuitive case where only one of the d entries in each diagonal line has large magnitude, and the rest
are close to zero. For a particular diagonal line, one random vector zeros out a set of approximately
d/2 entries, and the second random vector zeros out another set of d/2 entries, chosen randomly
and independently of the first set. The number of entries that are not zeroed out by either of the two
random vectors is thus approximately d/4. Continuing this reasoning, in expectation, only one entry
will “survive”, i.e., remain not zeroed out, if one adds log2 d of such 0/1 random vectors.

Suppose we apply HOLEX with 2 log d random vectors. For a particular diagonal line, approximately
half (log d) of the random vectors will zero out the unique row of the large entry, thereby resulting in a
small sum for that diagonal. Consider those log d random vectors that produce large sums. According
to the previous reasoning, there is, in expectation, only one row that none of these vectors zeros out.
The intersection of this row and the diagonal line must, then, be the location of the large entry.

Therefore, we have the following theorem, saying that if there is only one non-zero entry in every
diagonal, HOLEX can recover the whole matrix.
Theorem 2. Suppose there is only one non-zero entry, of value 1, in each diagonal line of the
tensor product matrix. Let η > 0 and d be the embedding dimension. HOLEX expanded with
d3 log d− log ηe − 1 random 0/1 vectors can locate the non-zero entry in each diagonal line of the
tensor product matrix with probability at least 1− η.

Assuming exactly one non-zero entry per diagonal might be too strong, but it can be weakened using
techniques from compressed sensing, as reflected in the following theorem:
Theorem 3. Suppose each diagonal line of the tensor product matrix is s-sparse, i.e., has no
more than s non-zero entries. Let A ∈ Rl×d be a random 0/1 matrix. Let η ∈ (0, 1) and l ≥
C(s log(d/s) + log(ε−1)) for a universal constant C > 0. Then HOLEX with the rows of A as
perturbation vectors can recover the tensor product matrix, i.e., identify all non-zero entries, with
probability at least 1− η.

The proofs of the above two theorems are deferred to the Appendix. We note that Theorem 3 also
holds in the noisy setting where diagonal lines have s large entries, but are corrupted by some bounded
noise vector e. In this case, we do not expect to fully recover the original tensor product matrix, but
can identify a matrix that is close enough, which is sufficient for machine learning applications. We
omit the details (cf. Theorem 2.7 of Rauhut [20]). Thus, HOLEX works provably as long as each
diagonal of the tensor product matrix can be approximated by a sparse vector.

4 Experiments

For evaluation, we use the standard knowledge completion dataset FB15K [5]. This dataset is a subset
of Freebase [3], which contains a large number of general facts about the world. FB15K contains
14,951 entities, 1,345 relations, and 592,213 facts. The facts are divided into 483,142 for training,
50,000 for validation, and 59,071 for testing.

We follow the evaluation methodology of prior work in this area. For each triple (s, r, o), we create a
head prediction query (?, r, o) and a tail prediction query (s, r, ?). For head prediction (tail prediction
is handled similarly), we use the knowledge completion method at hand to rank all entities based
on their predicted likelihood of being the correct head, resulting in an ordered list L. Since many
relations are not 1-to-1, there often are other (already known) valid facts of the form (s′, r, o) with
s′ 6= s in the training data. To account for these equally valid answers, we follow prior work and filter
out such other valid heads from L to obtain L′. Finally, for this query, we compute three metrics: the
0-based rank r of s in this (filtered) ordered list L′, the reciprocal rank 1

r+1 , and whether s appears
among the top k items in L′ (HITS@k, for k ∈ {10, 5, 1}). The overall performance of the method
is taken to be the average of these metrics across all head and tail prediction queries.

We reimplemented HOLE using the recent framework of Shi and Weninger [22], which is based
on TensorFlow [1] and is optimized for multiple CPUs. We consider both the original embedding
dimension of 150, and a larger dimension of 256 that is better suited for our Haar vector based linear

7

perturbation. In the notation of Shi and Weninger [22], we changed their interaction component
between entity e and relation r from e⊕r = Dee+Drr+bc to the (expanded) holographic interaction
h(e, r). We also dropped their non-linearity function, tanh, around this interaction for slightly better
results. Their other implementation choices were left intact, such as computing interaction between e
and r rather than between two entities, using dropout, and other hyper-parameters.

4.1 Impact of Varying the Number of Perturbation Vectors

To gain insight into HOLEX, we first consider the impact of adding an increasing number l of
linear perturbation vectors. We start with a small embedding dimension, 32, which allows for a full
interpolation between HOLE and RESCAL. We then report results with embedding dimension 256,
with up to 8 random 0/1 vectors. Figure 4 depicts the resulting HITS@10 and Mean Rank metrics, as
well as the training time per epoch (on a 32-CPU machine on Google Cloud Platform).

0 10 20 30
number of 0/1 random vectors

130

140

150

160

fil
te

re
d_

m
ea

n_
ra

nk

filtered_mean_rank
filtered_hits@10

0.56

0.58

0.60

0.62

fil
te

re
d_

hi
ts

@
10

2 4 6 8
number of 0/1 random vectors

45

50

55
fil

te
re

d_
m

ea
n_

ra
nk

filtered_mean_rank
filtered_hits@10

0.84

0.86

0.88

fil
te

re
d_

hi
ts

@
10

2 4 6 8
number of 0/1 random vectors

800

900

1000

1100

1200

1300

tim
e

pe
r e

po
ch

(s
ec

s)

Figure 4: Impact of using a varying number l of random 0/1 vectors on the performance of HOLEX
on FB15K. Left: HITS@10 and Mean Rank for a full interpolation between HOLE (l = 1) and
RESCAL (l = 32), when the embedding dimension d = 32. Middle: Similar trend for d = 256.
Right: Training time per epoch for experiments with d = 256.

On both small- and large-scale experiments, we observe that both the mean rank and HIT@10 metrics
generally improve (ignoring random fluctuations) as l increases. On the large-scale experiment, even
with l = 2, we already observe a substantial, 2.5% improvement in HITS@10 (higher is better) and
a reduction in mean rank (lower is better) by 8. In this particular case, mean rank saturates after
l = 3, although HITS@10 continues to climb steadily till l = 8, and suggests further gains if even
more perturbation vectors were to be used. The rightmost plot indicates that the training time scales
roughly linearly, thus making l an effective knob for trading off test performance with training time.

4.2 Comparison with Existing Methods

We now compare HOLEX with several representative baselines. All baseline numbers, except for our
reimplementation of HOLE, are taken from Shi and Weninger [22], who also report performances of
additional baselines, which fared worse than TransR reported here.
Remark 1. In private communication, Shi and Weninger noted that the published numbers for their
method, ProjE, were inaccurate due to a bug (Github issue #3). We use their updated code from
https://github.com/bxshi/ProjE and new suggested parameters, reported here for completeness: max
50 iterations, learning rate 0.0005, and negative sampling weight 0.1. We increased the embedding
dimension from 200 to 256 for consistency with our method and reduced batch size to 128, which
improved the HITS@10 metric for the best variant, ProjE_listwise, from 80.0% to 82.9%. We use this
final number here as the best ProjE baseline.

Table 1 summarizes our main results, with various method sorted by increasing HITS@10 perfor-
mance. The best baselines numbers are highlighted in bold, and so are the best numbers using our
expanded holographic embeddings method. We make a few observations.

First, although the RESCAL approach [18], which works with the full outer product matrix, is capable
of capturing rich correlation by looking at every pair of dimensions, the resulting quadratically many
parameters make it difficult to train in practice, eventually resulting in poor performance.

Second, models such as TransE [5] and TransR [16] that rely on simple vector arithmetic such as
adding/subtracting vectors, are unable to capture rich correlation, again resulting in low performance.

8

Knowledge Completion Method Mean HITS@10 MRR HITS@5 HITS@1
Rank (%) (%) (%)

EXISTING METHODS
RESCAL [18] 683 44.1 - - -
TransE [5] 125 47.1 - - -
TransR [16] 77 68.7 - - -
TransE + Rev [15] 63 70.2 - - -
HOLE (original, dim=150) [19] - 73.9 0.524 - 40.2
HOLE (reimplementation, dim=150) 70 78.4 0.588 72.0 47.7
ProjE_pointwise? (dim=256) [22] 71 80.2 0.650 74.8 56.7
ProjE_wlistwise? (dim=256) [22] 64 82.1 0.666 76.8 57.9
ProjE_listwise? (dim=256) [22] 53 82.9 0.665 78.1 56.8
HolE (reimplementation, dim=256) 51 83.0 0.665 77.9 56.9
ComplEx [26] - 84.0 0.692 - 59.9
PTransE (ADD, len-2 path) [15] 54 83.4 - - -
PTransE (ADD, len-3 path) [15] 58 84.6 - - -
DistMult [28], re-tuned by Kadlec et al. [13] 42 89.3 0.798 - -

PROPOSED METHOD (dim=256)
HolE (reimplemented baseline from above) 51 83.0 0.665 77.9 56.9
HOLEX, 8 Haar vectors 51 86.7 - - -
HOLEX, 2 random 0/1 vectors 48 85.4 0.720 81.4 64.0
HOLEX, 4 random 0/1 vectors 47 87.1 0.763 83.9 69.8
HOLEX, 8 random 0/1 vectors 47 87.9 0.786 85.0 73.1
HOLEX, 16 random 0/1 vectors 49 88.6 0.800 86.0 75.0

Table 1: Expanded holographic embeddings, HOLEX, outperform a variety of knowledge completion
methods on the FB15K dataset. Mean Rank (0-based) and HITS@10 are the main metrics we track;
other metrics are reported for a more comprehensive comparison with prior work. Numbers are
averages across head- and tail-prediction tasks, individual results for which may be found in the
Appendix. ? See Remark 1 for an explanation of ProjE results.

Third, reimplementing HOLE using the ProjE framework increases HITS@10 from 73.9% to 78.4%,
likely due to improved training with the TensorFlow backend, regularization techniques like dropout,
and entity-relation interaction rather than original HOLE’s entity-entity interaction. Further, simply
increasing the embedding dimension from 150 to 256 allows HOLE to achieve 83.0% HITS@10,
higher than most baseline methods that do not explicitly model KG paths, except for DistMult [28]
which was re-tuned very carefully for this task [13] to achieve state-of-the-art results.4

Relative to the (reimplemented) HOLE baseline, our proposed HOLEX with 8 Haar vectors improves
the HITS@10 metric by 3.7%. The use of random 0/1 vectors appears somewhat more effective,
achieving 88.6% HITS@10 with 16 such vectors, which is a 5.7% improvement over ProjE, which
formed our codebase. This setting also achieves a mean reciprocal rank (MRR) of 0.800 and HITS@1
of 75.0%, matching or outperforming a wide variety of existing methods along various metrics.5

5 Conclusion

We proposed expanded holographic embeddings (HOLEX), a new family of embeddings for knowl-
edge graphs that smoothly interpolates between the full product matrix of correlations on one hand,
and an effective lower dimensionality method, namely HOLE, on the other. By concatenating several
linearly perturbed copies of HOLE, our approach allows the system to focus on different subspaces
of the full embedding space, resulting in a richer representation. It recovers the full interaction matrix
when sufficiently many copies are used. Empirical results on the standard FB15K dataset demonstrate
the strength of HOLEX even with only a handful of perturbation vectors, and the benefit of being able
to select a point that effectively trades off expressivity of relational embeddings with computation.

4A recent model called EKGN [21] outperforms this with HITS@10 at 92.7% and mean rank 38.
5Our HOLEX implementation uses the hyper-parameters recommended for ProjE, except for embedding

dimension 256 and batch size 128. Hyper-parameter tuning targeted for HOLEX should improve results further.

9

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-scale machine learning

on heterogeneous distributed systems. CoRR, abs/1603.04467, 2015.

[2] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. DBpedia–a crystallization point for the web of data. Web
Semantics: science, services and agents on the world wide web, 7(3):154–165, 2009.

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In ICMD, pages
1247–1250. ACM, 2008.

[4] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint learning of words and
meaning representations for open-text semantic parsing. In AISTATS, 2012.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pages 2787–2795, 2013.

[6] Charles K. Chui, Jeffrey M. Lemm, and Sahra Sedigh. An Introduction to Wavelets. Academic
Press, 1992.

[7] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, pages 1811–1818, 2018.

[8] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin P Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A web-scale approach to
probabilistic knowledge fusion. In KDD, pages 601–610, 2014.

[9] Kelvin Guu, John G Miller, and Percy Liang. Traversing knowledge graphs in vector space. In
EMNLP, 2015.

[10] Alfred Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen.
Springer-Verlag, 1910.

[11] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard De Melo,
and Gerhard Weikum. YAGO2: Exploring and querying world knowledge in time, space, context,
and many languages. In WWW, pages 229–232. ACM, 2011.

[12] Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski. A latent
factor model for highly multi-relational data. In NIPS, 2012.

[13] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion: Baselines
strike back. In Rep4NLP Workshop at ACL, 2017.

[14] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In ICML, 2018.

[15] Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song Liu. Modeling
relation paths for representation learning of knowledge bases. In EMNLP, 2015.

[16] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, 2015.

[17] George A. Miller. WordNet: A lexical database for English. Communications of the ACM, 38
(11):39–41, 1995.

[18] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, pages 809–816, 2011.

[19] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of
knowledge graphs. In AAAI, pages 1955–1961, 2016.

[20] Holger Rauhut. Compressive sensing and structured random matrices. Theoretical foundations
and numerical methods for sparse recovery, 9:1–92, 2010.

10

[21] Yelong Shen, Po-Sen Huang, Ming-Wei Chang, and Jianfeng Gao. Link prediction using
embedded knowledge graphs. CoRR, abs/1611.04642v5, 2018.

[22] Baoxu Shi and Tim Weninger. ProjE: Embedding projection for knowledge graph completion.
In AAAI, pages 1236–1242, 2017.

[23] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic composi-
tionality through recursive matrix-vector spaces. In EMNLP-CoNLL, 2012.

[24] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with
neural tensor networks for knowledge base completion. In NIPS, 2013.

[25] Niket Tandon, Gerard de Melo, Fabian M. Suchanek, and Gerhard Weikum. WebChild:
Harvesting and organizing commonsense knowledge from the web. In WSDM, 2014.

[26] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In ICML, pages 2071–2080, 2016.

[27] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

[28] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR, 2015.

11

A Additional Empirical Results

Tables 2 and 3 summarize the performance of HOLEX for the head- and tail-prediction tasks,
respectively. Note that the corresponding numbers are averaged when reporting the main results in
Table 1 on the full task.

As has been observed in prior work, the tail-prediction task is considerably easier than head-prediction
for named-entity knowledge bases such as Freebase. This is because many-to-one relations tend to be
more common than one-to-many relations. For instance, many people “live in" one city or “work for"
one company; where as relatively few people have been the “president of” the United States).

We see, for example, that when using 8 random 0/1 vectors in HOLEX, the tail-prediction HITS@10
metric is 90.5%, which is 5.2% higher than that for head-prediction. Similarly, the mean rank for
tail-prediction is 35 in this case, compared to 58 for head prediction.

Knowledge Completion Method Mean HITS@10 MRR HITS@5 HITS@1
Rank (%) (%) (%)

HolE (reimplemented baseline, dim=256) 62 80.3 0.640 75.1 54.6
HOLEX, 8 Haar vectors 63 84.1 - - -
HOLEX, 2 random 0/1 vectors 60 82.8 0.696 78.7 61.8
HOLEX, 4 random 0/1 vectors 59 84.6 0.740 81.4 67.7
HOLEX, 8 random 0/1 vectors 58 85.3 0.763 82.5 70.9
HOLEX, 16 random 0/1 vectors 61 86.1 0.777 83.4 72.8

Table 2: Performance of HOLEX on the head-prediction task. Table 1 reports the average of this and
tail-prediction performance.

Knowledge Completion Method Mean HITS@10 MRR HITS@5 HITS@1
Rank (%) (%) (%)

HolE (reimplemented baseline, dim=256) 41 85.6 0.690 80.7 59.2
HOLEX, 8 Haar vectors 39 89.3 - - -
HOLEX, 2 random 0/1 vectors 36 88.0 0.744 84.1 66.3
HOLEX, 4 random 0/1 vectors 35 89.5 0.785 86.5 72.0
HOLEX, 8 random 0/1 vectors 35 90.5 0.810 87.5 75.4
HOLEX, 16 random 0/1 vectors 37 91.1 0.823 88.6 77.2

Table 3: Performance of HOLEX on the tail-prediction task. Table 1 reports the average of this and
head-prediction performance.

B Proof Details

Proof of Theorem 1. According to the definition of the expanded holographic embedding. We have
the j, i-th entry of the matrix h(a, b;Cd) is:

[h(a, b;Cd)]j,i =

d−1∑
l=0

ci,lalb(l+j) mod d.

in which ci,l is the l, i-th entry of the matrix Cd, and alb(l+j) mod d is Rl,j – the l, j-th entry of
matrix R. Therefore,

h(a, b;Cd)′ = C ′dR.

which is equivalent to what the Theorem states.

Definition 1. A random 0/1 matrix A ∈ {0, 1}l×d is a matrix whose entries are chosen independently
and uniformly at random from {0, 1}.
Claim 1. Suppose x,y ∈ Rd are two vectors, each with exactly one non-zero entry, and at different
locations. Let A ∈ {0, 1}l×d be a random 0/1 matrix. Then Pr(Ax = Ay) ≤ 1

2l
.

12

Proof. Suppose the i-th entry is the unique non-zero in x, and similarly for the j-th entry in y.
Ax = Ay must imply that A(:, i) = A(:, j). Otherwise, suppose Ak,i = 1 but Ak,j = 0, this leads
to Ax to be non-zero but Ay to be zero. Contradiction. Given this fact,

Pr(Ax = Ay) ≤ Pr(A(:, i) = A(:, j)) = 1/2l

as claimed.

Proof of Theorem 2. Because d diagonal lines are mutually independent, it suffices to prove the
statement holds for one diagonal line with probability at least 1− η/d. A union bound argument can
be applied to show that the statement holds for all d diagonal lines with probability at least 1− η. In
this case, the rest of the proof focuses on one diagonal line.

The effect of applying expanded holographic embedding with l random 0/1 vectors on one diagonal
line is to multiply this diagonal line with a l-by-d random 0/1 matrix A. This fact can be quickly
checked with the graphical example in Figure 1 (middle). Suppose x and y are two possible
configurations of one diagonal line of interest (i.e., both x and y have one non-zero entry of value 1).
If a random 0/1 matrix A can tell apart every pairs of x and y, we can decide which configuration
the diagonal line is actually in by examining the result of the expanded holographic embedding. In
other words, it is sufficient to prove the following: let l = d3 log d− log ηe − 1. sample an l-by-d
random 0/1 matrix A, then with probability at least 1− η/d, we must have Ax 6= Ay holds, for any
two vectors x and y with exact one non-zero entry of value 1.

Pr(∀x,y ∈ D : x 6= y,Ax 6= Ay) (10)
= 1− Pr(∃x,y ∈ D : x 6= y,Ax = Ay) (11)

≥ 1− d(d− 1)

2
Pr(Ax0 = Ay0) (12)

≥ 1− d(d− 1)

2

1

2l
≥ 1− η/d. (13)

Here, D is the space with vectors of exact one non-zero entry of value 1. The size of D is d(d−1)
2 . It

is a union bound argument from (2) to (3). From (3) to (4) we use Claim 1. The last inequality is
because l ≥ 3 log d− log η − 1.

The proof of theorem 3 makes many connections to compressed sensing. We provide a brief review
here. Many definitions and lemmas can be found in [20]. We first introduce the notion of restricted
isometry property.

Definition 2 (restricted isometry property [20]). The restricted isometry constant δs of a matrix
A ∈ Rm×d is defined as the smallest δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

for all s-sparse x ∈ Rd.

It is well known that restricted isometry property implies recovery of sparse vectors, which can be
shown below.

Lemma 1 (Theorem 2.6, [20]). Suppose the restricted isometry constants δ2s of a matrix A ∈ Rm×d

satisfies δ2s < 1
3 , then every s-sparse vector x∗ ∈ Rd is recovered by `1-minimization.

Therefore, in order to guarantee sparse recovery of x∗, we need a good matrix A. It turns out that
random Bernoulli matrix has good restricted isometry constant upper bound:

Lemma 2 (Theorem 2.12, [20]). Let A ∈ Rm×d be a Bernoulli random matrix, where every entry
of the matrix takes the value 1√

m
or − 1√

m
with equal probability. Let ε, δ ∈ (0, 1) and assume

m ≥ Cδ−2(s log(d/s)) + log(ε−1) for a universal constant C > 0. Then with probability at least
1− ε the restricted isometry constant of A satisfies δs ≤ δ.

13

Lemma 3 (Compressed sensing). Let A ∈ Rm×d be a Bernoulli random matrix, where every entry
of the matrix takes the value 1√

m
or − 1√

m
with equal probability. Let x∗ ∈ Rd be a vector with at

most s non-zero entries. let ε ∈ (0, 1) and assume

m ≥ C(s log(d/s) + log(ε−1))

for a universal constant C > 0. Let random linear measurements y = Ax∗ be given, and x be a
solution of

min
z
‖z‖1 subject to y = Az (14)

Then with probability at least 1− ε, x = x∗.

Proof of Lemma 3. By setting δ = 1
3 in Lemma 2, and using Lemma 1, Lemma 3 is proved.

Lemma 4. Let ε ∈ (0, 1). If x1, x2 ∈ Rd have at most s non-zero entries, A ∈ Rm×d is a Bernoulli
random matrix,m ≥ C(s log(d/s)+log(ε−1)) for a universal constantC > 0. If we have y1 = Ax1,
y2 = Ax2, and y1 = y2, then with probability at least 1− ε, we know that x1 = x2.

Proof. Lemma 4 is a corollary of Lemma 3. Lemma 3 says that if x is sparse, then y uniquely
determines x by running `1 regression. That means, y can be used as a certificate for testing whether
the unknown vector x is what we want. Using Lemma 3, we know that by running `1 regression, we
could recover the unique solution for both y1 = Ax1 and y2 = Ax2. Since y1 = y2, by probability
1− ε, the two programs have the same unique solution, denoted as x′.

If x1 6= x2, it means x′ is not the same as at least one of them. Without loss of generality, assume
x′ 6= x1. This contradicts the claim of Theorem 3, which says x′ equals x1.

Proof of Theorem 3. Theorem 3 is a simple corollary of Lemma 4. To prove Theorem 3, it is
sufficient to prove that a l-by-d Bernoulli random matrix can differentiate all s-sparse vectors with
high probability, which is implied by Lemma 4.

14

	Introduction
	Preliminaries
	Expanding Holographic Embeddings
	Low Rank Holographic Expansions
	Perturbation with Low Frequency Haar Vectors

	Projection with Random 0/1 Vectors

	Experiments
	Impact of Varying the Number of Perturbation Vectors
	Comparison with Existing Methods

	Conclusion
	Additional Empirical Results
	Proof Details

