
Travel Time Estimation of a Path using Sparse Trajectories
Yilun Wang1,2,*, Yu Zheng1,+

 , Yexiang Xue1,3,*

1Microsoft Research, No.5 Danling Street, Haidian District, Beijing 100080, China
2College of Computer Science, Zhejiang Univeristy

3Department of Computer Science, Cornell University

{v-yilwan, yuzheng}@microsoft.com, yexiang@cs.cornell.edu

ABSTRACT
In this paper, we propose a citywide and real-time model for
estimating the travel time of any path (represented as a sequence of
connected road segments) in real time in a city, based on the GPS
trajectories of vehicles received in current time slots and over a period
of history as well as map data sources. Though this is a strategically
important task in many traffic monitoring and routing systems, the
problem has not been well solved yet given the following three
challenges. The first is the data sparsity problem, i.e., many road
segments may not be traveled by any GPS-equipped vehicles in
present time slot. In most cases, we cannot find a trajectory exactly
traversing a query path either. Second, for the fragment of a path with
trajectories, they are multiple ways of using (or combining) the
trajectories to estimate the corresponding travel time. Finding an
optimal combination is a challenging problem, subject to a tradeoff
between the length of a path and the number of trajectories traversing
the path (i.e., support). Third, we need to instantly answer users’
queries which may occur in any part of a given city. This calls for an
efficient, scalable and effective solution that can enable a citywide and
real-time travel time estimation. To address these challenges, we
model different drivers’ travel times on different road segments in
different time slots with a three dimension tensor. Combined with
geospatial, temporal and historical contexts learned from trajectories
and map data, we fill in the tensor’s missing values through a context-
aware tensor decomposition approach. We then devise and prove an
object function to model the aforementioned tradeoff, with which we
find the most optimal concatenation of trajectories for an estimate
through a dynamic programming solution. In addition, we propose
using frequent trajectory patterns (mined from historical trajectories)
to scale down the candidates of concatenation and a suffix-tree-based
index to manage the trajectories received in the present time slot. We
evaluate our method based on extensive experiments, using GPS
trajectories generated by more than 32,000 taxis over a period of two
months. The results demonstrate the effectiveness, efficiency and
scalability of our method beyond baseline approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - data
mining, Spatial databases and GIS;

Keywords
Travel time estimation; tensor; trajectories; urban computing;

1. INTRODUCTION
Real-time estimation of the travel time of a path, which is represented
by a sequence of connected road segments, is of great importance for
traffic monitoring [1], finding driving directions [20], ridesharing [13]
and taxi dispatching [22]. Existing solutions, e.g., using loop sensors,
usually tell people the travel speed of an individual road segment
rather than the travel time of an entire path. The latter’s value is not a
simple summation of the travel time of each individual road segment,
as a path also contains road intersections (sometimes with traffic
lights) where a driver needs to slow down or wait for a while.
Explicitly modeling the time delay at an intersection is not easy [8]. In
addition, these methods have limited coverage, as many streets do not
have a loop sensor embedded.

An alternative method is to use floating car data (e.g., GPS trajectories
of vehicles) to estimate the travel time of a path. For example, as
shown in Figure 1, we estimate the travel time of path ݎଵ ՜ ଶݎ ՜
ଷݎ ՜ ,ସ. Unfortunatelyݎܶ ଷ, andݎܶ ,ଶݎܶ ,ଵݎܶ ସ, using four trajectoriesݎ
there are three major issues remaining unsolved in existing methods.
They are as follows:

Figure 1. Problem demonstration

1) Data sparsity: For example, ݎସ is not traversed by any trajectory in
the previous 30 minutes. Using an average of ݎସ’s historical travel
times is not accurate enough (since its traffic conditions change over
time of day and day of the week). Sometimes, the road may never be
traversed by any trajectories (even in history) in our dataset, as in
practice we only have the data of a sample of vehicles.

2) Trajectory concatenation: For the sub-path (e.g., ݎଵ ՜ ଶݎ ՜ ଷݎ)
with trajectories, how to combine these trajectories effectively to
achieve an accurate estimate is still a challenging problem. Clearly,
there are multiple ways of using the four trajectories shown in Figure
1. For instance, we can calculate the travel time of ݎଵ ՜ ଶݎ ՜ ଷݎ
solely based on ܶݎଶ. Or, we can compute the travel time for ݎଵ (based
on ܶݎଵ and ܶݎଶ), ݎଶ (based on ܶݎଵ ଶݎܶ , and ܶݎଷ), and ݎଷ (using ܶݎଶ ,
ଵݎ ସ), separately. Later, the travel time ofݎܶ ଷ andݎܶ ՜ ଶݎ ՜ ଷ canݎ
be obtained by summing the travel times of each road segment. We
can also use ܶݎଶ and ܶݎଷ to estimate the travel time of ݎଶ ՜ ଷ, thenݎ
concatenating it with that of ݎଵ; or, do ݎଵ ՜ ଵ andݎܶ ଶ first based onݎ
 .ଷݎ ଶ, then concatenating it withݎܶ

Different concatenations have their own advantages and
disadvantages, subject to a trade-off between their support and
length. The ideal situation is to estimate the travel time of
ଵݎ ՜ ଶݎ ՜ ଶ covering the entireݎܶ ଷ using many trajectories likeݎ
path. Such trajectories reflect the traffic conditions of an entire
path, including intersections, traffic lights and direction turns,
hence, no need to model these complex factors separately and

r1 r2 r3

r4
r5 r6

r7
Tr1

Tr2

Tr3

Tr4

+ Yu Zheng is the correspondence author of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, New York, USA.
Copyright © 2014 ACM 978-1-4503-2956-9/14/08…$15.00
http://dx.doi.org/10.1145/2623330.2623656

*The paper was done when the first and third authors were interns in
Microsoft Research under the supervision of the second author who
contributed the main idea and algorithms of this paper.

explicitly. However, as the length of a path increases, the number
of trajectories (i.e., the support) traveling on the path decreases
(refer to Figure 10 A) for details). Consequently, the confidence
of the travel time (derived from few drivers) decreases. For
example, what if ܶݎଶ is generated by an uncommon driver or in an
unusual situation like pedestrians crossing a street? Furthermore,
in many cases, we cannot even find a trajectory passing an entire
path. On the other hand, using the concatenation of shorter sub-
paths can have more occurrences of trajectories on each sub-path
(i.e., having a high confidence in the derived travel time for each
sub-path). But this results in more fragments, across which the
aforementioned complex factors are difficult to model. The more
fragments a concatenation contains, the more inaccuracy a path’s
travel time could involve.

3) Tradeoff among Scalability, effectiveness and efficiency: As
users can query any path in a city, we need to model the traffic
conditions with a city scale, which usually contains tens of
thousands of road segments. In the meantime, we have to answer
users’ query instantly. So, a good solution should be scalable,
effective and efficient, all simultaneously. This requirement fails
some complex models that work well on a particular road.

In this paper, we propose a model for instant Path Travel Time
Estimation (PTTE), based on sparse trajectories generated by a
sample of vehicles (e.g., some GPS equipped taxicabs) in the
recent time slots as well as in history. Our model is comprised of
two major components. One is to estimate the travel time for road
segments without being traversed by trajectories through a
context-aware tensor decomposition (CATD) approach. The
second is to find the most optimal concatenation (OC) of
trajectories to estimate a path’s travel time using a dynamic
programing solution. Our work has three primary contributions:

 Dealing with the missing values: We model different drivers’
travel times on different road segments in different time slots
with a three dimensional tensor. Combined with geospatial,
temporal and historical contexts learned from other data
sources, we fill in the tensor’s missing values through a
context-aware tensor decomposition approach. To expedite
the inference, we partition a city into disjoint geo-regions and
carry out the decomposition for each region in parallel.

 Optimal concatenation: We devise and prove an object
function that can model the tradeoff between the support and
length of a concatenation. Using a dynamic programming
solution, we find the most optimal concatenation of
trajectories for estimating a path’s travel time. In addition,
we use frequent trajectory patterns mined in advance to scale
down the candidates of concatenation and propose a suffix-
tree-based index to manage the recently received trajectories,
improving the efficiency of our model.

 Evaluation: We evaluate our model with the real trajectories
generated by over 32,000 taxis over a period of 2 month on
Beijing’s road network. The results of extensive experiments
demonstrate the advantages of our model. A sample of the
data has been released at [25].

The rest of the paper is organized as follows: Section 2 overviews
our model. Section 3 elaborates on the method for inferring the
travel time of road segments without trajectories. Section 3
introduces the method that searches for the most optimal
concatenation. Section 4 presents the experiments and Section 5
summarizes related work. We conclude the paper in Section 6.

2. OVERVIEW
Definition 1: Road Network. A road network ܴܰ is comprised of a
set of road segments ሼݎሽ connected among each other in a graph
format. Each road segment ݎ is a directed edge with two terminal
points, a list of intermediate points describing the segment, a
length ݎ. ݈݁݊, a level ݎ. a direction ,(e.g. a highway or a street) ݒ݈݁
.ݎ .ݎ and the number of lanes (e.g. one-way or bi-directional) ݎ݅݀ ݊.

Definition 2: Trajectory. A spatial trajectory ܶݎ is a sequence of
time-ordered points, ܶݎ: ଵ݌ ՜ ଶ݌ ՜ ڮ ՜ ௡݌ , where each point
has a geospatial coordinate set and a timestamp, ݌ ൌ ሺݔ, ,ݕ .ሻݐ

Definition 3: Path. A path ܲ is represented by a sequence of
connected road segments, e.g., ܲ: ଵݎ ՜ ଶݎ ՜ ڮ ՜ .ܴܰ ௡, in anݎ

Definition 4: Trajectory pattern. A trajectory pattern ܶܲ is a
sequential pattern of road segments with a support over a
threshold, calculated by the number of trajectories traversing these
road segments. If we set support as 2, ݎଵ ՜ ଶݎ and ݎଶ ՜ ଷݎ in
Figure 1 are trajectory patterns, while ݎଵ ՜ ଶݎ ՜ .ଷ is not eligibleݎ

Definition 5: Concatenation. A path ࡼ can be decomposed into
different concatenations (||) of its sub-paths,
ࡼ ൌ ଵܲ|| . . . || ௜ܲ … || ௝ܲ … || ௡ܲ 1׊ , ൑ ݅, ݆ ൑ ݊ , ݅ ് ݆ , ௜ܲ ת ௝ܲ ൌ ׎ .
For instance, ݎଵ ՜ ଶݎ ՜ ଷݎ ՜ ସݎ can be formed by ሺݎଵ ՜ ଶݎ ՜
ଵݎସ, or ሺݎ||ଷሻݎ ՜ ଷݎଶሻ||ሺݎ ՜ ଶݎଵ||ሺݎ ସሻ, orݎ ՜ ଷݎ ՜ ସሻ. Thus, theݎ
travel time of ࡼ can be obtained via the summation of different
concatenations, e.g., ࡼݐ ൌ ௥భ՜௥మ՜௥యݐ

௥రݐ+
, or ࡼݐ ൌ ௥భ՜௥మݐ

൅ ௥య՜௥రݐ
,

or ࡼݐ ൌ ௥భݐ
൅ ௥మ՜௥య՜௥రݐ

.

Definition 6: Travel Time. A driver ݑ ’s travel time on a road
segment ݎ in time slot ݇ is defined as ݐ௥,௨,௞ . Likewise, ݐ௉,௨,௞
denotes ݑ’s travel time on path ܲ in time slot ݇.

Figure 2. Framework of our model

Figure 2 presents the framework of our model which is comprised of
two major parts. In the above part, we project each trajectory received
in a current time slot onto a road network, using a map-matching
algorithm [21]. The trajectories (combined with road network data)
are then used to construct a 3D tensor ࣛ௥ where the three dimensions
stand for road segments, time slots and drivers, respectively. Each
entry is the travel time of a particular driver on a particular road
segment in a specific time slot. We partition a day into several time
slots based on a certain time interval (e.g., we divide a day into 48
time slots with 30 minutes each in the experiments). Clearly, the
tensor is very sparse (i.e., having many entries without values), as a
driver can only travel a few road segments in a time slot. To deal with
the data sparsity problem, we extract three categories of features,
consisting of geospatial, temporal, and historical contexts, from the
road network data and trajectories. The first two feature sets are stored
in two matrices, respectively, and the historical context is represented
by another tensor ࣛ௛. The two matrices and ࣛ௛ are then factorized
with ࣛ௥ collaboratively, helping fill ࣛ௥’s missing entries in a current
time slot (i.e., inferring the travel time of road segments without being
traveled by trajectories in the current time slot). The general idea is
that road segments with similar contexts could have a similar travel
time. The context matrices and tensor reveal the similarity and with a
more proportion of non-zero entries than ࣛ௥ , thereby reducing the
factorization error and improving the inference accuracy. After filling

Map-
Matching

Tensor
Construction

Tensor
Decomposition

Road
Networks

Trajectory
Database

Frequent Trajectory
Pattern Mining

Optimal
Concatenation

Features

Path

Context Feature
Extraction

Trajectories

Patterns cost

Arec

Ar

the missing entries in ࣛ௥, we obtain the travel time of any driver on
any road segment in current time slot (stored in ࣛ௥௘௖).

In the bottom part, given a query path ܲ, we estimate its travel time in
the current time slot, based on ࣛ௥௘௖, the trajectories received in the
time slot and trajectory patterns. Specifically, we devise and prove an
objective function that can represent the tradeoff between the length
and support of a trajectory pattern. Based on the objective function,
we find the most optimal concatenation of trajectories for a path,
using a dynamic programing approach. In practice, it is not necessary
to try every possible concatenation of a path, as some sub-paths have
never been traversed by any trajectory. So, we mine frequent
trajectory patterns from historical trajectories in advance and study the
concatenation of these existing patterns to estimate the travel time of a
path. This reduces the online computational loads significantly, while
guaranteeing accuracy in travel time estimation. Note that we are not
using the historical travel time of a trajectory pattern. The patterns just
provide us with candidate schemes of subpaths for finding an optimal
concatenation of a path. Each trajectory pattern’s travel time in current
time slot is mainly calculated based on the trajectories received in the
time slot. If a pattern contains road segments without being traversed
by trajectories in the current time slot, we retrieve the inferred time
from ࣛ௥௘௖, according to the driver, road segment and time slot. For
instance, two drivers (ݑଵ, ݑଶ) travelled ݎଵ ՜ ଶ, but nobody traveledݎ
ଷݎ in a pattern ݎଵ ՜ ଶݎ ՜ ଷݎ , in current time slot ݇ . That is,
,௥భ՜௥మ,௨భ,௞ݐ and ݐ௥భ՜௥మ,௨మ,௞ can be calculated from the present
trajectory data, while ݐ௥య,௨భ,௞ and ݐ௥య,௨మ,௞ are unknown. In this case,
we retrieve the latter two from ࣛ௥௘௖, calculating

௥భ՜௥మ՜௥య,௨భ,௞ݐ ൌ ௥భ՜௥మ,௨భ,௞ݐ ൅ ௥య,௨భ,௞ , andݐ

௥భ՜௥మ՜௥య,௨మ,௞ݐ ൌ ௥భ՜௥మ,௨మ,௞ݐ ൅ .௥య,௨మ,௞ݐ

With ࣛ௥௘௖, we can estimate a driver’s travel time on a trajectory
pattern even if the recently received data is incomplete. The
dimension of drivers in ࣛ௥௘௖ enables us to calculate the variance
among different drivers’ travel times on a road segment or a sub-
path. Intrinsically, different drivers travel the same road segment
with different times, majorly depending on the different traffic
conditions they experience. Thus, the variance implies the
complexity of traffic conditions on a road segment or a sub-path,
helping estimate a more accurate travel time of a path (elaborated
in Section 4.1). Finally, the travel time of a path is calculated as:

 ܶ ൌ ∑
∑ ௧೅ು,ೠ,ೖೠאೆ

|௎|்௉אஏ ; (1)

Where Ψ is the concatenation of path ܲ, represented by a set of
trajectory pattern ܶܲs; ܷ is a collection of drivers traversing (or
partially traversing) a ܶܲ; ݇ is the current time slot.

3. DEALING WITH MISSING VALUES
3.1 Tensor Building and Feature Extraction
To model the traffic conditions of the current time slot, we
construct a tensor ࣛ௥ א Թேൈெൈ௅ , with the three dimensions
standing for road segments, drivers and time slots, respectively,
based on the GPS trajectories received in the most recent ܮ time
slots and the road network data. As shown in Figure 3, an entry
ࣛ௥ሺ݅, ݆, ݇ሻ ൌ ܿ denotes the ݅th road segment is traveled by the ݆th
driver with a time cost ܿ in time slot ݇ (e.g., 2-2:30pm). The last
time slot denotes the present time slot, combined with the 1-ܮ
time slots right before it to formulate the tensor. Clearly, the
tensor is very sparse as a driver can only travel a few road
segments in a short time period. If we were able to fill in the
missing entries in terms of the values of non-zero entries, we can
know the travel time of any driver on any road segment in the
present time slot.

A common approach to this problem is to decompose a tensor into
the multiplication of a few (low-rank) matrices and a core tensor
(or just a few vectors), based on the tensor’s non-zero entries. For
example, we can decompose ࣛ௥ into the multiplication of a core
tensor ܵ א Թௗೃൈௗೆൈௗ೅ and three matrices, ܴ א Թேൈௗೃ , ܷ א
Թெൈௗೆ , ܶ א Թ௅ൈௗ೅ , if using a tucker decomposition model. An
objective function is defined as Equation 2 to control the errors.

 ࣦሺܵ, ܴ, ܷ, ܶሻ ൌ
ଵ

ଶ
ԡࣛ௥ െ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶԡଶ

 ൅
ఒ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶሻ, (2)

where ԡ·ԡଶ denotes the ݈ଶ norm and ఒ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶሻ

is a regularization of penalties to avoid over-fitting; ݀ோ, ݀௎, and
்݀ are usually very small, denoting the number of latent factors. ߣ
is a parameter controlling the contributions of the regularization.
Afterwards, we can recover the missing values in ࣛ௥ by
multiplying decomposed factors as ࣛ௥௘௖ ൌ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶ.

Figure 3. The model dealing with data sparsity

In our problem, however, the tensor is over sparse. For example, if
setting 30 minutes as a time slot, only 0.03% entries of ࣛ௥ have
values. Decomposing ࣛ௥ solely based on its own non-zero entries
is not accurate enough. To this end, we build another tensor ࣛ௛
based on the historical trajectories over a long period of time (e.g.
one month). As shown in Figure 3, ࣛ௛ has the same structure as
ࣛ௥, while an entry ࣛ௛ሺ݅, ݆, ݇ሻ ൌ ܿԢ denotes the ݆th driver’s average
travel time on the ݅th road segment in time slot ݇ in the history.
Intrinsically, ࣛ௛ is much denser than ࣛ௥ , denoting the historical
traffic patterns and drivers’ behavior on an entire road network. For
instance, using one-month trajectories and setting 30 minutes as a
time slot, the non-zero entries of ࣛ௛ is about 0.4%. Decomposing
ࣛ௥ and ࣛ௛ together reduces the error of supplementing ࣛ௥.

Besides ࣛ௛, we also construct another two matrices ܺ and ܻ to help
the decomposition of ࣛ௥. Specifically, as illustrated in Figure 4 A),
ܻ stores the geographical features ௥݂ of each road segment, such as
.ݎ .ݎ ,݈݊݁ .ݎ ,ݒ݈݁ .ݎ ,ݎ݅݀ ݊, the number of neighbors (e.g., ݎଵ has 2
and 3 neighbors) at its terminals, and a tortuosity ratio ߬ (e.g.
.ଵݎ ߬ ൌ .ଵݎ ݈݁݊ ݀ଵ⁄), as well as the distribution of Point of Interests
(POIs) ௣݂ around ݎ ’s terminals. While ܻ captures the similarity
between different road segments in geographic spaces, matrix ܺ
(consisting of ܺ௥ and ܺ௛) represents the correlation between
different time slots in terms of the coarse-grained traffic conditions.
More specifically, we partition a city into disjoint and uniform grids
(e.g., 4ൈ4 in Figure 4 B), each of which is comprised of many road
segments. ܺ௥ is built based on the recent trajectory data received
from ݐ௜ to ݐ௝ (e.g., 1pm-3pm), reflecting the present traffic
conditions on a road network. An entry of ܺ௥ denotes the number of
vehicles traversing a particular grid in a particular time slot. A row
of ܺ௥ represents coarse-grained traffic conditions in a city of a
particular time slot. Consequently, the similarity of two different
rows indicates the correlation of traffic flows between two time
slots. Additionally, in contrast to using the traffic flow on each
individual road segment in ࣛ௥, ܺ௥ can be filled densely, therefore
can help reduce the error of decomposing ࣛ௥ . ܺ௛ has the same
structure as ܺ௥ , storing the historical average number of vehicles
traversing a grid from ݐ௜ to ݐ௝ . In other words, ܺ௥ and ܺ௛

t'j

t'k

r1 r2 rN

u1

u2

uM

tj

tkg1 g16
tj

tk
Xh r1

r2

rN

f1 f2 fq

X

Xr
fr fp

Yg2

t'j

t'k

A = Ar || Ah

Ar

Ah

respectively correspond to the coarse-grained current and historical
traffic conditions in the same span of time of day. In the
implementation, we build ܣ௛ and ܺ௛ of an entire day in advance
and retrieve the entries according to current time (and the number of
time slots ܮ needed) when constructing ܺ and ܣ. For example, as
shown in Figure 4 C), the rows from ݐ௜ to ݐ௝ will be retrieved from
the prebuilt ܺ௛ to construct ܺ with ܺ௥.

Figure 4. Constructing context matrices

3.2 Tensor Decomposition
To achieve a high accuracy of decomposition, we put together ࣛ௥
and ࣛ௛(i.e., ࣛ ൌ ࣛ௥|| ࣛ௛, as shown in Figure 3), decomposing
ࣛ with context matrices ܺ and ܻ collaboratively. The objective
function is defined as Equation 3,

ࣦሺܵ, ܴ, ܷ, ܶ, ,ܨ ሻܩ ൌ
ଵ

ଶ
ԡࣛ௥ െ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶԡଶ ൅

ఒభ

ଶ
ԡܺ െ ԡଶܩܶ ൅

ఒమ

ଶ
ԡܻ െ ԡଶܨܴ ൅

ఒయ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶ ൅ ԡܨԡଶ ൅ ԡܩԡଶሻ, (3)

where ࣛ א Թேൈெൈଶ௅ and ܺ א Թଶ௅ൈ௉ , ܲ denotes the number of
grids; ܻ א Թேൈொ , ܳ denotes the dimension of geographical
features; ܶ א Թଶ௅ൈௗ೅ ܩ , א Թௗ೅ൈ௉ , ܴ א Թேൈௗೃ and ܨ א Թௗೃൈொ
are low rank latent factor matrices for time slots, grids, roads and
geographical features. Later, we can recover ࣛ according to
ࣛ௥௘௖ ൌ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶ ଵߣ . ଶߣ , , and ߣଷ are parameters
controlling the contribution of different parts.

In our model, ࣛ and ܺ shares matrix ܶ, and ࣛ and ܻ share matrix
ܴ. The dense representation of ܺ and ܻ helps generate a relatively
accurate ܶ and ܴ , which reduce the decomposition error of ࣛ in
turn. Additionally, the combination of ܺ௥ and ܺ௛ reveals how
current coarse-grained traffic condition deviates from its historical
patterns. The information of the deviation is then propagated to ࣛ,
helping figure out the fine-grained deviation between current traffic
conditions and historical traffic patterns on each road segment. So,
our model considers both geospatial and temporal correlations. It
also incorporates the knowledge from present and historical traffic
data. As there is no closed-form solution for finding the most
optimal result of Equation 3, we use a numeric method, gradient
descent, to find a local optimization, as presented in Figure 5.

Algorithm 1: Tensor Decomposition

Input: tensor ࣛ, matrix ܺ, and matrix ܻ, an error threshold ߝ
Output: ܴ, ܷ, ܶ, ܵ
1. Initialize ܵ א Թௗೃൈௗೆൈௗ೅, ܴ א Թேൈௗೃ, ܷ א Թெൈௗೆ, ܶ א Թଶ௅ൈௗ೅,
ܩ א Թௗ೅ൈ௉, ܨ א Թௗೃൈொ with small random values
2. Set ߟ as step size
3. While ܮ௧ െ ௧ାଵܮ ൐ ߝ
4. Foreach ࣛ௜௝௞ ്0
5. ௜ܻ௝௞ ൌ ܵ ൈோ ܴ௜כ ൈ௎ ௝ܷכ ൈ் ௞ܶכ;
6. ܴ௜כ ՚ ܴ௜כ െ כଷܴ௜ߣߟ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈ௎ ௝ܷכ ൈ் ௞ܶכ
 െߣߟଶሺܴ௜כ ൈ ܨ െ ௜ܻכሻ ൈ ;ܨ
7. ௝ܷכ ՚ ௝ܷכ െ ଷߣߟ ௝ܷכ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈோ ܴ௜כ ൈ் ௞ܶכ;
8. ௞ܶכ ՚ ௞ܶכ െ ଷߣߟ ௞ܶכ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈோ ܴ௜כ ൈ௎ ௝ܷכ
 െߣߟଵሺ ௞ܶכ ൈ ܩ െ ܺ௞כሻ ൈ ;ܩ
9. ܵ ՚ ܵ െ ଷܵߣߟ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܴ௜כ ٔ ௝ܷכ ٔ ௞ܶכ;
ܩ .10 ՚ ܩ െ ܩଷߣߟ െ ଵሺߣߟ ௞ܶכ ൈ ܩ െ ܺ௞כሻ ൈ ௞ܶכ;
ܨ .11 ՚ ܨ െ ܨଷߣߟ െ כଶሺܴ௜ߣߟ ൈ ܨ െ ௜ܻכሻ ൈ ܴ௜כ;
12. Return ܴ, ܷ, ܶ, ܵ

Figure 5. Algorithm for decomposing a tensor

The Symbol “ൈ” denotes the matrix multiplication; ൈோ stands for
the tensor-matrix multiplication, where the subscript ܴ stands for

the direction, e.g., ܪ ൌ ܵ ൈோ ܴ is ܪ௜௝௞ ൌ ∑ ௜ܵ௝௞ ൈ ܴ௜௝
ௗೃ
௜ୀଵ ; ٔ is the

tensor outer product (also called Kronecker product); the entries
of the ݅ th row of matrix ܴ are represented as ܴ௜כ . More
specifically, we use an element-wise optimization algorithm
(instead of batch decomposition) [10], which updates the factors
independently (meaning they can be performed in parallel).

In reality, tensor ࣛ is very large, given hundreds of thousands of
road segments and tens of thousands of drivers. Decomposing
such a big tensor is very time consuming, therefore reducing the
feasibility of our method in providing online services. To address
this issue, as illustrated in Figure 6, we partition a city into several
disjoint regions, building a tensor for each region based on the
data of the region. The matrices ܺ and ܻ are built in each smaller
region accordingly. By setting a proper splitting boundary, we try
to keep these small tensors a similar size. As a result, ࣛ is
replaced by a few small tensors, which will be factorized in
parallel and more efficiently. We validate (in later experiments)
that the partition does not compromise the accuracy of the original
decomposition when choosing a proper number of partitions.

Figure 6. Spatial partition for expediting the tensor decomposition

4. OPTIMAL CONCATENATION (OC)
4.1 Objective Function
Given a path ࡼ covered by trajectories, we need to find the best
concatenation that results in an accurate travel time estimation.
Intuitively, the best decomposition is the one that achieves the
lowest empirical risk between the estimate and true travel time ࡼߤ.
Suppose ࡼ is decomposed as ଵܲ|| ଶܲ|| ڮ || ௞ܲ, where the estimated
travel time is ݐҧ௉భ

൅ ҧ௉మݐ
൅ ڮ ൅ ҧ௉ೖݐ

, the squared empirical risk is
then wrote as,

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
؜ ࡼߤ൫ܧ െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ
, (4)

Hence, our problem is to search for the best concatenation which
yields the least empirical risk, formally defined as,

argmin௉భ,௉మ,ڮ,௉ೖ
௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ

,

 subject to ଵܲ|| ଶܲ|| ڮ || ௞ܲ ൌ (5) .ࡼ

To come up with a computable form of ࡼܧܵܮ,௉భ,௉మ,ڮ,௉ೖ
, we relate

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
 with ܧሺߤ௉೔

െ ҧ௉೔ݐ
ሻଶ , where ߤ௉೔

 is the true travel
time of sub-path ௜ܲ . It is fair to assume if ࡼ ൌ ଵܲ|| ଶܲ|| ڮ || ௞ܲ ,
then ࡼߤ ൌ ௉భݑ

൅ ௉మݑ
൅ ڮ ൅ ௉ೖݑ

. Hence we have,

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
ൌ ࡼߤ൫ܧ െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ

ൌ ௉భߤ൫ܧ
൅ ௉మߤ

൅ ڮ ௉ೖߤ
െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ

ൌ ܧ ቀ∑ ൫ߤ௉೔
െ ҧ௉೔ݐ

൯
ଶ௞

௜ୀଵ ൅ ∑ ∑ ሺߤ௉೔
െ ҧ௉೔ݐ

ሻሺߤ௉ೕ
െ ҧ௉ೕݐ

ሻ௞
௝ୀଵ

௞
௜ୀଵ ቁ

ൌ ∑ ௉೔ߤሺܧ
െ ҧ௉೔ݐ

ሻଶ௞
௜ୀଵ ൅ ∑ ∑ ܧ ቀሺߤ௉೔

െ ҧ௉೔ݐ
ሻሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻቁ௞

௝ୀଵ
௞
௜ୀଵ

If assuming ݐҧ௉೔
 and ݐҧ௉ೕ

 are independent, we have ܧ ቀሺߤ௉೔
െ

ҧ௉೔ݐ
ሻሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻቁ ൌ ௉೔ߤ൫ܧ

െ ҧ௉೔ݐ
൯ܧሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻ=0, Therefore,

g1 g2 g3

g16

g4

g5 g6 g7 g8

g9 g10 g11 g12

g13 g14 g15

r1

d1

r2

r3

r4

r6

r5

A) B)

g1 g2 g16
t1 22

11
42
2

50
16 8

23 6
9

tm

26

14

49
72

27

tj

ti

t2

61 7 91

Xh=

C)

r1 r2 rN

u1

u2

uM

tj

tk

g1 g2

g3g4

g1 g2

g3g4

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
ൌ ∑ ௉೔ߤሺܧ

െ ҧ௉೔ݐ
ሻଶ௞

௜ୀଵ . (6)

Further, ܧሺߤ௉೔
െ ҧ௉೔ݐ

ሻଶ ൌ ௉೔ߤሺܧ
െ

ଵ

௡ು೔

∑ ௉೔,௝ݐ
௡ು೔
௝ୀଵ ሻଶ

 ൌ
ଵ

௡ು೔
మ ܧ ∑ ሺߤ௉೔

െ ௉೔,௝ሻଶ௡ು೔ݐ
௝ୀଵ ൌ

ଵ

௡ು೔
మ ∑ ௉೔ߤሺܧ

െ ௉೔,௝ሻଶ௡ು೔ݐ
௝ୀଵ

 ൌ
ଵ

௡ು೔

 ௉೔,௝ሻ, (7)ݐሺݎܸܽ

where ݊௉೔
 is the number of drivers passing ௜ܲ , and ݐ௉೔,௝ denotes

the ݆ th driver’s travel time on ௜ܲ ௉೔,௝ሻ is the variance ofݐሺݎܸܽ ;
these drivers’ travel times. Then, Equation 5 can be represented as:

 argmin௉భ,௉మ,ڮ,௉ೖ
 ∑

ଵ

௡ು೔

௉೔,௝ሻ௞ݐሺݎܸܽ
௜ୀଵ

 subject to ଵܲ|| ଶܲ|| ڮ || ௞ܲ ൌ (8) ࡼ

Equation 8 well reflects the aforementioned tradeoff between the
support and length of a concatenation. On one hand, it is easier to
find more drivers traveling a shorter sub-path. The more the
drivers pass a sub-path (i.e. support is higher, ݊௉೔

 is bigger), the
smaller the error of the inferred travel time is. On the other hand,
the shorter a sub-path is, the bigger the variance in travel time
would be. There are a lot of uncertainties of traveling a short path.
E.g., if only traveling one road segment, the travel time will be
significantly influenced by a traffic light. As a result, different
drivers’ travel times could be dramatically different.

4.2 Dynamic Programing Solution
To solve the optimization problem shown in Equation 8, we
propose a dynamic programing solution. Suppose a path ࡼ: ଵݎ ՜
ଶݎ ՜ ڮ ՜ ௡ݎ , ܲԢ ൌ ଵݎ ՜ ଶݎ ՜ ڮ ՜ ௜ݎ , ݅ ൏ ݊ , denote ݃ሺ ௜ܲሻ ൌ

ଵ

௡ು೔

௉೔,௝ሻݐሺݎܸܽ , then the optimization problem of ܲԢ can be

represented as Equation 9.

 argmin௉భ,௉మ,ڮ,௉೗
 ∑ ݃൫ ௝ܲ൯௟

௝ୀଵ

 subject to ଵܲ|| ଶܲ|| ڮ || ௟ܲ ൌ ܲԢ. (9)

Let ݐ݌݋௜ be the minimal value of ܲԢ to the above problem, then the
minimal value of the squared empirical risk function of ࡼ is ݐ݌݋௡.
Additionally, we have a state transition function as Equation 10.

௡ݐ݌݋ ൌ minଵஸ௜ழ௡ሺݐ݌݋௜ ൅ ݃ሺ ௥ܲ೔శభ||௥೔శమڮ||௥೙
ሻሻ. (10)

Algorithm 2: Query path decomposition

Input: a query path ࡼ ൌ ଵݎ ՜ ଶݎ ՜ ڮ ՜ ௡, a collection of trajectoryݎ
pattern ܶܲs, a time slot ݇, trajectories received in ݇, and tensor ࣛ௥௘௖
Output: Ψ௡, the most optimal concatenation of path ࡼ
଴ݐ݌݋ .1 ՚ 0, Ψ଴ ՚ ;׎
2. For ݅ ൌ 1 to ݊ do
௜ݐ݌݋ .3 ՚ ൅∞; Ψ௜ ൌ ;׎
4. For ݆ ൌ ݅ down to 1 do
5. ܲᇱ ൌ ௝ݎ ՜ ௝ାଵݎ ՜ ڮ ՜ ௉ᇱ,௨,௞ݐ ;௜ݎ ՚0;
6. ܷ ՚ retrieve the drivers traversing (or partially traversing)
 ܲԢ from the trajectory database
7. Foreach ݑ א ܷ do
௉ᇱ,௨,௞ݐ .8 ՚ 0;
9. Foreach ݎ௘ א ܲԢ not traversed by ݑ’s trajectory ܶݎ
௉ᇱ,௨,௞൅ൌݐ .10 ሺࣛ௥௘௖ሻ௥೐,௨,௞;
௉ೞᇱ,௨,௞ݐ .11 ՚Calculate the time for the rest of ܲԢ based on ܶݎ;
௉ᇱ,௨,௞൅ൌݐ .12 ;௉ೞᇱ,௨,௞ݐ

13. ݃ሺܲԢሻ ൌ
ଵ

|௎|
 ;௉ᇱ,௨,௞ሻݐ௎ሺא௨ݎܸܽ

14. If ݐ݌݋௝ିଵ ൅ ݃ሺܲԢሻ ൏ ௜ݐ݌݋
௜ݐ݌݋ .15 ՚ ௝ିଵݐ݌݋ ൅ ݃ሺܲԢሻ;
௜ߖ .16 ՚ ;௝ିଵ||ܲԢߖ
17. Return Ψ௡;

Figure 7. Algorithm for finding the most optimal concatenation

Using Algorithm 2 shown in Figure 7, we solve this problem with a
complexity of ܱሺ݊ଶ ൈ ݉ሻ, where ݊ is the number of road segments
in ࡼ and ݉ is the number of drivers passing a segment.

In practice, it is not necessary to check every concatenation of a
path, as many sub-paths may not be traversed by any trajectory in
the current time slot. To further improve the efficiency of our
solution, we mine frequent trajectory patterns from historical
trajectories in advance. Then, we just need to check the
concatenation of the trajectories patterns. Specifically, we can stop
the iteration at Line 4 in algorithm 2 if ܲᇱ is not a trajectory pattern.

We use a suffix-tree-based algorithm [18] to find the frequent
trajectory patterns. Specifically, after being map-matched, a
trajectory can be regarded as a string of road segment IDs. By
building a suffix tree, where a node denotes a road segment ID, a
trajectory is then represented as a path on the tree. For example,
the four trajectories shown in Figure 1 can be represented as the
tree depicted in Figure 8 A), where ݎଵ ՜ ଶݎ ՜ ଷ is the most leftݎ
path of the tree. ݎଶ ՜ ଵݎ ଷ are suffixes ofݎ ଷ andݎ ՜ ଶݎ ՜ ଷ. Theݎ
number associated with each link stands for the number of the
trajectories passing the path (i.e., the support). If setting 2 as a
support, we find ݎଵ ՜ ଶݎ ,ଶݎ ՜ ,ଷ are patterns. In realityݎ ଷ, andݎ
the suffix-tree is built based on historical trajectories over a long
period of time. As long trajectory patterns are very rare, we set the
maximum length of a pattern to 20 road segments.

Figure 8. Mining frequent trajectory patterns and used with tensor

4.3 Working with Tensor ऋࢉࢋ࢘
Note that a query path may have some road segments that are not
traversed by any trajectory in the current time slot, though these
segments may belong to a trajectory pattern (in history). Following
the example shown in Figure 1, we demonstrate in Figure 8 B) how
ࣛ௥௘௖ is used with trajectory patterns to help the decomposition of a
query path. To estimate the travel time of a query path ܲ: ଵݎ ՜ ଶݎ ՜
ଷݎ ՜ ସ in time slot ݇, we first search the suffix tree, which wasݎ
built based on the trajectory data over a long history (not the one
shown in the left part of Figure 8 A), for the trajectory patterns that
ܲ contains, e.g., ݎଶ ՜ ଷݎ and ݎଷ ՜ ସݎ . To calculate ݃ሺݎଷ ՜ ସሻݎ
defined in Equation 9, we need to know the travel time of each
driver passing ݎଷ ՜ ସݎ . However, ݎସ is not traversed by any
trajectory in time slot ݇. That is ݐ௥య՜௥ర,௨,௞ is unknown for every
driver, though ݐ௥య,௨,௞ can be calculated based on the recently
received trajectories, i.e. ܶݎଶ, ܶݎଷ and ܶݎସ. To address this issue, we
retrieve ݐ௥ర,௨మ,௞ ௥ర,௨య,௞ݐ , , and ݐ௥ర,௨ర,௞ from ࣛ௥௘௖ and calculate
ݑ ௥య՜௥ర,௨,௞ forݐ ൌ ሺݑଶ, ,ଷݑ .ସሻ, respectively, by Equation 11ݑ

௥య՜௥ర,௨,௞ݐ ൌ ௥య,௨,௞ݐ ൅ ௥ర,௨,௞, (11)ݐ

Having ݐ௥య՜௥ర,௨,௞, we can calculate the most optimal concatenation
according to Equation 9, 10 and Algorithm 2. When the supplement
of an entry is negative, we resort to the historical average travel
time. The dimension of users in tensor ࣛ௥ enables us to retrieve a
more accurate travel time for a particular driver, resulting in a better
estimate of the variance of travel times (as Equation 8). We validate
that this is more accurate than just using a historical average of

r2

r3

r3 r5

r7

r6

r1

r2

r3

Root

r2 r6 r7
2

11

2

1

1

1

1 133

1

r3 r6

12

 r2→r3, r3→r4

(u2, u3, u4)

P: r1→r2→r3→r4

(1)

(3)

(3)

r1 r2 rN

u1

u2

uM

tj

tk

Arec

(1)

, ,

Tr2,Tr3,Tr4

tr4,u2,k tr4,u3,k tr4,u4,k

tr3→r4,u2,k = tr3,u2,k
+t r4,u2,k

A) An example of suffix-tree B) Filling in the missing time for a pattern

Patterns:

travel times. After finding the most optimal concatenation, we
calculate the travel time of path ܲ by Equation 1, setting Ψ௡ as Ψ.

In the implementation, if not building an effective indexing
structure, we need to scan a trajectory when calculating the travel
time of a path based on the trajectory (i.e., Line 11 of Algorithm 2).
This becomes very time consuming if we need to repeat the process
many times. To address this issue, we propose an indexing structure
to maintain the trajectories received in the current time slot, as
shown in Figure 9. The structure looks like the suffix tree we build
for mining trajectory patterns. However, each node in the tree stores
the ID of the trajectory that traverses the path from the root to the
node and the corresponding travel time. For example, ܶݎଵ and ܶݎଶ
shown in Figure 1 are stored in the index demonstrated in Figure 9,
where ݐ௥భ՜௥మ՜௥య

 stands for the time for traveling path ݎଵ ՜ ଶݎ ՜ .ଷݎ

Figure 9. Indexing structure for maintaining recent trajectories

5. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of the
two major parts of PTTE, i.e., CATD and OC, respectively.

5.1 Settings
5.1.1 Datasets
Taxi Trajectories. We use a GPS trajectory dataset generated by 32,670
taxicabs in Beijing from Sept. 1 to Oct. 31, 2013. The number of GPS
points reaches 673,469,757, and the total length of the trajectories is
over 26,218,407km. The average sampling rate is 96 seconds per point.

Road networks: We use the road network of Beijing, which is
comprised of 148,110 nodes and 196,307 edges. The road network
covers a 40ൈ50km spatial range, with a total length (of road segments)
of 21,985km.

POIs: The dataset consists of 273,165 POIs of Beijing, which are
classified into 195 tier two categories. We only chose the top 10
categories that occur around road segments most frequently.

After projecting the trajectories onto the road network, we build
ࣛ௥ and ࣛ௛ to model the recent and historical traffic conditions,
respectively. We set four time slots (each time slot is 30 minutes)
in the two tensors, as we find 4 have a good tradeoff between
effectiveness and efficiency (see Figure 12 A). In the
implementation, we remove the road segments that are traveled
less than 50 times in two months (i.e., less than 1 time per entire
day). The GPS points on such road segments may be noises, or
due to the imperfect map-matching algorithm or such places
cannot be traveled by vehicles (such as pedestrian streets), and
therefore may not be really queried by drivers. Finally, 118,401
road segments are used in our models. We also build geographic
and temporal contexts ܺ and ܻ based on the above mentioned
datasets. Table 1 shows the statistics of these tensors and matrices,
where the third row means ࣛ௥ is partitioned into 25 sub-tensors.

As shown in Figure 10 A), the maximum number of trajectories
traversing a path (per day) decreases quickly as the length of the
path increases. For instance, a path with 10 road segments is

traversed by less than 245 trajectories per day. Figure 10 B)
presents the number road segments traveled by taxis with different
times. For example, from 8am to 9am, about 25,000 roads
segments are traversed by taxis 1-2 times and 8,000 segments
(about 4% of Beijing road network) are traveled 3-4 times.

Table 1. Statistics on the data models

Size Average non-zero entries
ࣛ௥ 118,401×32,670×4 0.035%
ࣛ௛ 118,401×32,670×4 0.4%

ࣛ௥/(5×5) 4,736×12,674×4 0.09%
ܺ 8×16 1
ܻ 118,401×18 1

 A) Support of Path W.r.t. it length B) Road segments traversed

Figure 10. Statistics on the trajectory data set

5.1.2 Baseline Methods
We compare PTTE with the following four baseline methods.

1) Speed-Constraint-based (SC) method. The travel time of each
road segment is computed by the length of a road segment and its
speed constraint. The travel time of a path is then a summation of
that of each road segment.

2) Trajectory-based Simple Concatenation (TSC) method. TSC
estimates the travel time of each road segment individually based
on the trajectories passing the road segment in the most recent
time slot. If a road segment is not covered by any recent
trajectory, TSC uses the average historical travel time instead. The
travel time of a path is then a summation of that of each road
segment.

3) Optimal Concatenation with Historical Travel Time (OC+H)
method. OC+H uses Algorithm 2 proposed in this paper to find
the most optimal concatenation of trajectories to estimate the
travel time of a path. For a road segment not covered by any
trajectories, this method uses an average historical travel time of
the road segment.

4) Optimal Concatenation with Nonnegative Matrix Factorization
(OC+MF). This method is similar to OC+H, except for using MF
(rather than historical average) to infer the travel time of segments
without trajectories. MF is applied to the road-time matrix, which
is degraded from tensor ࣛ by averaging the driver dimensions.

Comparing PTTE with the first baseline, we can demonstrate the
advantages of using the trajectory data. The second baseline
method can reveal the contribution of the proposed optimal
concatenation algorithm. Through comparing it with the third and
fourth baselines, we can justify why a tensor with the driver
dimension is needed in PTTE. Regarding CATD, the first step of
PTTE, we study the contribution of using context matrices and
historical data, respectively, in filling the missing values of ࣛ௥.

5.1.3 Query Paths and Ground Truth
We randomly pick out 50 paths, each of which has been fully
traversed by at least two drivers, in each hour of a day, from the
taxi trajectory data. We then use these paths as queries and the

r2

r3

r6

r6

r1

Root

Tr2 Tr1

Tr2

Tr1

Tr2

tr1→r2

Tr1

tr1→r2

tr1→r2→r3 tr1→r2→r6

tr1

t r1

Tr1 tr2→r6

r2

r3

Tr2

Tr2

Tr2

tr2

tr2

t r2→r3

r3 r6

Tr1tr3 Tr1 tr6 0 10 20 30 40 50

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

M
ax

.
N

um
.

o
f

T
ra

je
ct

o
rie

s
(S

u
p

po
rt

)

Length of a Path

0 4 8 12 16 20
0

10k

20k

30k

40k

50k

N
u

m
.

of
 R

oa
d

S
e

gm
e

nt
s

Time of Day

 1-2
 3-4
 5-6
 7-8
 >8

average travel time of these trajectories as the ground truth. Once
a trajectory is selected as a ground truth, we remove them from
the training data. In total, we generate 12,384 queries, whose
length ranges from 2KM to 16KM following the distribution as
shown in Figure 11 B) and time span follows the distribution
depicted in Figure 11 C). The total length of these query paths is
76,412.6km with an effective total time span of 2733.9hours. The
queries selected in this way cover different times of day (from
6am to 11pm) and follow the distance distribution of people’s true
travel patterns in a city’s road network. In the experiments, we do
not study the query after 11pm and earlier than 6am, as there is
almost no traffic at those times. In other words, people can travel
as fast as the speed constraint of a road. According to Figure 11
A), these query paths (denoted as blue road segments) also cover
the majority of the Beijing road network.

Figure 11. Distributions of the query paths

We study the mean absolute error (MAE) and mean relative error
(MRE) of an estimate according to Equation 12 and 13,
respectively, where ݕ௜ is an estimate and ݕపෝ is the ground truth.

ܧܣܯ ൌ
∑ |௬೔ି௬ഢෝ |೔

௡
, (12)

ܧܴܯ ൌ
∑ |௬೔ି௬ഢෝ |೔

∑ ௬ഢෝ೔
, (13)

5.2 Results
5.2.1 Performance of CATD
To test the accuracy of estimating the travel time of road segments
absent of trajectories, we randomly remove 30% of non-zero
entries from the last time slice of tensor ࣛ௥. We then infer these
entries with our method, using their original values as a ground
truth to calculate MAE and RMSE, as shown in Table 2
 RMSE is widely used to measure the error of a .(ଷ= 0.01ߣ=ଶߣ=ଵߣ)
tensor decomposition, defined as Equation 14.

ܧܵܯܴ ൌ ට∑ ሺ௬೔ି௬ഢෝ ሻమ
೔

௡
; (14)

Adding historical trajectories (i.e.., ࣛ௛) and context matrices
gradually into the tensor decomposition, denoted as TD+H and
TD+H+C, respectively, we achieve a clear increase of
performance in estimating the missing values.

Table 2. The performance of CATD

 MAE (min) RMSE
1.646 0.747 ܦܶ
ܦܶ ൅ 1.629 0.732 ܪ
ܦሺܶ ܦܶܣܥ ൅ ܪ ൅ ሻ 0.714 1.613ܥ

We further study the effectiveness and efficiency of CATD
changing over the number of time slices in Figure 12 A). Adding
more time slices into ࣛ௥ and ࣛ௛ achieves a more accurate
estimate of missing values (i.e., the travel time of road segments
without trajectories), as we have richer information of previous
traffic conditions. On the other hand, more time slices consume a

longer time. We find that formulating a tensor with 4 time slices is
a relatively strong tradeoff between effectiveness and efficiency.

A) W.r.t. time slices B) w.r.t. partitions
Figure 12. Performance of CATD

However, the time cost for decomposing such big tensors and
matrices (see Table 1) makes our method impractical for
answering instant queries. As a consequence, we partition a city
into disjointed regions, building individual tensors and matrices,
separately and in parallel. Figure 12 B) shows the performance
changing over the number of partitions. When dividing Beijing
into 5ൈ5 regions, we can finish CATD for each region in 6
minutes. The partition does not compromise the accuracy (only a
0.1min gap) as compared to decomposing the original tensors.
Additionally, the tensor decomposition method we adopt can be
performed in parallel, further reducing the time cost of CATD.

5.2.2 Overall Performance
Table 3 presents the overall performance of our model PTTE (i.e.,
CATD+OC) and baseline methods. Besides MAE and MRE, we
also present the average error of travel time per km (MAE/L). For
example, the average error of PTTE in estimating the travel time
of a path is about 0.412min (25 seconds) per kilometer. Clearly,
PTTE outperforms all the baselines in terms of the three metrics.
Given the queries introduced in Section 5.1.3, on average, the
absolute error of the estimated travel time is about 2 minutes per
path, which is about 19% of the true travel time. From the results,
we can draw the following conclusions. First, using trajectory data
(TSC) is much better than that only based on speed constraints of
roads. But, simply concatenating the travel time of each individual
road segment (TSC) is not an optimal solution. As we mentioned
before, the more fragments involved in a concatenation, the more
uncertain of travel time for crossing two consecutive fragments
occurs is. Second, regarding estimating the travel time of road
segments without covered by trajectories, using the historical
average travel time (OC+H) is significantly better than using its
speed constraint. Using a collaborative filtering model (OC+MF)
is slightly better than using an historical average. The PTTE
considering the driver dimension is even better than OC+MF.

Table 3. Comparison of different methods

MAE (min) MRE MAE/L (min/km)
ܥܵ 8.808 0.665 1.428

 0.850 0.396 5.244 ܥܵܶ
ܥܱ ൅ 0.526 0.245 3.245 ܪ

ܥܱ ൅ 0.496 0.231 3.061 ܨܯ
 0.412 0.192 2.545 ࡱࢀࢀࡼ

Figures 13 and 14 present the performance of SC, TSC, and PTTE
changing over time of day, on weekdays and weekends. We do
not show that of OC+H and OC+MF, as they almost follow the
same trend as (but worse than) PTTE. As depicted in Figure 11,
the error of SC increases tremendously during peak traffic hours,
around 8-9am and 6-7pm. The complex traffic conditions on roads
at these moments deviate the true travel speed far from their speed
constraints. When time goes to late night (i.e., no complex traffic

A) Geographical distribution

B) Distribution of the length

C) Distribution of time length

2 3 4 5
0.70

0.71

0.72

0.73

0.74

 MAE
 Time Cost

Number of time slices L

M
A

E
 (

m
in

)

0

50

100

150

200

250

300

T
im

e
C

o
st

 (
m

in
u

te
)

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

 MAE (min)
 Time cost (min)

The number of partitions (hxh)

M
A

E
 (

m
in

)

0

20

40

60

80

100

120

140

160

180

 T
im

e
 c

o
st

 (
m

in
)

conditions anymore), the error decreases and approaches our
PTTE method. This is also the reason that we do not need to
perform PTTE on late night time sets, especially after 12am and
before 6am. Simply estimating the travel time for each individual
road segment and then doing a summation (TSC) is not accurate
enough. When there are not enough taxis traveling on Beijing’s
road network, e.g., after 9pm and before 8am, MAE of TSC is
higher than other time slots. With the help of CATD, the MAE of
our method only increases slightly after 9am. This demonstrates
the value of inferring the missing values.

Figure 13. Performance changing over time of day (Weekday)

As most people do not drive to work on weekends, we observe
different trends of the performance in Figure 14, in contrast to
Figure 13. SC’s MAE reaches its peak around 6pm which is the
weekend rush hour. The reason why PTTE has the biggest error
around 9am on weekends is a tradeoff between the number of
taxis and the complexity of traffic conditions in a road network.
On weekends, the number of taxis traveling in Beijing’s road
network is still very small at 9am, while the traffic conditions start
becoming complex. As time goes by, more taxis are present on
Beijing’s road network, alleviating the data sparsity problem and
decreasing the MAE. Conversely, before 8am, the traffic
condition is still very simple to predict on roads. The travel speed
is almost close to the speed limit.

Figure 14. Performance changing over time of day (Weekend)

Figure 15 shows the performance of PTTE changing over the
length of a query path. As the length increases, both MAE and
MRE decrease. A longer path is more likely to contain more
trajectory patterns, which provide more choices for an optimal
concatenation. This also echoes the assumption we proposed in
the introduction. The shorter a sub-path is the more unstable its
travel time could be. In an extreme case, the travel time of a single
road segment is terrifically impacted by traffic lights and
pedestrians crossing it. So, the travel time varies in time quickly
and tremendously, becoming hard to predict.

Figure 15. Performance of PTTE changing over the length of a path

Table 4 presents the time and space cost of PTTE’s two major
components for processing the trajectories received in recent 30
minutes. The first component CATD is only performed once for the
entire dataset, while OC is conducted for each query path. All
numbers are obtained by only using a single core of a server with
2.80GHz Xeon CPU and 24GB RAM. For example, if we partition
a city into 25 regions, building ࣛ௥ and ࣛ௛ for an individual region
needs 44 and 233 seconds, respectively, costing 4.4MB and 14.6
MB of memory, respectively (each tensor contains 4 time slices).
Using Algorithm 1 to decompose these tensors with context
matrices ܺ and ܻ needs about 6.31min for each region. We do not
list the time for building matrix ܻ, as it is static and can be built
offline. In total, we can infer the travel time on each road segment
for each particular driver within 6.4min if using 25 cores in a server.
Note that Algorithm 1 is based on an entry-wised decomposition
approach, which can be performed in parallel further. If using six
25-core servers, we can finish CATD in about 1 minute. In the
optimal concatenation, we can process a query path in 2.3ms.
However, the time is much longer if the trajectory patterns and the
real-time indexing structure proposed in Figure 9 are not used.

Table 4. Time and memory cost for each step of PTTE

 Components Time Memory (MB)
Deal with
missing
values

(ܦܶܣܥ)

Building matrix ܺ, ܻ 34ms 9
Tensor

construction
ࣛ௥ 44ms 4.4
ࣛ௛ 233ms 14.6

Decomposition 5×5 6.31min 116
Total 6.4min 144

Optimal
Concatenat
ion (OC)

Best OC 2.3ms 995
w/o trajectory patterns 8.6ms 877

w/o index 12.2s 714

Figure 16 A) shows the tradeoff between effectiveness (measured
by MAE) and efficiency (by time cost) of using trajectory patterns
in optimal concatenations, where the horizontal axis denotes the
threshold of support. For example, if setting 400 as a threshold, we
regard a path as a trajectory pattern if the path has been covered by
over 400 trajectories in the two-month dataset. The bigger threshold
is the smaller number of trajectory patterns we can obtain. So, the
time cost decreases and the MAE increases, as the support
increases. Additionally, as depicted in Figure 16 B), setting a
smaller support threshold leads to a bigger size of the suffix-tree-
based index for trajectory pattern mining. In the implementation, we
find 500 is a good tradeoff among MAE, time cost, and index size.
Note that without using the indexing structure proposed in Section
4.3, we need about 12 seconds to find the most optimal
concatenation for a query path (see Table 4).

A) Time cost and MAE w.r.t. support B) Size of the index w.r.t. support

Figure 16. Performance of OC w.r.t. support of a trajectory pattern

The recovered tensor ࣛ௥௘௖ helps the optimal concatenation
significantly. In the experiments, we test our model with 12,384
query paths, which are comprised of 217,326 road segments in total.
When processing the query paths, we access tensor ࣛ௥௘௖ 1,706,648
times (i.e., 137.8 times per query) to retrieve the missing travel time
of a road segment in a trajectory pattern. The travel times of 58,223

6 8 10 12 14 16 18 20 22 24

4

8

12

M
A

E

Time of day

 SC
 TSC
 PTTE

6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

M
A

E

Time of day

 SC
 TSC
 PTTE

2 4 6 8 10 12 14

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 MAE
 MRE

Length of a Path

M
A

E

0.1

0.2

0.3

0.4

 M
R

E

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

 Time/Query (ms)
 MAE

Support

T
im

e
/Q

u
e

ry
 (

m
s)

2.0

2.2

2.4

2.6

2.8

3.0

 M
A

E

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

S
iz

e
 o

f
In

de
x

(M
B

)

Support

road segments (about 26.8% of the road segments in the query
paths) are finally retrieved from ࣛ௥௘௖ for constructing the most
optimal concatenation, i.e., 4.7 road segments per path.

We study the performance of PTTE changing over different
number of vehicles in Figure 17, aiming to figure out how many
GPS equipped vehicles are needed to have accurate results. For
example, using 30,000 GPS-equipped vehicles in Beijing is
enough to achieving a MRE smaller than 0.23. In other words, if
having 1.36 vehicles on every kilometer road in a city, we can
achieve a relative error of estimation smaller than 0.23.

Figure 17. Performance w.r.t the number of taxis

5.2.3 Field Study

Besides using GPS trajectories from taxi drivers, we also send two
drivers carrying a GPS logger to test the accuracy of our method
from Sept. 1 to Oct. 30. Finally, we collect 114 driving paths with
a total length of 999.4km and an effective total time period of
61.6hours. The sampling rate of these GPS trajectories is 5
seconds per point. Table 5 shows the performance of the study,
where we observe a better MRE than using taxi drivers’
trajectories as a ground truth. The major reason is the length of a
path collected in the study is usually long (on average 8.78KM
each), where our model has a better accuracy than a shorter path.
Additionally, the map-matching for high sampling rate trajectories
is more accurate than low sampling rate taxi trajectories, resulting
in a more accurate estimation of the ground truth.

Table 5. Performance of the in-the field study

 MAE (min) MRE MAE/L (min/km)
2.075 0.561 18.193 ܥܵ

 1.289 0.349 11.300 ܥܵܶ
ܥܱ ൅ 0.569 0.154 4.990 ܪ

ܥܱ ൅ 0.462 0.125 4.052 ܨܯ
 0.430 0.116 3.771 ࡱࢀࢀࡼ

6. RELATED WORK
6.1 Road Segment-Based Travel Time
Approaches using Loop Detectors: Estimating travel time based on
loop detectors installed on both endpoints of a road segment has
been studied intensively over the past few decades. When a vehicle
passes through, the time interval for crossing two adjacent loop
detectors is recorded, based on which the speed of the vehicle is
inferred. [9, 14, 16] use various models to estimate the travel speed
on an individual road segment based on the sensor readings from
loop detectors, and then convert the speed into a travel time. [19]
predicts the travel time of a road segment by applying support
vector regression to its historical travel times. As many roads do not
have a loop detector buried, this category of research mainly
focuses on individual road segments, and therefore is difficult to
scale up to an entire city.

Floating-Car-Data Approaches: Learning city transportation using
floating car data has gained more attention recently [1, 5, 17, 23, 24].
In these approaches, cars driven in a city serve as dynamic sensors
to probe traffic conditions, and their GPS trajectories are used to

compute the speed and travel time on road segments. Most methods
infer the travel time of an individual road segment without
considering the correlation between the traffic conditions on
different roads. This reduces the accuracy of an inference in an
urban environment where traffic conditions are inter-related.

Some models [2] predict the travel speed of a road segment by
considering the traffic patterns of other road segments connected
to it. Unfortunately, when scaling up to an entire city, these
methods often result in a model with high complexities.
Additionally, they do not tackle the data sparsity problem, i.e.
many road segments are not traveled by trajectories in the current
time slot, which is quite common in reality. The neighboring
segments’ traffic patterns can be regarded as the local correlation
between road segments. However, the correlation between road
segments that are not geospatially connected is not considered in
these modes. [8] aims to estimate the travel time between two
points on a road network using low sampling rate trajectory data.
It considers the correlation between different road segments in
terms of their historical traffic patterns to infer the travel time on a
road segment and the delay at intersections. The model is trained
using a Maximum Likelihood Estimation over the collected data
in an urban road network.

However, these methods still follow the idea of first estimating
the travel time of individual road segments and then summing up
the travel times of the road segments belonging to a path. As we
mentioned before, it is difficult to explicitly model the complex
factors for crossing two road segments, e.g., intersections,
direction turns, and traffic lights. Though we also infer the travel
time for individual segments, the time is combined with trajectory
patterns to formulate a sub-path rather than simply concatenating
them one by one. The variance of different users’ travel times also
captures the complexity of traffic conditions on a road segment or
a sub-path. In the meantime, when inferring the travel time of a
road segment, we incorporate both spatial correlation between
different road segments and the temporal correlation between the
traffic conditions of different time slots, as well as the deviation
between current traffic conditions and historical traffic patterns.

6.2 Path-Based Travel Time
A possible approach to deal with the weakness of the individual
road segment-based methods is to estimate the travel time of a path
as a whole based on frequent trajectory patterns. For example, we
can mine frequent patterns from historical trajectories [6, 7, 12] in
advance, and then use the average travel time of a pattern to
represent the travel of the path corresponding to the pattern. Some
models can also be built based on the historical data of a path [15]
to estimate the future travel time of the path. This approach needs a
balance between the coverage of queries that it can answer and the
accuracy of the inferred travel time. To be able to answer various
query paths, these methods need to select more trajectory patterns
by using a small support. However, the travel time derived from a
small support is not accurate. Additionally, a path’s travel time of
current time slot may deviate from its historical average
significantly, depending on the real-time traffic conditions.
Moreover, many query paths may not be traversed by any
trajectories in current time slot as well in the history.

Recent research has started finding more optimal concatenations
of road segments to estimate the travel time of a path. A series of
research attempts to explicitly calculate the time spent on
intersections using an interpolation method [11], or a joint
probability model [3], or a dynamic Bayesian network [4]. This
could result in a more accurate summation of individual road
segments’ travel times. However, these methods do not study how

5000 10000 15000 20000 25000 30000 35000

2.5

3.0

3.5

4.0

4.5

5.0

 MAE
 MRE

Number of Vehicles

M
A

E

0.20

0.25

0.30

0.35

 M
R

E

to leverage sub-trajectories to construct an optimal estimation of a
path. As we mentioned before, the accuracy of estimating a sub-
path’s travel time is subject to the tradeoff between its length and
the number of trajectories passing the sub-path. In our model, we
propose and prove an objective function that can represent the
tradeoff. We also consider the variance of different drivers’ travel
times, resulting in a more accurate travel time estimation of a path.

Based on the trajectories generated by a large number of taxis,
[20] builds a landmark graph, where a node (entitled a landmark)
is a road segment frequently traveled by taxis and an edge denotes
the aggregation of taxis’ commutes between two landmarks. The
travel time of a path is then approximated by the summation of the
travel times between landmarks. Though the proposed landmark
graph can also deal with the data sparsity problem, the main goal
of [20] is to find the quickest driving path between an origin and a
destination; this is different from our problem. Knowing the
shortest time for traveling between two points does not mean we
can obtain the travel time of any path traversing the two points.

7. CONCLUSION
In this paper, we propose a real-time and citywide model, called
PTTE, to estimate the travel time of a path in current time slot in a
city’s road network, using the GPS trajectories from a sample of
vehicles (e.g. taxicabs). Though this is a very important foundation
for many traffic monitoring and routing systems, the problem has
not been well solved given three challenges: 1) data sparsity, 2)
finding an optimal combination of trajectories (i.e., the tradeoff
between the length of a sub-path and the number of trajectories
passing the sub-path), and 3) the tradeoff between scalability,
effectiveness and efficiency. PTTE is comprised of two major
components, CATD and OC. The former infers the travel time of a
road segment without being traversed by trajectories in the current
time slot through a context-aware tensor decomposition approach.
The latter searches for the most optimal concatenation of
trajectories for a query path using a dynamic programing solution.
We evaluate PTTE with extensive experiments based on GPS
trajectories generated by over 32,000 taxicabs over a period of two
months in Beijing. We test the effectiveness and efficiency of
CATD and OC, respectively. First, the results demonstrate the
advantages of CATD in accurately filling in the missing values
beyond baseline methods, such as using speed constraints, or using
a historical average travel time, or using a matrix factorization-
based approach. The driver dimension in tensor ࣛ௥ helps us
calculate the variance of different drivers’ travel times on a road
segment. The variance indicates the complexity of a road’s traffic
condition, helping us find the most optimal concatenation for a path.
In addition, the geospatial/temporal contexts and historical traffic
patterns increase the accuracy of estimating the missing values.
Regarding the most optimal concatenation, we devise an objective
function which has been proved to be able to model the tradeoff
between a sub-path’s length and the number of trajectories passing
it. Tested by 12,384 query paths, PTTE achieves a mean absolute
error of 0.4min per km, which is about 19% of the truth travel time.
The results of the in-the-field study have an even smaller estimation
error (11.6%). Using the suffix-tree-based indexing structure to
manage the trajectories received currently and the trajectory patterns
(mined in advance) to scale down the concatenation candidates, on
average, we are able to infer the travel time of a path in 2.3ms. The
codes and a sample of the data used here have been released at [25].

In the future, we plan to infer the travel time of a path for a
particular driver. In addition, we would like to study the impact of
other factors, such as weather conditions and air quality, on the
travel time estimation of a path.

8. REFERENCES
[1] S. Chawla, Y. Zheng, J. Hu. 2012. Inferring the Root Cause in Road

Traffic Anomalies. In Proc. of IEEE ICDM 2012.
[2] C. De Fabritiis, R. Ragona, G. Valenti. 2008. Traffic estimation and

prediction based on real time floating car data. In Proc. of IEEE
ITSC 2008.

[3] A. Hofleitner, A. Bayen. 2011. Optimal decomposition of travel times
measured by probe vehicles using a statistical traffic flow model. In
Proc. of IEEE ITSC 2011.

[4] A. Hofleitner, R. Herring, P. Abbeel, A. Bayen. 2012. Learning the
dynamics of arterial traffic from probe data using a dynamic
Bayesian network. IEEE Trans. on Intelligent Transportation
Systems, 13(4), 1679-1693.

[5] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E.
Shih, H. Balakrishnan, S. Madden. 2006. CarTel: a distributed
mobile sensor computing system. In Proc. of ACM Sensys 2006.

[6] J. Han, M. Kamber, J. Pei. 2006. Data mining: concepts and
techniques. Morgan kaufmann.

[7] J. Han, J. Pei, Y. Yin. 2000. Mining frequent patterns without
candidate generation. ACM SIGMOD Record, 29(2), 1-12.

[8] E. Jenelius, H. N. Koutsopoulos. 2013. Travel time estimation for
urban road networks using low frequency probe vehicle data.
Transportation Research Part B: Methodological, 53, 64-81.

[9] Z. Jia, C. Chen, B. Coifman, P. Varaiya. 2001. The PeMS algorithms
for accurate, real-time estimates of g-factors and speeds from single-
loop detectors. IEEE Trans. on Intelligent Transportation Systems.

[10] A. Karatzoglou, X. Amatriain, L. Baltrunas, N. Oliver. 2010.
Multiverse recommendation: n-dimensional tensor factorization for
context-aware collaborative filtering. In Proc. of ACM Recsys 2010.

[11] T. V. Larsen. Travel-Time Estimation in Road Networks Using GPS
Data. White paper.

[12] W. Luo, H. Tan, L. Chen, L. M. Ni. 2013. Finding time period-based
most frequent path in big trajectory data. In Proc. of ACM SIGMOD
2013.

[13] S. Ma, Y. Zheng, O. Wolfson. 2013. T-share: A large-scale dynamic
taxi ridesharing service. In Proc. of IEEE ICDE 2013.

[14] K. F. Pettya, P. Bickelb, J. Jiangc, M. Ostlandb, J. Riceb, Y. Ritovd,
F. Schoenbergb. 1998. Accurate estimation of travel times from
single-loop detectors. Transportation Research Part A: Policy and
Practice, 32(1), 1-17.

[15] M. Rahmani, E. Jenelius, H. N. Koutsopoulos. 2013. Route travel
time estimation using low-frequency floating car data. In Proc. of
IEEE ITSC 2013.

[16] J. Rice, E. Van Zwet. 2004. A simple and effective method for
predicting travel times on freeways. IEEE Trans. on Intelligent
Transportation Systems, 5(3), 200-207.

[17] R. Sevlian, R. Rajagopal. 2010. Travel Time Estimation Using
Floating Car Data. arXiv preprint arXiv:1012.4249.

[18] R. Song, W. Sun, B. Zheng, Y. Zheng, C. Tu, S. Li. 2014. PRESS: A
Novel Framework of Trajectory Compression in Road Networks. In
Proc. of VLDB 2014.

[19] C. H. Wu, J. M. Ho, D. T. Lee. 2004. Travel-time prediction with
support vector regression. IEEE Trans. on Intelligent Transportation
Systems, 5(4), 276-281.

[20] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, Y. Huang.
2010. T-Drive: Driving Directions Based on Taxi Trajectories. In
Proc. of ACM SIGSPATIAL 2010.

[21] J. Yuan, Y. Zheng, C. Zhang, X. Xie, G. Sun. 2010. An interactive-
voting based map matching algorithm. In Proc. of IEEE MDM 2010.

[22] N. J. Yuan, Y. Zheng, L. Zhang, X. Xie. 2013. T-finder: A
recommender system for finding passengers and vacant taxis. IEEE
Trans. on Knowledge and Data Engineering, 25(10), 2390-2403.

[23] Y. Zheng, Y. Chen, Q. Li, X. Xie, W. Y. Ma. 2010. Understanding
transportation modes based on GPS data for web applications. ACM
Trans. on the Web, 4(1), 1.

[24] Zheng, Y., Capra, Li, Wolfson, O., Yang, H. 2014. Urban computing:
concepts, methodologies, and applications. ACM Trans. on
Intelligent systems and Technology, 5(3).

[25] Data released: http://research.microsoft.com/apps/pubs/?id=217493

