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ABSTRACT 
In this paper, we propose a citywide and real-time model for 
estimating the travel time of any path (represented as a sequence of 
connected road segments) in real time in a city, based on the GPS 
trajectories of vehicles received in current time slots and over a period 
of history as well as map data sources. Though this is a strategically 
important task in many traffic monitoring and routing systems, the 
problem has not been well solved yet given the following three 
challenges. The first is the data sparsity problem, i.e., many road 
segments may not be traveled by any GPS-equipped vehicles in 
present time slot. In most cases, we cannot find a trajectory exactly 
traversing a query path either. Second, for the fragment of a path with 
trajectories, they are multiple ways of using (or combining) the 
trajectories to estimate the corresponding travel time. Finding an 
optimal combination is a challenging problem, subject to a tradeoff 
between the length of a path and the number of trajectories traversing 
the path (i.e., support). Third, we need to instantly answer users’ 
queries which may occur in any part of a given city. This calls for an 
efficient, scalable and effective solution that can enable a citywide and 
real-time travel time estimation. To address these challenges, we 
model different drivers’ travel times on different road segments in 
different time slots with a three dimension tensor. Combined with 
geospatial, temporal and historical contexts learned from trajectories 
and map data, we fill in the tensor’s missing values through a context-
aware tensor decomposition approach. We then devise and prove an 
object function to model the aforementioned tradeoff, with which we 
find the most optimal concatenation of trajectories for an estimate 
through a dynamic programming solution. In addition, we propose 
using frequent trajectory patterns (mined from historical trajectories) 
to scale down the candidates of concatenation and a suffix-tree-based 
index to manage the trajectories received in the present time slot. We 
evaluate our method based on extensive experiments, using GPS 
trajectories generated by more than 32,000 taxis over a period of two 
months. The results demonstrate the effectiveness, efficiency and 
scalability of our method beyond baseline approaches.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications - data 
mining, Spatial databases and GIS; 
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1. INTRODUCTION 
Real-time estimation of the travel time of a path, which is represented 
by a sequence of connected road segments, is of great importance for 
traffic monitoring [1], finding driving directions [20], ridesharing [13] 
and taxi dispatching [22]. Existing solutions, e.g., using loop sensors, 
usually tell people the travel speed of an individual road segment 
rather than the travel time of an entire path. The latter’s value is not a 
simple summation of the travel time of each individual road segment, 
as a path also contains road intersections (sometimes with traffic 
lights) where a driver needs to slow down or wait for a while. 
Explicitly modeling the time delay at an intersection is not easy [8]. In 
addition, these methods have limited coverage, as many streets do not 
have a loop sensor embedded.  

An alternative method is to use floating car data (e.g., GPS trajectories 
of vehicles) to estimate the travel time of a path. For example, as 
shown in Figure 1, we estimate the travel time of path ݎଵ ՜ ଶݎ ՜
ଷݎ ՜  ,ସ. Unfortunatelyݎܶ ଷ, andݎܶ ,ଶݎܶ ,ଵݎܶ ସ, using four trajectoriesݎ
there are three major issues remaining unsolved in existing methods. 
They are as follows: 

 
Figure 1. Problem demonstration 

1) Data sparsity: For example, ݎସ is not traversed by any trajectory in 
the previous 30 minutes. Using an average of ݎସ’s historical travel 
times is not accurate enough (since its traffic conditions change over 
time of day and day of the week). Sometimes, the road may never be 
traversed by any trajectories (even in history) in our dataset, as in 
practice we only have the data of a sample of vehicles.   

2) Trajectory concatenation: For the sub-path (e.g., ݎଵ ՜ ଶݎ ՜ ଷݎ ) 
with trajectories, how to combine these trajectories effectively to 
achieve an accurate estimate is still a challenging problem. Clearly, 
there are multiple ways of using the four trajectories shown in Figure 
1. For instance, we can calculate the travel time of ݎଵ ՜ ଶݎ ՜  ଷݎ
solely based on ܶݎଶ. Or, we can compute the travel time for ݎଵ (based 
on ܶݎଵ  and ܶݎଶ), ݎଶ  (based on ܶݎଵ ଶݎܶ ,  and ܶݎଷ), and ݎଷ  (using ܶݎଶ , 
ଵݎ ସ), separately. Later, the travel time ofݎܶ ଷ andݎܶ ՜ ଶݎ ՜  ଷ canݎ
be obtained by summing the travel times of each road segment. We 
can also use ܶݎଶ and ܶݎଷ to estimate the travel time of ݎଶ ՜  ଷ, thenݎ
concatenating it with that of ݎଵ; or, do ݎଵ ՜  ଵ andݎܶ ଶ first based onݎ
  .ଷݎ ଶ, then concatenating it withݎܶ

Different concatenations have their own advantages and 
disadvantages, subject to a trade-off between their support and 
length. The ideal situation is to estimate the travel time of 
ଵݎ ՜ ଶݎ ՜  ଶ covering the entireݎܶ ଷ using many trajectories likeݎ
path. Such trajectories reflect the traffic conditions of an entire 
path, including intersections, traffic lights and direction turns, 
hence, no need to model these complex factors separately and 
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explicitly. However, as the length of a path increases, the number 
of trajectories (i.e., the support) traveling on the path decreases 
(refer to Figure 10 A) for details). Consequently, the confidence 
of the travel time (derived from few drivers) decreases. For 
example, what if ܶݎଶ is generated by an uncommon driver or in an 
unusual situation like pedestrians crossing a street? Furthermore, 
in many cases, we cannot even find a trajectory passing an entire 
path. On the other hand, using the concatenation of shorter sub-
paths can have more occurrences of trajectories on each sub-path 
(i.e., having a high confidence in the derived travel time for each 
sub-path). But this results in more fragments, across which the 
aforementioned complex factors are difficult to model. The more 
fragments a concatenation contains, the more inaccuracy a path’s 
travel time could involve. 

3) Tradeoff among Scalability, effectiveness and efficiency: As 
users can query any path in a city, we need to model the traffic 
conditions with a city scale, which usually contains tens of 
thousands of road segments. In the meantime, we have to answer 
users’ query instantly. So, a good solution should be scalable, 
effective and efficient, all simultaneously. This requirement fails 
some complex models that work well on a particular road.   

In this paper, we propose a model for instant Path Travel Time 
Estimation (PTTE), based on sparse trajectories generated by a 
sample of vehicles (e.g., some GPS equipped taxicabs) in the 
recent time slots as well as in history. Our model is comprised of 
two major components. One is to estimate the travel time for road 
segments without being traversed by trajectories through a 
context-aware tensor decomposition (CATD) approach. The 
second is to find the most optimal concatenation (OC) of 
trajectories to estimate a path’s travel time using a dynamic 
programing solution. Our work has three primary contributions: 

 Dealing with the missing values: We model different drivers’ 
travel times on different road segments in different time slots 
with a three dimensional tensor. Combined with geospatial, 
temporal and historical contexts learned from other data 
sources, we fill in the tensor’s missing values through a 
context-aware tensor decomposition approach. To expedite 
the inference, we partition a city into disjoint geo-regions and 
carry out the decomposition for each region in parallel. 

 Optimal concatenation: We devise and prove an object 
function that can model the tradeoff between the support and 
length of a concatenation. Using a dynamic programming 
solution, we find the most optimal concatenation of 
trajectories for estimating a path’s travel time. In addition, 
we use frequent trajectory patterns mined in advance to scale 
down the candidates of concatenation and propose a suffix-
tree-based index to manage the recently received trajectories, 
improving the efficiency of our model.  

 Evaluation: We evaluate our model with the real trajectories 
generated by over 32,000 taxis over a period of 2 month on 
Beijing’s road network. The results of extensive experiments 
demonstrate the advantages of our model. A sample of the 
data has been released at [25]. 

The rest of the paper is organized as follows: Section 2 overviews 
our model. Section 3 elaborates on the method for inferring the 
travel time of road segments without trajectories. Section 3 
introduces the method that searches for the most optimal 
concatenation. Section 4 presents the experiments and Section 5 
summarizes related work. We conclude the paper in Section 6.  

2. OVERVIEW 
Definition 1: Road Network. A road network ܴܰ is comprised of a 
set of road segments ሼݎሽ connected among each other in a graph 
format. Each road segment ݎ is a directed edge with two terminal 
points, a list of intermediate points describing the segment, a 
length ݎ. ݈݁݊, a level ݎ.  a direction ,(e.g. a highway or a street) ݒ݈݁
.ݎ .ݎ and the number of lanes (e.g. one-way or bi-directional) ݎ݅݀ ݊.  

Definition 2: Trajectory. A spatial trajectory ܶݎ is a sequence of 
time-ordered points, ܶݎ: ଵ݌ ՜ ଶ݌ ՜ ڮ ՜ ௡݌ , where each point 
has a geospatial coordinate set and a timestamp, ݌ ൌ ሺݔ, ,ݕ  .ሻݐ

Definition 3: Path. A path ܲ  is represented by a sequence of 
connected road segments, e.g., ܲ: ଵݎ ՜ ଶݎ ՜ ڮ ՜   .ܴܰ ௡, in anݎ

Definition 4: Trajectory pattern. A trajectory pattern ܶܲ  is a 
sequential pattern of road segments with a support over a 
threshold, calculated by the number of trajectories traversing these 
road segments. If we set support as 2, ݎଵ ՜ ଶݎ  and ݎଶ ՜ ଷݎ  in 
Figure 1 are trajectory patterns, while ݎଵ ՜ ଶݎ ՜  .ଷ is not eligibleݎ

Definition 5: Concatenation. A path ࡼ can be decomposed into 
different concatenations ( || ) of its sub-paths, 
ࡼ ൌ ଵܲ|| . . . || ௜ܲ … || ௝ܲ  … || ௡ܲ 1׊ , ൑ ݅, ݆ ൑ ݊ , ݅ ് ݆ , ௜ܲ ת ௝ܲ ൌ ׎ . 
For instance,  ݎଵ ՜ ଶݎ ՜ ଷݎ ՜ ସݎ  can be formed by ሺݎଵ ՜ ଶݎ ՜
ଵݎସ, or ሺݎ||ଷሻݎ ՜ ଷݎଶሻ||ሺݎ ՜ ଶݎଵ||ሺݎ ସሻ, orݎ ՜ ଷݎ ՜  ସሻ. Thus, theݎ
travel time of ࡼ can be obtained via the summation of different 
concatenations, e.g., ࡼݐ ൌ ௥భ՜௥మ՜௥యݐ

௥రݐ+
, or ࡼݐ ൌ ௥భ՜௥మݐ

൅ ௥య՜௥రݐ
, 

or ࡼݐ ൌ ௥భݐ
൅ ௥మ՜௥య՜௥రݐ

. 

Definition 6: Travel Time. A driver ݑ ’s travel time on a road 
segment ݎ  in time slot ݇  is defined as ݐ௥,௨,௞ . Likewise, ݐ௉,௨,௞ 
denotes ݑ’s travel time on path ܲ in time slot ݇.  

 
Figure 2. Framework of our model 

Figure 2 presents the framework of our model which is comprised of 
two major parts. In the above part, we project each trajectory received 
in a current time slot onto a road network, using a map-matching 
algorithm [21]. The trajectories (combined with road network data) 
are then used to construct a 3D tensor ࣛ௥ where the three dimensions 
stand for road segments, time slots and drivers, respectively. Each 
entry is the travel time of a particular driver on a particular road 
segment in a specific time slot. We partition a day into several time 
slots based on a certain time interval (e.g., we divide a day into 48 
time slots with 30 minutes each in the experiments). Clearly, the 
tensor is very sparse (i.e., having many entries without values), as a 
driver can only travel a few road segments in a time slot. To deal with 
the data sparsity problem, we extract three categories of features, 
consisting of geospatial, temporal, and historical contexts, from the 
road network data and trajectories. The first two feature sets are stored 
in two matrices, respectively, and the historical context is represented 
by another tensor ࣛ௛. The two matrices and ࣛ௛ are then factorized 
with ࣛ௥ collaboratively, helping fill ࣛ௥’s missing entries in a current 
time slot (i.e., inferring the travel time of road segments without being 
traveled by trajectories in the current time slot). The general idea is 
that road segments with similar contexts could have a similar travel 
time. The context matrices and tensor reveal the similarity and with a 
more proportion of non-zero entries than ࣛ௥ , thereby reducing the 
factorization error and improving the inference accuracy. After filling 
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the missing entries in ࣛ௥, we obtain the travel time of any driver on 
any road segment in current time slot (stored in ࣛ௥௘௖). 

In the bottom part, given a query path ܲ, we estimate its travel time in 
the current time slot, based on ࣛ௥௘௖, the trajectories received in the 
time slot and trajectory patterns. Specifically, we devise and prove an 
objective function that can represent the tradeoff between the length 
and support of a trajectory pattern. Based on the objective function, 
we find the most optimal concatenation of trajectories for a path, 
using a dynamic programing approach. In practice, it is not necessary 
to try every possible concatenation of a path, as some sub-paths have 
never been traversed by any trajectory. So, we mine frequent 
trajectory patterns from historical trajectories in advance and study the 
concatenation of these existing patterns to estimate the travel time of a 
path. This reduces the online computational loads significantly, while 
guaranteeing accuracy in travel time estimation. Note that we are not 
using the historical travel time of a trajectory pattern. The patterns just 
provide us with candidate schemes of subpaths for finding an optimal 
concatenation of a path. Each trajectory pattern’s travel time in current 
time slot is mainly calculated based on the trajectories received in the 
time slot. If a pattern contains road segments without being traversed 
by trajectories in the current time slot, we retrieve the inferred time 
from ࣛ௥௘௖, according to the driver, road segment and time slot. For 
instance, two drivers (ݑଵ, ݑଶ) travelled ݎଵ ՜  ଶ, but nobody traveledݎ
ଷݎ  in a pattern ݎଵ ՜ ଶݎ ՜ ଷݎ , in current time slot ݇ . That is, 
,௥భ՜௥మ,௨భ,௞ݐ  and ݐ௥భ՜௥మ,௨మ,௞  can be calculated from the present 
trajectory data, while ݐ௥య,௨భ,௞  and ݐ௥య,௨మ,௞  are unknown. In this case, 
we retrieve the latter two from ࣛ௥௘௖, calculating  

௥భ՜௥మ՜௥య,௨భ,௞ݐ                  ൌ ௥భ՜௥మ,௨భ,௞ݐ ൅  ௥య,௨భ,௞ , andݐ

௥భ՜௥మ՜௥య,௨మ,௞ݐ                  ൌ ௥భ՜௥మ,௨మ,௞ݐ ൅   .௥య,௨మ,௞ݐ

With ࣛ௥௘௖, we can estimate a driver’s travel time on a trajectory 
pattern even if the recently received data is incomplete. The 
dimension of drivers in ࣛ௥௘௖ enables us to calculate the variance 
among different drivers’ travel times on a road segment or a sub-
path. Intrinsically, different drivers travel the same road segment 
with different times, majorly depending on the different traffic 
conditions they experience. Thus, the variance implies the 
complexity of traffic conditions on a road segment or a sub-path, 
helping estimate a more accurate travel time of a path (elaborated 
in Section 4.1).  Finally, the travel time of a path is calculated as: 

                  ܶ ൌ ∑
∑ ௧೅ು,ೠ,ೖೠאೆ

|௎|்௉אஏ ;                 (1) 

Where Ψ is the concatenation of path ܲ, represented by a set of 
trajectory pattern ܶܲs; ܷ is a collection of drivers traversing (or 
partially traversing) a ܶܲ; ݇ is the current time slot. 

3. DEALING WITH MISSING VALUES 
3.1 Tensor Building and Feature Extraction 
To model the traffic conditions of the current time slot, we 
construct a tensor ࣛ௥ א Թேൈெൈ௅ , with the three dimensions 
standing for road segments, drivers and time slots, respectively, 
based on the GPS trajectories received in the most recent ܮ time 
slots and the road network data. As shown in Figure 3, an entry 
ࣛ௥ሺ݅, ݆, ݇ሻ ൌ ܿ denotes the ݅th road segment is traveled by the ݆th 
driver with a time cost ܿ in time slot ݇ (e.g., 2-2:30pm). The last 
time slot denotes the present time slot, combined with the 1-ܮ 
time slots right before it to formulate the tensor. Clearly, the 
tensor is very sparse as a driver can only travel a few road 
segments in a short time period. If we were able to fill in the 
missing entries in terms of the values of non-zero entries, we can 
know the travel time of any driver on any road segment in the 
present time slot.  

A common approach to this problem is to decompose a tensor into 
the multiplication of a few (low-rank) matrices and a core tensor 
(or just a few vectors), based on the tensor’s non-zero entries. For 
example, we can decompose ࣛ௥ into the multiplication of a core 
tensor ܵ א Թௗೃൈௗೆൈௗ೅  and three matrices, ܴ א Թேൈௗೃ , ܷ א
Թெൈௗೆ , ܶ א Թ௅ൈௗ೅  , if using a tucker decomposition model. An 
objective function is defined as Equation 2 to control the errors. 

               ࣦሺܵ, ܴ, ܷ, ܶሻ ൌ
ଵ

ଶ
ԡࣛ௥ െ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶԡଶ 

                                    ൅
ఒ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶሻ,                 (2) 

where ԡ·ԡଶ denotes the ݈ଶ norm and ఒ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶሻ 

is a regularization of penalties to avoid over-fitting; ݀ோ, ݀௎, and 
்݀ are usually very small, denoting the number of latent factors. ߣ 
is a parameter controlling the contributions of the regularization. 
Afterwards, we can recover the missing values in ࣛ௥  by 
multiplying decomposed factors as ࣛ௥௘௖ ൌ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶ. 

 
Figure 3. The model dealing with data sparsity 

In our problem, however, the tensor is over sparse. For example, if 
setting 30 minutes as a time slot, only 0.03% entries of ࣛ௥  have 
values. Decomposing ࣛ௥ solely based on its own non-zero entries 
is not accurate enough. To this end, we build another tensor ࣛ௛ 
based on the historical trajectories over a long period of time (e.g. 
one month). As shown in Figure 3, ࣛ௛ has the same structure as 
ࣛ௥, while an entry ࣛ௛ሺ݅, ݆, ݇ሻ ൌ ܿԢ denotes the ݆th driver’s average 
travel time on the ݅th road segment in time slot ݇ in the history. 
Intrinsically, ࣛ௛  is much denser than ࣛ௥ , denoting the historical 
traffic patterns and drivers’ behavior on an entire road network. For 
instance, using one-month trajectories and setting 30 minutes as a 
time slot, the non-zero entries of ࣛ௛ is about 0.4%. Decomposing 
ࣛ௥ and ࣛ௛ together reduces the error of supplementing ࣛ௥.  

Besides ࣛ௛, we also construct another two matrices ܺ and ܻ to help 
the decomposition of ࣛ௥. Specifically, as illustrated in Figure 4 A), 
ܻ stores the geographical features ௥݂ of each road segment, such as 
.ݎ .ݎ ,݈݊݁ .ݎ ,ݒ݈݁ .ݎ ,ݎ݅݀ ݊, the number of neighbors (e.g., ݎଵ  has 2 
and 3 neighbors) at its terminals, and a tortuosity ratio ߬  (e.g. 
.ଵݎ ߬ ൌ .ଵݎ ݈݁݊ ݀ଵ⁄ ), as well as the distribution of Point of Interests 
(POIs) ௣݂  around ݎ ’s terminals. While ܻ  captures the similarity 
between different road segments in geographic spaces, matrix ܺ 
(consisting of ܺ௥  and ܺ௛ ) represents the correlation between 
different time slots in terms of the coarse-grained traffic conditions. 
More specifically, we partition a city into disjoint and uniform grids 
(e.g., 4ൈ4 in Figure 4 B), each of which is comprised of many road 
segments. ܺ௥  is built based on the recent trajectory data received 
from ݐ௜  to ݐ௝  (e.g., 1pm-3pm), reflecting the present traffic 
conditions on a road network. An entry of ܺ௥ denotes the number of 
vehicles traversing a particular grid in a particular time slot. A row 
of ܺ௥  represents coarse-grained traffic conditions in a city of a 
particular time slot. Consequently, the similarity of two different 
rows indicates the correlation of traffic flows between two time 
slots. Additionally, in contrast to using the traffic flow on each 
individual road segment in ࣛ௥, ܺ௥ can be filled densely, therefore 
can help reduce the error of decomposing ࣛ௥ .  ܺ௛  has the same 
structure as ܺ௥ , storing the historical average number of vehicles 
traversing a grid from ݐ௜  to ݐ௝ . In other words, ܺ௥  and ܺ௛ 
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respectively correspond to the coarse-grained current and historical 
traffic conditions in the same span of time of day. In the 
implementation, we build ܣ௛  and ܺ௛  of an entire day in advance 
and retrieve the entries according to current time (and the number of 
time slots ܮ needed) when constructing ܺ and ܣ. For example, as 
shown in Figure 4 C), the rows from ݐ௜ to ݐ௝ will be retrieved from 
the prebuilt ܺ௛ to construct ܺ with ܺ௥. 

 
Figure 4. Constructing context matrices 

3.2 Tensor Decomposition 
To achieve a high accuracy of decomposition, we put together ࣛ௥ 
and ࣛ௛(i.e., ࣛ ൌ ࣛ௥|| ࣛ௛, as shown in Figure 3), decomposing 
ࣛ  with context matrices ܺ  and ܻ  collaboratively. The objective 
function is defined as Equation 3, 

ࣦሺܵ, ܴ, ܷ, ܶ, ,ܨ ሻܩ ൌ
ଵ

ଶ
ԡࣛ௥ െ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶԡଶ ൅

ఒభ

ଶ
ԡܺ െ ԡଶܩܶ ൅

ఒమ

ଶ
ԡܻ െ ԡଶܨܴ ൅

ఒయ

ଶ
ሺԡܵԡଶ ൅ ԡܴԡଶ ൅ ԡܷԡଶ ൅ ԡܶԡଶ ൅ ԡܨԡଶ ൅ ԡܩԡଶሻ,   (3) 

where ࣛ א Թேൈெൈଶ௅  and ܺ א Թଶ௅ൈ௉ , ܲ  denotes the number of 
grids; ܻ א Թேൈொ , ܳ  denotes the dimension of geographical 
features;  ܶ א Թଶ௅ൈௗ೅ ܩ , א Թௗ೅ൈ௉ ,  ܴ א Թேൈௗೃ  and ܨ א Թௗೃൈொ 
are low rank latent factor matrices for time slots, grids, roads and 
geographical features. Later, we can recover ࣛ  according to 
ࣛ௥௘௖ ൌ ܵ ൈோ ܴ ൈ௎ ܷ ൈ் ܶ ଵߣ . ଶߣ , , and ߣଷ  are parameters 
controlling the contribution of different parts. 

In our model, ࣛ and ܺ shares matrix ܶ, and ࣛ and ܻ share matrix 
ܴ. The dense representation of ܺ and ܻ helps generate a relatively 
accurate ܶ  and ܴ , which reduce the decomposition error of ࣛ  in 
turn. Additionally, the combination of ܺ௥  and ܺ௛  reveals how 
current coarse-grained traffic condition deviates from its historical 
patterns. The information of the deviation is then propagated to ࣛ, 
helping figure out the fine-grained deviation between current traffic 
conditions and historical traffic patterns on each road segment. So, 
our model considers both geospatial and temporal correlations. It 
also incorporates the knowledge from present and historical traffic 
data. As there is no closed-form solution for finding the most 
optimal result of Equation 3, we use a numeric method, gradient 
descent, to find a local optimization, as presented in Figure 5. 

Algorithm 1: Tensor Decomposition 

Input: tensor ࣛ, matrix ܺ, and matrix ܻ, an error threshold ߝ 
Output: ܴ, ܷ, ܶ, ܵ 
1. Initialize ܵ א Թௗೃൈௗೆൈௗ೅, ܴ א Թேൈௗೃ, ܷ א Թெൈௗೆ, ܶ א Թଶ௅ൈௗ೅, 
ܩ                    א Թௗ೅ൈ௉, ܨ א Թௗೃൈொ with small random values 
2. Set ߟ as step size 
3. While ܮ௧ െ ௧ାଵܮ ൐   ߝ
4.      Foreach ࣛ௜௝௞ ്0  
5.           ௜ܻ௝௞ ൌ ܵ ൈோ ܴ௜כ ൈ௎ ௝ܷכ ൈ் ௞ܶכ; 
6.           ܴ௜כ ՚ ܴ௜כ െ כଷܴ௜ߣߟ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈ௎ ௝ܷכ ൈ் ௞ܶכ 
                        െߣߟଶሺܴ௜כ ൈ ܨ െ ௜ܻכሻ ൈ  ;ܨ
7.           ௝ܷכ ՚ ௝ܷכ െ ଷߣߟ ௝ܷכ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈோ ܴ௜כ ൈ் ௞ܶכ; 
8.            ௞ܶכ ՚ ௞ܶכ െ ଷߣߟ ௞ܶכ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܵ ൈோ ܴ௜כ ൈ௎ ௝ܷכ 
                         െߣߟଵሺ ௞ܶכ ൈ ܩ െ ܺ௞כሻ ൈ  ;ܩ
9.            ܵ ՚ ܵ െ ଷܵߣߟ െ ൫ߟ ௜ܻ௝௞ െ ࣛ௜௝௞൯ ൈ ܴ௜כ ٔ ௝ܷכ ٔ ௞ܶכ; 
ܩ          .10 ՚ ܩ െ ܩଷߣߟ െ ଵሺߣߟ ௞ܶכ ൈ ܩ െ ܺ௞כሻ ൈ ௞ܶכ;  
ܨ          .11 ՚ ܨ െ ܨଷߣߟ െ כଶሺܴ௜ߣߟ ൈ ܨ െ ௜ܻכሻ ൈ ܴ௜כ;   
12. Return ܴ, ܷ, ܶ, ܵ 

Figure 5. Algorithm for decomposing a tensor 

The Symbol “ൈ” denotes the matrix multiplication; ൈோ stands for 
the tensor-matrix multiplication, where the subscript ܴ stands for 

the direction, e.g., ܪ ൌ ܵ ൈோ ܴ is ܪ௜௝௞ ൌ ∑ ௜ܵ௝௞ ൈ ܴ௜௝
ௗೃ
௜ୀଵ ; ٔ is the 

tensor outer product (also called Kronecker product); the entries 
of the ݅ th row of matrix ܴ  are represented as ܴ௜כ . More 
specifically, we use an element-wise optimization algorithm 
(instead of batch decomposition) [10], which updates the factors 
independently (meaning they can be performed in parallel). 

In reality, tensor ࣛ is very large, given hundreds of thousands of 
road segments and tens of thousands of drivers. Decomposing 
such a big tensor is very time consuming, therefore reducing the 
feasibility of our method in providing online services. To address 
this issue, as illustrated in Figure 6, we partition a city into several 
disjoint regions, building a tensor for each region based on the 
data of the region. The matrices ܺ and ܻ are built in each smaller 
region accordingly. By setting a proper splitting boundary, we try 
to keep these small tensors a similar size. As a result, ࣛ  is 
replaced by a few small tensors, which will be factorized in 
parallel and more efficiently. We validate (in later experiments) 
that the partition does not compromise the accuracy of the original 
decomposition when choosing a proper number of partitions.  

 
Figure 6. Spatial partition for expediting the tensor decomposition  

4. OPTIMAL CONCATENATION (OC) 
4.1 Objective Function 
Given a path ࡼ covered by trajectories, we need to find the best 
concatenation that results in an accurate travel time estimation. 
Intuitively, the best decomposition is the one that achieves the 
lowest empirical risk between the estimate and true travel time ࡼߤ. 
Suppose ࡼ is decomposed as ଵܲ|| ଶܲ|| ڮ || ௞ܲ, where the estimated 
travel time is ݐҧ௉భ

൅ ҧ௉మݐ
൅ ڮ ൅ ҧ௉ೖݐ

, the squared empirical risk is 
then wrote as, 

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ            
؜ ࡼߤ൫ܧ െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ
,         (4)  

Hence, our problem is to search for the best concatenation which 
yields the least empirical risk, formally defined as, 

argmin௉భ,௉మ,ڮ,௉ೖ
௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ 

, 

                         subject to   ଵܲ|| ଶܲ|| ڮ || ௞ܲ ൌ  (5)                   .ࡼ

To come up with a computable form of ࡼܧܵܮ,௉భ,௉మ,ڮ,௉ೖ
, we relate 

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
 with ܧሺߤ௉೔

െ ҧ௉೔ݐ
ሻଶ , where ߤ௉೔

 is the true travel 
time of sub-path ௜ܲ . It is fair to assume if ࡼ ൌ ଵܲ|| ଶܲ|| ڮ || ௞ܲ , 
then ࡼߤ ൌ ௉భݑ

൅ ௉మݑ
൅ ڮ ൅ ௉ೖݑ

. Hence we have, 

௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ
ൌ ࡼߤ൫ܧ െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ
 

ൌ ௉భߤ൫ܧ
൅ ௉మߤ

൅ ڮ ௉ೖߤ
െ ҧ௉భݐ

െ ҧ௉మݐ
െ ڮ െ ҧ௉ೖݐ

൯
ଶ
  

ൌ ܧ ቀ∑ ൫ߤ௉೔
െ ҧ௉೔ݐ

൯
ଶ௞

௜ୀଵ ൅ ∑ ∑ ሺߤ௉೔
െ ҧ௉೔ݐ

ሻሺߤ௉ೕ
െ ҧ௉ೕݐ

ሻ௞
௝ୀଵ

௞
௜ୀଵ ቁ     

ൌ ∑ ௉೔ߤሺܧ
െ ҧ௉೔ݐ

ሻଶ௞
௜ୀଵ ൅ ∑ ∑ ܧ  ቀሺߤ௉೔

െ ҧ௉೔ݐ
ሻሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻቁ௞

௝ୀଵ
௞
௜ୀଵ      

If assuming ݐҧ௉೔
 and ݐҧ௉ೕ

 are independent, we have ܧ ቀሺߤ௉೔
െ

ҧ௉೔ݐ
ሻሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻቁ ൌ ௉೔ߤ൫ܧ

െ ҧ௉೔ݐ
൯ܧሺߤ௉ೕ

െ ҧ௉ೕݐ
ሻ=0, Therefore,  
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௉ೖ,ڮ,௉భ,௉మ,ࡼܧܵܮ                  
ൌ ∑ ௉೔ߤሺܧ

െ ҧ௉೔ݐ
ሻଶ௞

௜ୀଵ .             (6) 

Further, ܧሺߤ௉೔
െ ҧ௉೔ݐ

ሻଶ ൌ ௉೔ߤሺܧ
െ

ଵ

௡ು೔

∑ ௉೔,௝ݐ
௡ು೔
௝ୀଵ ሻଶ 

              ൌ
ଵ

௡ು೔
మ ܧ ∑ ሺߤ௉೔

െ ௉೔,௝ሻଶ௡ು೔ݐ
௝ୀଵ ൌ

ଵ

௡ು೔
మ ∑ ௉೔ߤሺܧ

െ ௉೔,௝ሻଶ௡ು೔ݐ
௝ୀଵ   

               ൌ
ଵ

௡ು೔

 ௉೔,௝ሻ,                                                 (7)ݐሺݎܸܽ

where ݊௉೔
 is the number of drivers passing ௜ܲ , and ݐ௉೔,௝  denotes 

the ݆ th driver’s travel time on ௜ܲ  ௉೔,௝ሻ is the variance ofݐሺݎܸܽ ;
these drivers’ travel times. Then, Equation 5 can be represented as:  

                        argmin௉భ,௉మ,ڮ,௉ೖ
  ∑

ଵ

௡ು೔

௉೔,௝ሻ௞ݐሺݎܸܽ
௜ୀଵ   

                         subject to   ଵܲ|| ଶܲ|| ڮ || ௞ܲ ൌ        (8)               ࡼ

Equation 8 well reflects the aforementioned tradeoff between the 
support and length of a concatenation. On one hand, it is easier to 
find more drivers traveling a shorter sub-path. The more the 
drivers pass a sub-path (i.e. support is higher, ݊௉೔

 is bigger), the 
smaller the error of the inferred travel time is. On the other hand, 
the shorter a sub-path is, the bigger the variance in travel time 
would be. There are a lot of uncertainties of traveling a short path. 
E.g., if only traveling one road segment, the travel time will be 
significantly influenced by a traffic light. As a result, different 
drivers’ travel times could be dramatically different. 

4.2 Dynamic Programing Solution 
To solve the optimization problem shown in Equation 8, we 
propose a dynamic programing solution. Suppose a path ࡼ: ଵݎ ՜
ଶݎ ՜ ڮ ՜ ௡ݎ , ܲԢ ൌ ଵݎ ՜ ଶݎ ՜ ڮ ՜ ௜ݎ , ݅ ൏ ݊ , denote ݃ሺ ௜ܲሻ ൌ

ଵ

௡ು೔

௉೔,௝ሻݐሺݎܸܽ  , then the optimization problem of ܲԢ  can be 

represented as Equation 9. 

                         argmin௉భ,௉మ,ڮ,௉೗
  ∑ ݃൫ ௝ܲ൯௟

௝ୀଵ   

                         subject to   ଵܲ|| ଶܲ|| ڮ || ௟ܲ ൌ ܲԢ.                 (9) 

Let ݐ݌݋௜ be the minimal value of ܲԢ to the above problem, then the 
minimal value of the squared empirical risk function of ࡼ is ݐ݌݋௡. 
Additionally, we have a state transition function as Equation 10. 

௡ݐ݌݋                     ൌ minଵஸ௜ழ௡ሺݐ݌݋௜ ൅ ݃ሺ ௥ܲ೔శభ||௥೔శమڮ||௥೙
ሻሻ.        (10) 

Algorithm 2: Query path decomposition  

Input: a query path ࡼ ൌ ଵݎ ՜ ଶݎ ՜ ڮ ՜  ௡, a collection of trajectoryݎ
pattern ܶܲs, a time slot ݇, trajectories received in ݇, and tensor ࣛ௥௘௖ 
Output:  Ψ௡, the most optimal concatenation of path ࡼ 
଴ݐ݌݋ .1 ՚ 0, Ψ଴ ՚  ;׎
2. For ݅ ൌ 1 to ݊ do 
௜ݐ݌݋      .3 ՚ ൅∞;  Ψ௜ ൌ  ;׎
4.      For ݆ ൌ ݅ down to 1 do 
5.           ܲᇱ ൌ ௝ݎ ՜ ௝ାଵݎ ՜ ڮ ՜ ௉ᇱ,௨,௞ݐ  ;௜ݎ ՚0; 
6.           ܷ ՚ retrieve the drivers traversing (or partially traversing) 
                      ܲԢ from the trajectory database 
7.           Foreach ݑ א ܷ do 
௉ᇱ,௨,௞ݐ                  .8 ՚ 0; 
9.                  Foreach ݎ௘ א  ܲԢ not traversed by ݑ’s trajectory ܶݎ 
௉ᇱ,௨,௞൅ൌݐ                            .10 ሺࣛ௥௘௖ሻ௥೐,௨,௞; 
௉ೞᇱ,௨,௞ݐ                .11 ՚Calculate the time for the rest of ܲԢ based on ܶݎ; 
௉ᇱ,௨,௞൅ൌݐ                .12     ;௉ೞᇱ,௨,௞ݐ

13.          ݃ሺܲԢሻ ൌ
ଵ

|௎|
 ;௉ᇱ,௨,௞ሻݐ௎ሺא௨ݎܸܽ

14.          If ݐ݌݋௝ିଵ ൅ ݃ሺܲԢሻ ൏  ௜ݐ݌݋
௜ݐ݌݋               .15 ՚ ௝ିଵݐ݌݋ ൅ ݃ሺܲԢሻ; 
௜ߖ                .16 ՚       ;௝ିଵ||ܲԢߖ
17. Return  Ψ௡; 

Figure 7. Algorithm for finding the most optimal concatenation            

Using Algorithm 2 shown in Figure 7, we solve this problem with a 
complexity of ܱሺ݊ଶ ൈ ݉ሻ, where ݊ is the number of road segments 
in ࡼ and ݉ is the number of drivers passing a segment. 

In practice, it is not necessary to check every concatenation of a 
path, as many sub-paths may not be traversed by any trajectory in 
the current time slot. To further improve the efficiency of our 
solution, we mine frequent trajectory patterns from historical 
trajectories in advance. Then, we just need to check the 
concatenation of the trajectories patterns. Specifically, we can stop 
the iteration at Line 4 in algorithm 2 if ܲᇱ is not a trajectory pattern.  

We use a suffix-tree-based algorithm [18] to find the frequent 
trajectory patterns. Specifically, after being map-matched, a 
trajectory can be regarded as a string of road segment IDs. By 
building a suffix tree, where a node denotes a road segment ID, a 
trajectory is then represented as a path on the tree. For example, 
the four trajectories shown in Figure 1 can be represented as the 
tree depicted in Figure 8 A), where ݎଵ ՜ ଶݎ ՜  ଷ is the most leftݎ
path of the tree. ݎଶ ՜ ଵݎ ଷ are suffixes ofݎ ଷ andݎ ՜ ଶݎ ՜  ଷ. Theݎ
number associated with each link stands for the number of the 
trajectories passing the path (i.e., the support). If setting 2 as a 
support, we find ݎଵ ՜ ଶݎ ,ଶݎ ՜  ,ଷ are patterns. In realityݎ ଷ, andݎ
the suffix-tree is built based on historical trajectories over a long 
period of time. As long trajectory patterns are very rare, we set the 
maximum length of a pattern to 20 road segments.  

 
Figure 8. Mining frequent trajectory patterns and used with tensor 

4.3 Working with Tensor ऋࢉࢋ࢘ 
Note that a query path may have some road segments that are not 
traversed by any trajectory in the current time slot, though these 
segments may belong to a trajectory pattern (in history). Following 
the example shown in Figure 1, we demonstrate in Figure 8 B) how 
ࣛ௥௘௖ is used with trajectory patterns to help the decomposition of a 
query path. To estimate the travel time of a query path ܲ: ଵݎ ՜ ଶݎ ՜
ଷݎ ՜  ସ in time slot ݇, we first search the suffix tree, which wasݎ
built based on the trajectory data over a long history (not the one 
shown in the left part of Figure 8 A), for the trajectory patterns that 
ܲ  contains, e.g., ݎଶ ՜ ଷݎ  and ݎଷ ՜ ସݎ . To calculate ݃ሺݎଷ ՜  ସሻݎ
defined in Equation 9, we need to know the travel time of each 
driver passing ݎଷ ՜ ସݎ . However, ݎସ  is not traversed by any 
trajectory in time slot ݇. That is  ݐ௥య՜௥ర,௨,௞  is unknown for every 
driver, though ݐ௥య,௨,௞  can be calculated based on the recently 
received trajectories, i.e. ܶݎଶ, ܶݎଷ and ܶݎସ. To address this issue, we 
retrieve ݐ௥ర,௨మ,௞ ௥ర,௨య,௞ݐ , , and ݐ௥ర,௨ర,௞  from ࣛ௥௘௖  and calculate 
ݑ ௥య՜௥ర,௨,௞ forݐ ൌ ሺݑଶ, ,ଷݑ    .ସሻ, respectively, by Equation 11ݑ

௥య՜௥ర,௨,௞ݐ                        ൌ ௥య,௨,௞ݐ ൅  ௥ర,௨,௞,          (11)ݐ

Having ݐ௥య՜௥ర,௨,௞, we can calculate the most optimal concatenation 
according to Equation 9, 10 and Algorithm 2. When the supplement 
of an entry is negative, we resort to the historical average travel 
time. The dimension of users in tensor ࣛ௥ enables us to retrieve a 
more accurate travel time for a particular driver, resulting in a better 
estimate of the variance of travel times (as Equation 8). We validate 
that this is more accurate than just using a historical average of 
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travel times. After finding the most optimal concatenation, we 
calculate the travel time of path ܲ by Equation 1, setting  Ψ௡ as Ψ. 

In the implementation, if not building an effective indexing 
structure, we need to scan a trajectory when calculating the travel 
time of a path based on the trajectory (i.e., Line 11 of Algorithm 2). 
This becomes very time consuming if we need to repeat the process 
many times. To address this issue, we propose an indexing structure 
to maintain the trajectories received in the current time slot, as 
shown in Figure 9. The structure looks like the suffix tree we build 
for mining trajectory patterns. However, each node in the tree stores 
the ID of the trajectory that traverses the path from the root to the 
node and the corresponding travel time. For example, ܶݎଵ and ܶݎଶ 
shown in Figure 1 are stored in the index demonstrated in Figure 9, 
where ݐ௥భ՜௥మ՜௥య

 stands for the time for traveling path ݎଵ ՜ ଶݎ ՜   .ଷݎ

 
Figure 9. Indexing structure for maintaining recent trajectories 

5. EXPERIMENTS 
In this section, we evaluate the effectiveness and efficiency of the 
two major parts of PTTE, i.e., CATD and OC, respectively.  

5.1 Settings 
5.1.1 Datasets  
Taxi Trajectories. We use a GPS trajectory dataset generated by 32,670 
taxicabs in Beijing from Sept. 1 to Oct. 31, 2013. The number of GPS 
points reaches 673,469,757, and the total length of the trajectories is 
over 26,218,407km. The average sampling rate is 96 seconds per point. 

Road networks: We use the road network of Beijing, which is 
comprised of 148,110 nodes and 196,307 edges. The road network 
covers a 40ൈ50km spatial range, with a total length (of road segments) 
of 21,985km.    

POIs: The dataset consists of 273,165 POIs of Beijing, which are 
classified into 195 tier two categories. We only chose the top 10 
categories that occur around road segments most frequently. 

After projecting the trajectories onto the road network, we build 
ࣛ௥ and ࣛ௛ to model the recent and historical traffic conditions, 
respectively. We set four time slots (each time slot is 30 minutes) 
in the two tensors, as we find 4 have a good tradeoff between 
effectiveness and efficiency (see Figure 12 A). In the 
implementation, we remove the road segments that are traveled 
less than 50 times in two months (i.e., less than 1 time per entire 
day). The GPS points on such road segments may be noises, or 
due to the imperfect map-matching algorithm or such places 
cannot be traveled by vehicles (such as pedestrian streets), and 
therefore may not be really queried by drivers. Finally, 118,401 
road segments are used in our models. We also build geographic 
and temporal contexts ܺ  and ܻ  based on the above mentioned 
datasets. Table 1 shows the statistics of these tensors and matrices, 
where the third row means ࣛ௥ is partitioned into 25 sub-tensors.  

As shown in Figure 10 A), the maximum number of trajectories 
traversing a path (per day) decreases quickly as the length of the 
path increases. For instance, a path with 10 road segments is 

traversed by less than 245 trajectories per day. Figure 10 B) 
presents the number road segments traveled by taxis with different 
times. For example, from 8am to 9am, about 25,000 roads 
segments are traversed by taxis 1-2 times and 8,000 segments 
(about 4% of Beijing road network) are traveled 3-4 times. 

Table 1. Statistics on the data models 

Size Average non-zero entries
ࣛ௥ 118,401×32,670×4 0.035%
ࣛ௛ 118,401×32,670×4 0.4% 

ࣛ௥/(5×5) 4,736×12,674×4 0.09% 
ܺ 8×16 1 
ܻ 118,401×18 1 

    
 A) Support of Path W.r.t. it length            B) Road segments traversed  

Figure 10. Statistics on the trajectory data set 

5.1.2 Baseline Methods 
We compare PTTE with the following four baseline methods. 

1) Speed-Constraint-based (SC) method. The travel time of each 
road segment is computed by the length of a road segment and its 
speed constraint. The travel time of a path is then a summation of 
that of each road segment. 

2) Trajectory-based Simple Concatenation (TSC) method. TSC 
estimates the travel time of each road segment individually based 
on the trajectories passing the road segment in the most recent 
time slot. If a road segment is not covered by any recent 
trajectory, TSC uses the average historical travel time instead. The 
travel time of a path is then a summation of that of each road 
segment. 

3) Optimal Concatenation with Historical Travel Time (OC+H) 
method. OC+H uses Algorithm 2 proposed in this paper to find 
the most optimal concatenation of trajectories to estimate the 
travel time of a path. For a road segment not covered by any 
trajectories, this method uses an average historical travel time of 
the road segment. 

4) Optimal Concatenation with Nonnegative Matrix Factorization 
(OC+MF). This method is similar to OC+H, except for using MF 
(rather than historical average) to infer the travel time of segments 
without trajectories. MF is applied to the road-time matrix, which 
is degraded from tensor ࣛ by averaging the driver dimensions.  

Comparing PTTE with the first baseline, we can demonstrate the 
advantages of using the trajectory data. The second baseline 
method can reveal the contribution of the proposed optimal 
concatenation algorithm. Through comparing it with the third and 
fourth baselines, we can justify why a tensor with the driver 
dimension is needed in PTTE. Regarding CATD, the first step of 
PTTE, we study the contribution of using context matrices and 
historical data, respectively, in filling the missing values of ࣛ௥. 

5.1.3 Query Paths and Ground Truth 
We randomly pick out 50 paths, each of which has been fully 
traversed by at least two drivers, in each hour of a day, from the 
taxi trajectory data. We then use these paths as queries and the 
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average travel time of these trajectories as the ground truth. Once 
a trajectory is selected as a ground truth, we remove them from 
the training data. In total, we generate 12,384 queries, whose 
length ranges from 2KM to 16KM following the distribution as 
shown in Figure 11 B) and time span follows the distribution 
depicted in Figure 11 C). The total length of these query paths is 
76,412.6km with an effective total time span of 2733.9hours. The 
queries selected in this way cover different times of day (from 
6am to 11pm) and follow the distance distribution of people’s true 
travel patterns in a city’s road network. In the experiments, we do 
not study the query after 11pm and earlier than 6am, as there is 
almost no traffic at those times. In other words, people can travel 
as fast as the speed constraint of a road. According to Figure 11 
A), these query paths (denoted as blue road segments) also cover 
the majority of the Beijing road network.  

 
Figure 11. Distributions of the query paths 

We study the mean absolute error (MAE) and mean relative error 
(MRE) of an estimate according to Equation 12 and 13, 
respectively, where ݕ௜ is an estimate and ݕపෝ  is the ground truth.  

ܧܣܯ                                 ൌ
∑ |௬೔ି௬ഢෝ |೔

௡
,                        (12) 

ܧܴܯ                                 ൌ
∑ |௬೔ି௬ഢෝ |೔

∑ ௬ഢෝ೔
,                        (13) 

5.2 Results 
5.2.1 Performance of CATD 
To test the accuracy of estimating the travel time of road segments 
absent of trajectories, we randomly remove 30% of non-zero 
entries from the last time slice of tensor ࣛ௥. We then infer these 
entries with our method, using their original values as a ground 
truth to calculate MAE and RMSE, as shown in Table 2 
 RMSE is widely used to measure the error of a .(ଷ= 0.01ߣ=ଶߣ=ଵߣ)
tensor decomposition, defined as Equation 14.   

ܧܵܯܴ                                ൌ ට∑ ሺ௬೔ି௬ഢෝ ሻమ
೔

௡
;                (14) 

Adding historical trajectories (i.e.., ࣛ௛ ) and context matrices 
gradually into the tensor decomposition, denoted as TD+H and 
TD+H+C, respectively, we achieve a clear increase of 
performance in estimating the missing values. 

Table 2. The performance of CATD 

 MAE (min) RMSE
1.646 0.747 ܦܶ
ܦܶ ൅  1.629 0.732 ܪ
ܦሺܶ ܦܶܣܥ ൅ ܪ ൅  ሻ 0.714 1.613ܥ

We further study the effectiveness and efficiency of CATD 
changing over the number of time slices in Figure 12 A). Adding 
more time slices into ࣛ௥  and ࣛ௛  achieves a more accurate 
estimate of missing values (i.e., the travel time of road segments 
without trajectories), as we have richer information of previous 
traffic conditions. On the other hand, more time slices consume a 

longer time. We find that formulating a tensor with 4 time slices is 
a relatively strong tradeoff between effectiveness and efficiency.  

 

A) W.r.t. time slices                              B) w.r.t. partitions 
Figure 12. Performance of CATD 

However, the time cost for decomposing such big tensors and 
matrices (see Table 1) makes our method impractical for 
answering instant queries. As a consequence, we partition a city 
into disjointed regions, building individual tensors and matrices, 
separately and in parallel. Figure 12 B) shows the performance 
changing over the number of partitions. When dividing Beijing 
into 5ൈ5 regions, we can finish CATD for each region in 6 
minutes. The partition does not compromise the accuracy (only a 
0.1min gap) as compared to decomposing the original tensors. 
Additionally, the tensor decomposition method we adopt can be 
performed in parallel, further reducing the time cost of CATD. 

5.2.2 Overall Performance 
Table 3 presents the overall performance of our model PTTE (i.e., 
CATD+OC) and baseline methods. Besides MAE and MRE, we 
also present the average error of travel time per km (MAE/L). For 
example, the average error of PTTE in estimating the travel time 
of a path is about 0.412min (25 seconds) per kilometer. Clearly, 
PTTE outperforms all the baselines in terms of the three metrics. 
Given the queries introduced in Section 5.1.3, on average, the 
absolute error of the estimated travel time is about 2 minutes per 
path, which is about 19% of the true travel time. From the results, 
we can draw the following conclusions. First, using trajectory data 
(TSC) is much better than that only based on speed constraints of 
roads. But, simply concatenating the travel time of each individual 
road segment (TSC) is not an optimal solution. As we mentioned 
before, the more fragments involved in a concatenation, the more 
uncertain of travel time for crossing two consecutive fragments 
occurs is. Second, regarding estimating the travel time of road 
segments without covered by trajectories, using the historical 
average travel time (OC+H) is significantly better than using its 
speed constraint. Using a collaborative filtering model (OC+MF) 
is slightly better than using an historical average. The PTTE 
considering the driver dimension is even better than OC+MF.   

Table 3. Comparison of different methods 

MAE (min) MRE MAE/L (min/km)
ܥܵ 8.808 0.665 1.428 

 0.850 0.396 5.244 ܥܵܶ
ܥܱ ൅  0.526 0.245 3.245 ܪ

ܥܱ ൅  0.496 0.231 3.061 ܨܯ
 0.412 0.192 2.545 ࡱࢀࢀࡼ

Figures 13 and 14 present the performance of SC, TSC, and PTTE 
changing over time of day, on weekdays and weekends. We do 
not show that of OC+H and OC+MF, as they almost follow the 
same trend as (but worse than) PTTE. As depicted in Figure 11, 
the error of SC increases tremendously during peak traffic hours, 
around 8-9am and 6-7pm. The complex traffic conditions on roads 
at these moments deviate the true travel speed far from their speed 
constraints. When time goes to late night (i.e., no complex traffic 

A) Geographical distribution

B) Distribution of the length

C) Distribution of time length
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conditions anymore), the error decreases and approaches our 
PTTE method. This is also the reason that we do not need to 
perform PTTE on late night time sets, especially after 12am and 
before 6am. Simply estimating the travel time for each individual 
road segment and then doing a summation (TSC) is not accurate 
enough. When there are not enough taxis traveling on Beijing’s 
road network, e.g., after 9pm and before 8am, MAE of TSC is 
higher than other time slots. With the help of CATD, the MAE of 
our method only increases slightly after 9am. This demonstrates 
the value of inferring the missing values.      

 
Figure 13. Performance changing over time of day (Weekday) 

As most people do not drive to work on weekends, we observe 
different trends of the performance in Figure 14, in contrast to 
Figure 13. SC’s MAE reaches its peak around 6pm which is the 
weekend rush hour. The reason why PTTE has the biggest error 
around 9am on weekends is a tradeoff between the number of 
taxis and the complexity of traffic conditions in a road network. 
On weekends, the number of taxis traveling in Beijing’s road 
network is still very small at 9am, while the traffic conditions start 
becoming complex. As time goes by, more taxis are present on 
Beijing’s road network, alleviating the data sparsity problem and 
decreasing the MAE. Conversely, before 8am, the traffic 
condition is still very simple to predict on roads. The travel speed 
is almost close to the speed limit.  

 
Figure 14. Performance changing over time of day (Weekend) 

Figure 15 shows the performance of PTTE changing over the 
length of a query path. As the length increases, both MAE and 
MRE decrease. A longer path is more likely to contain more 
trajectory patterns, which provide more choices for an optimal 
concatenation. This also echoes the assumption we proposed in 
the introduction. The shorter a sub-path is the more unstable its 
travel time could be. In an extreme case, the travel time of a single 
road segment is terrifically impacted by traffic lights and 
pedestrians crossing it. So, the travel time varies in time quickly 
and tremendously, becoming hard to predict.     

 
Figure 15. Performance of PTTE changing over the length of a path 

Table 4 presents the time and space cost of PTTE’s two major 
components for processing the trajectories received in recent 30 
minutes. The first component CATD is only performed once for the 
entire dataset, while OC is conducted for each query path. All 
numbers are obtained by only using a single core of a server with 
2.80GHz Xeon CPU and 24GB RAM. For example, if we partition 
a city into 25 regions, building ࣛ௥ and ࣛ௛ for an individual region 
needs 44 and 233 seconds, respectively, costing 4.4MB and 14.6 
MB of memory, respectively (each tensor contains 4 time slices). 
Using Algorithm 1 to decompose these tensors with context 
matrices ܺ and ܻ needs about 6.31min for each region. We do not 
list the time for building matrix ܻ, as it is static and can be built 
offline. In total, we can infer the travel time on each road segment 
for each particular driver within 6.4min if using 25 cores in a server. 
Note that Algorithm 1 is based on an entry-wised decomposition 
approach, which can be performed in parallel further. If using six 
25-core servers, we can finish CATD in about 1 minute. In the 
optimal concatenation, we can process a query path in 2.3ms. 
However, the time is much longer if the trajectory patterns and the 
real-time indexing structure proposed in Figure 9 are not used.   

Table 4. Time and memory cost for each step of PTTE 

 Components Time Memory (MB) 
Deal with 
missing 
values 

(ܦܶܣܥ)
 

Building matrix ܺ, ܻ 34ms 9
Tensor 

construction  
ࣛ௥ 44ms 4.4 
ࣛ௛ 233ms 14.6 

Decomposition  5×5 6.31min 116 
Total 6.4min 144 

Optimal 
Concatenat
ion (OC) 

Best OC 2.3ms 995 
w/o trajectory patterns 8.6ms 877 

w/o index 12.2s 714 

Figure 16 A) shows the tradeoff between effectiveness (measured 
by MAE) and efficiency (by time cost) of using trajectory patterns 
in optimal concatenations, where the horizontal axis denotes the 
threshold of support. For example, if setting 400 as a threshold, we 
regard a path as a trajectory pattern if the path has been covered by 
over 400 trajectories in the two-month dataset. The bigger threshold 
is the smaller number of trajectory patterns we can obtain. So, the 
time cost decreases and the MAE increases, as the support 
increases. Additionally, as depicted in Figure 16 B), setting a 
smaller support threshold leads to a bigger size of the suffix-tree-
based index for trajectory pattern mining. In the implementation, we 
find 500 is a good tradeoff among MAE, time cost, and index size. 
Note that without using the indexing structure proposed in Section 
4.3, we need about 12 seconds to find the most optimal 
concatenation for a query path (see Table 4).  

    
A) Time cost and MAE w.r.t. support     B) Size of the index w.r.t. support 

Figure 16. Performance of OC w.r.t. support of a trajectory pattern 

The recovered tensor ࣛ௥௘௖  helps the optimal concatenation 
significantly. In the experiments, we test our model with 12,384 
query paths, which are comprised of 217,326 road segments in total. 
When processing the query paths, we access tensor ࣛ௥௘௖ 1,706,648 
times (i.e., 137.8 times per query) to retrieve the missing travel time 
of a road segment in a trajectory pattern. The travel times of 58,223 
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road segments (about 26.8% of the road segments in the query 
paths) are finally retrieved from ࣛ௥௘௖  for constructing the most 
optimal concatenation, i.e., 4.7 road segments per path.  

We study the performance of PTTE changing over different 
number of vehicles in Figure 17, aiming to figure out how many 
GPS equipped vehicles are needed to have accurate results.  For 
example, using 30,000 GPS-equipped vehicles in Beijing is 
enough to achieving a MRE smaller than 0.23. In other words, if 
having 1.36 vehicles on every kilometer road in a city, we can 
achieve a relative error of estimation smaller than 0.23.  

 
Figure 17. Performance w.r.t the number of taxis 

5.2.3 Field Study 

Besides using GPS trajectories from taxi drivers, we also send two 
drivers carrying a GPS logger to test the accuracy of our method 
from Sept. 1 to Oct. 30. Finally, we collect 114 driving paths with 
a total length of 999.4km and an effective total time period of 
61.6hours. The sampling rate of these GPS trajectories is 5 
seconds per point. Table 5 shows the performance of the study, 
where we observe a better MRE than using taxi drivers’ 
trajectories as a ground truth. The major reason is the length of a 
path collected in the study is usually long (on average 8.78KM 
each), where our model has a better accuracy than a shorter path. 
Additionally, the map-matching for high sampling rate trajectories 
is more accurate than low sampling rate taxi trajectories, resulting 
in a more accurate estimation of the ground truth.  

Table 5. Performance of the in-the field study 

 MAE (min) MRE MAE/L (min/km)
2.075 0.561 18.193 ܥܵ

 1.289 0.349 11.300 ܥܵܶ
ܥܱ ൅  0.569 0.154 4.990 ܪ

ܥܱ ൅  0.462 0.125 4.052 ܨܯ
 0.430 0.116 3.771 ࡱࢀࢀࡼ

6. RELATED WORK 
6.1 Road Segment-Based Travel Time 
Approaches using Loop Detectors: Estimating travel time based on 
loop detectors installed on both endpoints of a road segment has 
been studied intensively over the past few decades. When a vehicle 
passes through, the time interval for crossing two adjacent loop 
detectors is recorded, based on which the speed of the vehicle is 
inferred.  [9, 14, 16] use various models to estimate the travel speed 
on an individual road segment based on the sensor readings from 
loop detectors, and then convert the speed into a travel time. [19] 
predicts the travel time of a road segment by applying support 
vector regression to its historical travel times. As many roads do not 
have a loop detector buried, this category of research mainly 
focuses on individual road segments, and therefore is difficult to 
scale up to an entire city. 

Floating-Car-Data Approaches: Learning city transportation using 
floating car data has gained more attention recently [1, 5, 17, 23, 24]. 
In these approaches, cars driven in a city serve as dynamic sensors 
to probe traffic conditions, and their GPS trajectories are used to 

compute the speed and travel time on road segments. Most methods 
infer the travel time of an individual road segment without 
considering the correlation between the traffic conditions on 
different roads. This reduces the accuracy of an inference in an 
urban environment where traffic conditions are inter-related.  

Some models [2] predict the travel speed of a road segment by 
considering the traffic patterns of other road segments connected 
to it. Unfortunately, when scaling up to an entire city, these 
methods often result in a model with high complexities. 
Additionally, they do not tackle the data sparsity problem, i.e. 
many road segments are not traveled by trajectories in the current 
time slot, which is quite common in reality. The neighboring 
segments’ traffic patterns can be regarded as the local correlation 
between road segments. However, the correlation between road 
segments that are not geospatially connected is not considered in 
these modes. [8] aims to estimate the travel time between two 
points on a road network using low sampling rate trajectory data. 
It considers the correlation between different road segments in 
terms of their historical traffic patterns to infer the travel time on a 
road segment and the delay at intersections. The model is trained 
using a Maximum Likelihood Estimation over the collected data 
in an urban road network.  

However, these methods still follow the idea of first estimating 
the travel time of individual road segments and then summing up 
the travel times of the road segments belonging to a path. As we 
mentioned before, it is difficult to explicitly model the complex 
factors for crossing two road segments, e.g., intersections, 
direction turns, and traffic lights. Though we also infer the travel 
time for individual segments, the time is combined with trajectory 
patterns to formulate a sub-path rather than simply concatenating 
them one by one. The variance of different users’ travel times also 
captures the complexity of traffic conditions on a road segment or 
a sub-path. In the meantime, when inferring the travel time of a 
road segment, we incorporate both spatial correlation between 
different road segments and the temporal correlation between the 
traffic conditions of different time slots, as well as the deviation 
between current traffic conditions and historical traffic patterns.  

6.2 Path-Based Travel Time 
A possible approach to deal with the weakness of the individual 
road segment-based methods is to estimate the travel time of a path 
as a whole based on frequent trajectory patterns. For example, we 
can mine frequent patterns from historical trajectories [6, 7, 12] in 
advance, and then use the average travel time of a pattern to 
represent the travel of the path corresponding to the pattern. Some 
models can also be built based on the historical data of a path [15] 
to estimate the future travel time of the path. This approach needs a 
balance between the coverage of queries that it can answer and the 
accuracy of the inferred travel time. To be able to answer various 
query paths, these methods need to select more trajectory patterns 
by using a small support. However, the travel time derived from a 
small support is not accurate. Additionally, a path’s travel time of 
current time slot may deviate from its historical average 
significantly, depending on the real-time traffic conditions. 
Moreover, many query paths may not be traversed by any 
trajectories in current time slot as well in the history.  

Recent research has started finding more optimal concatenations 
of road segments to estimate the travel time of a path. A series of 
research attempts to explicitly calculate the time spent on 
intersections using an interpolation method [11], or a joint 
probability model [3], or a dynamic Bayesian network [4]. This 
could result in a more accurate summation of individual road 
segments’ travel times. However, these methods do not study how 
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to leverage sub-trajectories to construct an optimal estimation of a 
path. As we mentioned before, the accuracy of estimating a sub-
path’s travel time is subject to the tradeoff between its length and 
the number of trajectories passing the sub-path. In our model, we 
propose and prove an objective function that can represent the 
tradeoff. We also consider the variance of different drivers’ travel 
times, resulting in a more accurate travel time estimation of a path. 

Based on the trajectories generated by a large number of taxis, 
[20] builds a landmark graph, where a node (entitled a landmark) 
is a road segment frequently traveled by taxis and an edge denotes 
the aggregation of taxis’ commutes between two landmarks. The 
travel time of a path is then approximated by the summation of the 
travel times between landmarks. Though the proposed landmark 
graph can also deal with the data sparsity problem, the main goal 
of [20] is to find the quickest driving path between an origin and a 
destination; this is different from our problem. Knowing the 
shortest time for traveling between two points does not mean we 
can obtain the travel time of any path traversing the two points.  

7. CONCLUSION 
In this paper, we propose a real-time and citywide model, called 
PTTE, to estimate the travel time of a path in current time slot in a 
city’s road network, using the GPS trajectories from a sample of 
vehicles (e.g. taxicabs). Though this is a very important foundation 
for many traffic monitoring and routing systems, the problem has 
not been well solved given three challenges: 1) data sparsity, 2) 
finding an optimal combination of trajectories (i.e., the tradeoff 
between the length of a sub-path and the number of trajectories 
passing the sub-path), and 3) the tradeoff between scalability, 
effectiveness and efficiency. PTTE is comprised of two major 
components, CATD and OC. The former infers the travel time of a 
road segment without being traversed by trajectories in the current 
time slot through a context-aware tensor decomposition approach. 
The latter searches for the most optimal concatenation of 
trajectories for a query path using a dynamic programing solution. 
We evaluate PTTE with extensive experiments based on GPS 
trajectories generated by over 32,000 taxicabs over a period of two 
months in Beijing. We test the effectiveness and efficiency of 
CATD and OC, respectively. First, the results demonstrate the 
advantages of CATD in accurately filling in the missing values 
beyond baseline methods, such as using speed constraints, or using 
a historical average travel time, or using a matrix factorization-
based approach. The driver dimension in tensor ࣛ௥  helps us 
calculate the variance of different drivers’ travel times on a road 
segment. The variance indicates the complexity of a road’s traffic 
condition, helping us find the most optimal concatenation for a path. 
In addition, the geospatial/temporal contexts and historical traffic 
patterns increase the accuracy of estimating the missing values. 
Regarding the most optimal concatenation, we devise an objective 
function which has been proved to be able to model the tradeoff 
between a sub-path’s length and the number of trajectories passing 
it. Tested by 12,384 query paths, PTTE achieves a mean absolute 
error of 0.4min per km, which is about 19% of the truth travel time. 
The results of the in-the-field study have an even smaller estimation 
error (11.6%). Using the suffix-tree-based indexing structure to 
manage the trajectories received currently and the trajectory patterns 
(mined in advance) to scale down the concatenation candidates, on 
average, we are able to infer the travel time of a path in 2.3ms. The 
codes and a sample of the data used here have been released at [25]. 

In the future, we plan to infer the travel time of a path for a 
particular driver. In addition, we would like to study the impact of 
other factors, such as weather conditions and air quality, on the 
travel time estimation of a path. 
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