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Abstract

Accelerating the learning of Partial Differential Equations
(PDEs) from experimental data will speed up the pace of
scientific discovery. Previous randomized algorithms exploit
sparsity in PDE updates for acceleration. However such meth-
ods are applicable to a limited class of decomposable PDEs,
which have sparse features in the value domain. We propose
REEL, which accelerates the learning of PDEs via random
projection and has much broader applicability. REEL exploits
the sparsity by decomposing dense updates into sparse ones
in both the value and frequency domains. This decomposition
enables efficient learning when the source of the updates con-
sists of gradually changing terms across large areas (sparse in
the frequency domain) in addition to a few rapid updates con-
centrated in a small set of “interfacial” regions (sparse in the
value domain). Random projection is then applied to com-
press the sparse signals for learning. To expand the model
applicability, Taylor series expansion is used in REEL to ap-
proximate the nonlinear PDE updates with polynomials in the
decomposable form. Theoretically, we derive a constant fac-
tor approximation between the projected loss function and
the original one with poly-logarithmic number of projected
dimensions. Experimentally, we provide empirical evidence
that our proposed REEL can lead to faster learning of PDE
models (70%-98% reduction in training time when the data is
compressed to 1% of its original size) with comparable qual-
ity as the non-compressed models.

1 Introduction
Physics models encoded in Partial Differential Equations
(PDE) are crucial in the understanding of many natural phe-
nomena such as sound, heat, elasticity, fluid dynamics, quan-
tum mechanics etc. Learning these physics models from
data is essential to enhance our understanding of the world,
accelerate scientific discovery, and design new technolo-
gies. Deep neural networks (e.g., physics-informed neural
nets (Raissi, Perdikaris, and Karniadakis 2019b), Hamilto-
nian neural nets (Greydanus, Dzamba, and Yosinski 2019))
have been successfully deployed in this domain. In these ap-
proaches, the spatial and temporal updates of a PDE model
are matched with ground truth experimental observations.
A loss function is defined based on the mismatch between
the simulation and the ground truth, and then the physics
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Figure 1: High-level idea of our REEL algorithm. REEL de-
composes spatial and temporal updates into sparse signals
in the value and the frequency domains. Random projection
compresses these sparse signals for accelerated learning of
PDEs. This example uses the decomposition of the vacancy
concentration cv in learning the nanovoid evolution in mate-
rials under extreme conditions.

model is learned by back-propagation of error gradients of
the loss function (Xue et al. 2021a; Raissi, Perdikaris, and
Karniadakis 2019b). Nevertheless, such learning processes
are expensive because of the need to back-propagate gra-
dients over spatial and temporal simulations involving mil-
lions of mutually interacting elements.

One line of successful approaches to accelerate the learn-
ing of PDE models exploits the sparsity nature of system
changes over time. For example, during the microstructure



evolution of many engineering materials, only the bound-
ary of the microstructure changes while large portion of the
system remains unchanged. It is also assumed that the corre-
sponding PDE models can be decomposed into affine func-
tion of parameter functions and feature functions (Nasim
et al. 2022; Sima and Xue 2021). The combination of de-
composablity of the PDE model and sparse changes/updates
over time together create opportunities for efficient algo-
rithms which handle learning in compressed spaces using
random projections and/or locality sensitive hashing. Never-
theless, such decomposablity structure applies to a limited
class of PDEs and sparsity structures may change with vary-
ing initial and boundary conditions (BC/IC).

This paper propose a more general approach for effi-
ciently learning PDE models via random projection, by ex-
ploiting sparsity in both value domain and frequency do-
main, and also approximating non-decomposable functions
with decomposable polynomials. We observe that, systems
modeled by PDEs often have slow and gradual updates
across wide regions in addition to a few rapid changes con-
centrated in small “interfacial” regions. Such systems are
frequently found in the real world. For example, during man-
ufacturing processes such as laser sintering of powder mate-
rials into dense solids, grain boundary changes sharply at the
interface area (sparse local change), while temperature rises
gradually around the whole material (dense global change).

Systems with dense global change and sharp interface
change limit the application of existing approaches (Nasim
et al. 2022; Sima and Xue 2021) for efficiently learning rele-
vant PDE models. However, we observe that these temporal
change signals can again become sparse if they are decom-
posed in value and frequency domains. The Fourier uncer-
tainty principle (Folland and Sitaram 1997) implies that a
signal sparse in the value domain should be dense in the fre-
quency domain and vice versa. As a result, this decomposi-
tion can capture the sparse side of signals, whether they are
in the value or the frequency domain.

We propose Random Projection based Efficient Learning
(REEL), a general approach to expedite the learning of
PDEs, using signal decomposition into value and frequency
domains, polynomial approximation with Taylor series, and
compression via random projection. The key innovation of
REEL is the inclusion of a signal decomposition step in the
PDE learning framework. With this step, we convert dense
value domain system updates into sparse signal components
in the value and frequency domains. We also use polyno-
mial approximation with Taylor series to approximate PDE
models, which otherwise cannot be written in the decom-
posable form of parameter functions and feature functions.
An example is the phase field model of sintering of pow-
der compacts (Zhang and Liao 2018). After decomposition,
the sparse signal components in the value and frequency do-
mains are compressed to smaller dimensions by random pro-
jection. The learning of PDE models is then carried out in
the compressed space. Notice that both the signal decompo-
sition and compression steps are carried out once as a pre-
processing step and in parallel, thus adding little computa-
tion overhead. An overview of REEL is shown in Figure 1.

Theoretically, we show the sparse projection into the

value and frequency domains biases learning in a limited
way. We derive a constant factor approximation bound be-
tween the projected loss function and the original one with
poly-logarithmic number of projected dimensions. Experi-
mentally, we evaluate our approaches in several real-world
problems. The first is laser sintering of materials, which in-
volves both grain boundary and temperature changes. A sec-
ond application is nanovoid defect evolution in materials
under irradiation and high temperature, in which both void
surface movement and the emergence of interstitial and va-
cancy densities are considered. We demonstrate that using
our REEL algorithm leads to 70 − 98% reduction in train-
ing times when the data is compressed to 1% of its original
size and the learned models’ performance are comparable to
baseline.

Our contributions can be summarized as follows : 1) we
propose an efficient method to learn PDEs that have both
sparse and dense feature functions, 2) we extend the appli-
cability of random projection on sparse functions to both
sparse and dense functions, using an appropriate decomposi-
tion of representation into both the value and frequency do-
mains, 3) we extend the applicability of random projection
for learning PDE models that are not readily decomposable,
by using Taylor series approximation, and 4) we show em-
pirical evidence that our learning method REEL can greatly
accelerate the current state of PDE model learning.

2 Background
Partial Differential Equation (PDE) Models. PDE models
of different orders appear in various scientific fields. Here,
order refers to the highest derivative that appears in the PDE.
Although our method is in principle applicable to PDEs of
any orders, for simplicity we keep our discussion limited
to the following formulation of PDEs with first order time
derivative:

∂u(p⃗, t)

∂t
= F (u,∇u,∇2u, . . . , θ) (1)

Here, u(p⃗, t) is a function of space p⃗ and time t, θ is a set
of scalars and F is a function of both u and θ, and contains
spatial derivative terms such as∇,∇2, . . . representing first,
second and even higher order spatial derivatives. u can be
system state variable such as concentration, temperature etc.,
θ can be some system specific properties such as gradient
coefficients, mobility parameter for a particular material etc.
Different forms of F denotes different system models, and
for a particular model, different values of θ leads to different
system dynamics.
Learning PDE Models from Data. Suppose we have a se-
quence of ground truth PDE trajectories uGT (t) for time
t = 1, 2, . . . , T , extracted from data, and a general form of
PDE model as given in Equation 1, parameterized by θ. Our
goal is to learn these θ parameters.

PDE model parameters θ can be learned via numerical
simulation (Xue et al. 2021a). To do so, we first replace the
PDE derivatives with finite difference quotients i.e. ∂u

∂t ≈
∆u
dt in the original equation. At any time t, we can com-

pute the model predicted system change ∆u(t) within time
interval dt, by solving Equation 1 parameterized by θ. Addi-
tionally, From data, we can extract the ground truth system



state change ∆uGT (t) = u(t + dt) − u(t). Thus, we have
the following at hand:

• ∆uGT (t), ground truth system state change,
• ∆u(t), predicted system change from PDE model

With ground truth values of θ, both ∆uGT (t) and ∆u(t)
should match together. Hence we can define a loss function
as follows:

min
θ

L(θ) =

T∑
t=1

||∆u(t)−∆uGT (t)||22. (2)

The loss function in Equation 2 penalizes the difference
between simulation output and ground truth observation.
With this neural PDE model, we can now backpropagate the
error gradients from Equation 2 and update θ using stochas-
tic gradient descent (SGD). When learning converges and
the loss becomes sufficiently small, the model discovers a
set of parameters θ which leads to similar dynamics as the
empirical observations.
Efficient Learning of Sparse and Decomposable PDE.
Sparse and Decomposable PDEs (SD-PDE) are a special
class of PDEs, where temporal updates of the PDE model
(i.e. ∂u

∂t in Equation 1) can be formulated as combination
of sparse feature functions of system state variables u, mul-
tiplied by functions of learnable PDE model parameters θ.
This special class of PDEs is first introduced in (Nasim et al.
2022), and the authors proposed RAPID-PDE algorithm, to
accelerate the learning of corresponding PDE model param-
eters θ using random projection.

To learn SD-PDE models efficiently using random projec-
tion, a one-time projection of feature functions and system
changes is performed. This random projection compresses
the high-dimensional signals (features and system changes)
into compressed low-dimensional space. Training epochs
are then carried out in this compressed space. The sparsity of
the high dimensional signals makes it possible to represent
them with compact low dimensional signals, and the reduc-
tion of data dimension greatly accelerates the discovery of
PDE model parameters.
Limitations of RAPID-PDE. Although RAPID-PDE can be
highly efficient in learning PDE models, its applicability is
limited by the decomposability and sparsity structure of the
PDE models. Feature functions of the PDE model instances
can contain dense value domain signals, depending upon ini-
tial and boundary conditions. Moreover, not all PDE models
can be decomposed readily into inner products of feature
functions and parameter functions.

3 REEL: Efficient Learning of PDEs with
Polynomial Approximation and Signal

Decomposition into Value and Frequency
Domains

Our REEL algorithm aim to accelerate learning of a broad
class of PDE models, which 1) may not be readily de-
composable into inner product parameter function and fea-
ture functions, and/or 2) may have feature functions/system
changes that are not sparse in value domain. Before moving
to the details of our REEL algorithm, let us first take a close

look at the formulation of SD-PDE models we mention in
Section 2, which have the following general format:

∂u(p⃗, t)

∂t
= ϕ⃗(θ)W⃗ (u) = [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


W1(u)
W2(u)

...
Wn(u)


(3)

Here, u is the system state variable of interest, Wi are
feature functions of u, often sparse in value domain, and
independent of PDE model parameters θ. Similarly, ϕi are
functions of θ and independent of u. Exact forms of ϕi and
Wi depend on the PDE model. By replacing derivatives with
finite difference quotients, and using a random matrix P for
random projection on both sides, we can rewrite Equation 3
as follows:

P∆u

dt
= P [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


W1(u)
W2(u)

...
Wn(u)



⇒ P∆u = dt.[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


PW1(u)
PW2(u)

...
PWn(u)

 (4)

where, P∆u is the predicted compressed system state
changes, and [PW1(u), . . . ,PWn(u)] are the compressed
features. The ground truth system state change ∆uGT is also
compressed to P∆uGT by one-time random projection with
P . RAPID-PDE algorithm then learns θ in the compressed
space – minimizing a loss function that penalizes the differ-
ence between P∆u and P∆uGT .

Our REEL learning algorithm is inspired from a few ob-
servations. First, we notice that although it is not possi-
ble to decompose all PDE models as in Equation 3, non-
linear functions can be approximated by polynomials with
Taylor series expansion and then written in decomposable
form. For example, sin(uθ) ≈ uθ − (uθ)3

3! + (uθ)5

5! −
(uθ)7

7! ,
and this approximation can be written similar to Equation 3.
Second, for decomposed PDE models, the system change
∆u and the feature functions Wi in Equation 3 may not
be sparse in value domains; however, a change of represen-
tation domains, i.e. combination of value domain and fre-
quency domain can make these signals sparse. For exam-
ple, in the application domain considered in this work, the
sintering of powder particles with high energy heat source
such as laser, heat gets diffused into the particles and sur-
roundings, and the particles fuse together. During this sinter-
ing process, changes in the particles happen at the boundary
(sparse value domain update), while the change in specimen
temperature due to heat diffusion is more widespread across
the whole specimen (dense value domain update). In prac-
tice, the dense temperature change, and similarly many other
dense value domain signals can be represented by sparse fre-
quency domain signals by applying Fourier transform.

Using these two techniques of polynomial approxima-
tion and signal decomposition with Fourier transform, our
REEL algorithm transforms PDE models into decomposable



PDEs with sparse value and sparse frequency domain fea-
ture functions, and then use random projection to compress
the sparse signals. We then use these compressed signals
to learn the PDE model parameters. We now describe our
REEL learning framework in more details.

Taylor Series Approximation
For PDE models that are not decomposable into parameter
functions and feature functions, we use Taylor series approx-
imation upto certain order terms and the resulting polyno-
mial can then be written as the decomposable form in Equa-
tion 3. Assuming that the function F in Equation 1 is in-
finitely differentiable at θ = a, and dropping the spatial
derivatives∇u,∇2u, . . . to avoid cumbersome notation, we
can write:

∂u(p⃗, t)

∂t
= F (u,∇u,∇2u, . . . , θ)

≈ F (θ = a) + (θ − a)
∂F

∂θ

∣∣∣
θ=a

+
1

2!
(θ − a)2

∂2F

∂θ2

∣∣∣
θ=a

+ . . .

= [1, (θ − a),
1

2
(θ − a)2, . . . ]


F
∂F
∂θ
∂2F
∂θ2

...


θ=a

This is the same form as in Equation 3. Approxima-
tion with Taylor expansion comes with approximation errors
which we quantify with the following theorem:

Theorem 3.1. (Proof in supplementary material) If F (θ) is
at least (n + 1) time differentiable around θ = a, except

possibly at a, then F (θ) =
∑n

i=0
(θ−a)n

n!
∂nF
∂θn

∣∣∣
θ=a

+ En,

where the approximation error En = (θ−a)n+1

(n+1)!
∂nF
∂θn

∣∣∣
θ=c

for

a suitable c in the closed range joining θ and a.

Theorem 3.1 is a reformulation of Lagrange’s remainder,
and provides us error bound En for n-th order Taylor series
approximation. In practice, we use empirical testing to de-
cide on the order of the polynomial.

Signal Decomposition with Fourier Transform

Algorithm 1: Value and Frequency Domain Decomposition
(VFDD)

1: Input: Signal s, threshold β
2: Output: Frequency domain component sfreq and value

domain component sval of signal s
3: Computer F(s), the Discrete Fourier Transform of s;
4: sfreq ← F(s)× 1|F(s)|>β ;
5: sval ← F−1(F(s)× 1|F(s)|≤β);

With a PDE model that is now decomposed into parameter
function and feature function as in Equation 3, we now look
into sparsity structure of the problem. Let ∆uGT (t) be the
ground truth change in system variable u at time t. We use

value and frequency domain signal decomposition as out-
lined in Algorithm 1 to convert dense ∆uGT (t) signals into
combination of sparse value and sparse frequency signals.

In Algorithm 1, given an input signal and a threshold,
we first compute the discrete Fourier transform of the sig-
nal (line 3). We then separate the high coefficient frequency
terms from the low ones based on the threshold (line 4). Us-
ing inverse discrete Fourier transform, we then convert the
low coefficient frequency terms back to value domain (line
5). Note that both value and frequency domain components
have the same size as the original signal, with a portion of
them zeroed out based on the threshold, which is chosen by
empirically testing few signal samples.

After value and frequency domain decomposition,
∆uGT (t) is separated into sparse frequency component
∆uGT

freq(t) and sparse value component ∆uGT
val (t). On broad

stroke, ∆uGT
freq(t) corresponds to dense but slow back-

ground change of uGT (t), while ∆uGT
val (t) corresponds to

sharp but small interfacial change. In a similar way, we can
also convert Wi, the feature function in Equation 3, into sep-
arate frequency and value domain components Wi(freq) and
Wi(val). Then the PDE model predicted value domain sys-
tem state change ∆uval(t) can be computed as:

∆uval(t) = dt.[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


W1(val)(u)
W2(val)(u)

...
Wn(val)(u)


The frequency domain change ∆ufreq(t) can be computed

in similar manner. The parameter functions ϕi are same for
both value domain and frequency domain components.

Signal Compression with Random Projection
After signal decomposition into sparse value and sparse fre-
quency domain components, we use one-time random pro-
jection with random matrix P to compress all the sparse
signal components for both system state change (yield-
ing P∆uGT

val ,P∆uGT
freq) and feature functions (yielding

PWi(val),PWi(freq)). Then the compressed feature func-
tions can be used to compute predicted compressed system
change using Equation 4. Finally, to learn PDE model pa-
rameters θ, we minimize the following loss:

LREEL(θ) =

T∑
i=1

||P∆uval(t)− P∆uGT
val (t)||22

+ λ||P∆ufreq(t)− PuGT
freq(t)||2. (5)

Here, λ is a hyperparameter. The loss function in Equation 5
consists of two parts. The first part inside the summation
penalizes the difference between the predicted compressed
value domain change and ground truth compressed value do-
main change, while the second part penalizes the difference
between the frequency domain counterparts. We can then
use stochastic gradient descent to find the optimal parame-
ters θ that minimize loss LREEL(θ) in Equation 5.
Theorem 3.2. (Proof in supplementary material) Sup-
pose the projection matrix P = (pi,j)n×d, pi,j =



yi,j/
√
n. yi,j are sampled i.i.d. from a given distribution.

yTi = (yi,1, . . . , yi,d), Y = (y1, . . . , yn)
T . E(yi,j) =

0, V ar(yi,j) = 1. For any x, ||yTi x||2/||x||22 is sub-
exponential with parameter (σ2, b). After value and fre-
quency domain decomposition as outlined in Algorithm 1,
let ∆uGT

val (t) and ∆uval(t) have at most k1 non-zero el-
ements, and all ∆uGT

freq(t) and ∆ufreq(t) have at most
k2 non-zero elements. 2k1 < n, 2k2 < n. 0 < δ <
min{1, σ2/b}. We separate the loss function in value do-
main and in frequency domain without random projec-
tion: Lval =

∑
||∆uval(t) − ∆uGT

val (t)||2, Lfreq =∑
||∆ufreq(t) − ∆uGT

freq(t)||2. Suppose θ∗ is the opti-
mal parameter which minimizes LT (θ) = Lvalue +
λLfreq , i.e., θ∗ = argminLT (θ). Then with prob-
ability at least [1 − 2(12/δ)2k1 exp(−nδ2/(8σ2))][1 −
2(12/δ)2k2 exp(−nδ2/(8σ2))], we have:

(1− δ)2LT (θ
∗) ≤ LREEL(θ

∗) ≤ (1 + δ)2LT (θ
∗). (6)

On the opposite side, suppose θ′ is the local optimal solution
found by REEL, with the same probability we have:

(1− δ)2LT (θ
′) ≤ LREEL(θ

′) ≤ (1 + δ)2LT (θ
′). (7)

In layman terms, Theorem 3.2 implies that random pro-
jection in value and frequency domain has limited effect on
learning provided that the signals are sufficiently sparse after
value and frequency domain decomposition, and we only re-
quire poly-logarithmic number of projected dimensions for
constant factor approximation.

4 Related Works
Learning Dynamics Models. Machine learning to learn
physics dynamics models have been a popular research do-
main in recent years. Recently, learning Partial Differen-
tial Equations (PDEs) from data has also been studied ex-
tensively (Dzeroski and Todorovski 1995; Brunton, Proc-
tor, and Kutz 2016; Wu and Tegmark 2019; Zhang and Lin
2018; Iten et al. 2020; Cranmer et al. 2020b; Raissi, Yazdani,
and Karniadakis 2020; Raissi, Perdikaris, and Karniadakis
2019a; Liu and Tegmark 2021; Xue et al. 2021b; Chen et al.
2018). Many of the existing works in learning dynamics
from data combines domain knowledge with machine learn-
ing models such as neural networks. Some of the notable
works include ((Sirignano and Spiliopoulos 2018),(Raissi,
Perdikaris, and Karniadakis 2019b), (Lutter, Ritter, and Pe-
ters 2018), (Demeester 2019), (Long et al. 2018)), (Xue
et al. 2021a) where neural networks have been used to solve
PDEs for dynamic systems. Besides these, (Han, Jentzen,
and E 2018; Beck, E, and Jentzen 2019; Raissi and Kar-
niadakis 2018; Brunton, Proctor, and Kutz 2016) are some
of the other notable works in PDE solution. Neural ODEs
proposed in ((Chen et al. 2018)) and their variants such as
(Kidger et al. 2020; Lee and Parish 2021; Jia and Benson
2019; Chen, Amos, and Nickel 2020; Yin et al. 2021) aim to
learn ordinary differential equation based dynamics models.
Learning Physics Models from Data. Physics model learn-
ing from data have been explored in (Greydanus, Dzamba,

and Yosinski 2019; Cranmer et al. 2020a; Lutter, Ritter, and
Peters 2018; Niu et al. 2020). In regards to efficient meth-
ods for physics learning, (Xue et al. 2021a), (Sima and Xue
2021), (Nasim et al. 2022),(Bar-Sinai et al. 2019),(Schaeffer
2017) are similar to our works in that these also aim to make
the learning more computationally efficient, using locality
sensitive hashing, random projection, approximate deriva-
tives and compressed sensing. However, we introduce the
frequency domain decomposition in the learning pipeline,
which was not used in previous approaches to learn physics
models. To make learning more efficient, previously data
compression methods such as principal component analy-
sis, low rank approximation, feature selection etc. Pruning,
quantization, low rank factorization, knowledge distillation
are some of the popular techniques used to compress deep
neural networks previously (Choudhary et al. 2020). In our
work, we focus on data compression, with the added change
of representation to both value and frequency domain.

5 Experimental Results
Solid-State Selective Laser Sintering
Selective laser sintering (SLS) is a widely used important
manufacturing process, where laser energy is used to sinter
powder particles into dense solid structures. Accurate mod-
eling of microstructure evolution during sintering is very im-
portant for process control and optimization. For our experi-
ment, we work with the phase field model of solid-state sin-
tering as proposed in (Zhang and Liao 2018), where a ther-
mal model is coupled with microstructure model.
Thermal Model. Heat diffusion from laser energy source
during sintering process can be modeled with transient heat
conduction equation as follows:

ρ
∂CpT

∂T
= ∇.(k∇T ) +Q. (8)

Here, T represents the temperature field in the specimen.
ρ, Cp, k are the density, specific heat and thermal conductiv-
ity of the material respectively and assumed to be material
specific constants in our experiments. Q is heat flux from the
laser heat source.
Microstructure Model. In the phase field model of sinter-
ing, the microstructure is represented with two types of field
variables – conserved density field ϕ and non-conserved or-
der parameters ηi for each particle. ϕ takes value in the range
[0, 1], where 1 represent solid phase and 0 represent pores.
ηi similarly has value in range [0, 1], and takes the value of 1
for a designated particle and 0 elsewhere. The driving force
for sintering is the minimization of the total free energy F ,

F =

∫
V

[
f(ϕ, ηi=1,...,n) +

εϕ
2
|∇ϕ|2 +

n∑
i=1

εη
2
|∇ηi|2

]
dV.

Here, n is the number of particles in the system. The evo-
lution of ϕ and ηi over time are governed by Cahn-Hilliard
equation and Allen-Cahn equation respectively:

∂ϕ

∂t
= ∇ · (M∇δF

δϕ
),

∂η

∂t
= −L

δF

δη
, (9)

where M and L represent atom diffusion mobility and grain
boundary (GB) mobility respectively. For details of both
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Figure 2: Our REEL algorithm saves 70% to 98% of training times for learning PDE physics models, while preserving very
high accuracy of the learned models comparable to baseline (we used REEL algorithm without compression as our baseline for
sintering). (a) Training times for sintering PDE model. Here, r denotes the compression level used in REEL, r = 1% means the
data was compressed to 1% of the original dimension. (b-c) Mean squared error (MSE) for density (ϕ) and temperature (T ) field
variable in sintering model. MSE for a model was computed by performing simulation with the model for 200 timesteps, and
then comparing the simulation output and ground truth. MSE of ϕ and T are very small and comparable between our REEL and
baseline, and the simulation results are practically indistinguishable as shown in Figure 3.

thermal and microstructure model, we refer to the original
text (Zhang and Liao 2018).
Learning Objective. Given the system states ϕ, η and T , we
aim to learn the parameters of the selective laser sintering
model, which are {Cp, ρ, k} and parameters associated with
F,M and L in Equation 9.
Training and Testing. For our experiment with sintering ap-
plication, we used synthetic dataset according to the model
in (Zhang and Liao 2018). We simulated microstructure evo-
lution and heat diffusion during sintering in 2D for N × N
grids, for N = 100, 200, 300, 400, 500 for T = 20000
timesteps. For training, we used data for 1000 timesteps.
As the baseline method, we used our REEL algorithm
without the random projection step. Stochastic gradient
descent was used for optimization during training, and the
learning rate was set by hyperparameter tuning. More de-
tails of training and testing (i.e. computing resources,code
etc.) are provided in supplementary materials.

Nanovoid Evolution in Materials under Irradiation
and High Temperature
Materials under heavy irradiation and high temperature
forms many types of defects. One of these defects is
named nanovoid, which are nano-meter scale defect clus-
ters, formed by the accumulation of vacancy defect in crys-
tal lattice. Such void defects greatly affects material degra-
dation over time. Modeling the evolution dynamics of such
defects are very important in designing sustainable materi-
als that can withstand extreme environments such as inside
a nuclear reactor.

In the phase field model for nanovoid defect evolution in
engineering materials, the state of a system is described by
3 phase field variables – cv, ci and η at each point in space
and time. cv and ci represents the percentage of vacancy de-
fects and interstitial defects respectively, in the crystal lat-

tice, while η is an order parameter distinguishing between
different phases of the material. For our experiment, we use
the phase field PDE model proposed in (Millett et al. 2011)
which describe the time evolution of phase field variables
with with Cahn-Hilliard equation and Allen-Cahn equation
as shown in Equation 9. For details of the phase field model,
we refer to original text (Millett et al. 2011).
Training and Testing. We used a synthetic dataset gener-
ated according to the phase field model in (Millett et al.
2011) for our nanovoid experiments. For baseline, we used
RAPID-PDE (Nasim et al. 2022) with two different com-
pression levels – 1) no compression and 2) compression to
10% of original data dimension. We used RAPID-PDE as
baseline for nanovoid only, since the nanovoid PDEs are
decomposable, while the sintering model PDEs are not.

Results
Faster Learning of PDE Physics Models. Our REEL algo-
rithm leads to faster training of PDE physics models com-
pared to the baseline learning methods. As shown in Fig-
ure 2a, our REEL algorithm can reduce training time for sin-
tering PDE model by 70 − 98%. For nanovoid PDE model
training, we see a similar level of computational saving
(≈ 70% reduction of training time) when no compression is
used. Added to the benefit of reduced data dimension from
compression, the data size also becomes small enough to
perform the training epochs in memory, while for baseline
method with no compression, the training epochs has to be
performed with data stored in disks. We tried to train the
baseline model by keeping the entire training data in mem-
ory, however the training data was too large to fit in mem-
ory. More details on experiment setups and infrastructure are
provided in supplementary material.
Highly Accurate Learned Physics Models. Our
REEL training algorithm leads to highly accurate PDE
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(a) Simulation of particle density (ϕ) and temperature (T ) change during laser sintering of powder particles

Ground truth
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(b) Simulation of nanovoid evolution under extreme conditions

Figure 3: REEL can learn very accurate physics models governing sintering of powder particles and nanovoid defect evolution.
(a) Simulation of mircrostructure evolution and heat diffusion during solid-state selective laser sintering (b) Simulation of
nanovoid defect evolution in materials under extreme heat and irradiation. Here, r represents the level of data compression. For
example, r = 1% means data has been compressed to 1% of original size. Our REEL algorithm can capture the slow shrinking
dynamics of nanovoids as seen in the simulation (4-th row in Figure 3b), while with baseline RAPID-PDE, the void disintegrates
(3-rd row in Figure 3b). Our REEL method is applicable to both PDE models, while RAPID-PDE algorithm, which is used as
baseline for nanovoid experiments, cannot be applied to PDEs of sintering phase field model.

physics models. We used simulation to qualitatively evaluate
the models trained with our algorithm, and the simulation
results are presented in Figure 3. Overall, we find that the
models trained with our REEL algorithm produce very
similar dynamics as ground truth. For sintering, the baseline
method with no compression also learn very accurate
dynamics, however requires very high model training time
as shown in Figure 2a. For quantitative evaluation, we
simulated all our trained models for 200 steps using the
same initial condition. This was repeated 200 times with
different initial conditions, which were unseen during
training. Afterwards, we computed the mean squared error
(MSE) between simulation results and ground truth as
shown in Figure 2b and Figure 2c. We can see that even
with data dimension reduced to 1% of the original size,
our REEL trained models show comparable very small
error similar to baseline models. For nanovoid model, we
used RAPID-PDE with different compression levels as our
baseline. With data compressed to 10% of original size,
REEL algorithm can capture the shrinking dynamics of
void evolution as shown in Figure 3b (4-th row), while

baseline RAPID-PDE algorithm results in the disintegration
of void as seen in Figure 3b (3-rd row). More details of
evaluation result with nanovoid PDE model is provided in
supplementary material.

6 Conclusion
In this paper, we present REEL, an efficient algorithm to
learn partial differential equations from experimental data.
Our acceleration is based on decomposing the spatial and
temporal updates into sparse signals in the value and fre-
quency domains. REEL also uses Taylor series expansion to
approximate PDE models in a decomposable form. Random
projection is then applied to compress the sparse signals in
the value and frequency domains as a preprocessing step.
Learning is carried out entirely in the compressed space. Our
method is applicable to a wide range of PDE models where
the spatial and temporal updates are made of slow and wide-
range changes in addition to rapid changes in the interfacial
regions. Empirically, we show that our algorithm can lead
to faster learning of physics models, and the learned models
exhibit reasonably high accuracy on testing.
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