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Abstract— Datasets are an essential component for train-
ing effective machine learning models. In particular, surgical
robotic datasets have been key to many advances in semi-
autonomous surgeries, skill assessment, and training. Simulated
surgical environments can enhance the data collection process
by making it faster, simpler and cheaper than real systems. In
addition, combining data from multiple robotic domains can
provide rich and diverse training data for transfer learning
algorithms. In this paper, we present the DESK (DExterous
Surgical SKills) dataset. It comprises a set of surgical robotic
skills collected during a surgical training task using three
robotic platforms: the Taurus II robot, Taurus II simulated
robot, and the YuMi robot. This dataset was used to test the
idea of transferring knowledge across different domains (e.g.
from Taurus to YuMi robot) for a surgical gesture classification
task with seven gestures/surgemes. We explored two different
scenarios: 1) No transfer and 2) Domain transfer (simulated
Taurus to real Taurus and YuMi robots). We conducted
extensive experiments with three supervised learning models
and provided baselines in each of these scenarios. Results
show that using simulation data during training enhances the
performance on the real robots, where limited real data is
available. In particular, we obtained an accuracy of 55% on
the real Taurus data using a model that is trained only on the
simulator data, but that accuracy improved to 82% when the
ratio of real to simulated data was increased to 0.18 in the
training set.

I. INTRODUCTION

Minimally invasive robotic surgery has evident advantages
over traditional surgery, such as quick recovery, lower risks
and lower catastrophic errors for patients, thereby becoming
the standard of care for a wide variety of surgical procedures
[1]. However, these techniques require residents to spend a
substantial amount of time practicing surgical maneuvers in
simulation environments. In particular, the surgical robotic
simulators play a crucial role in the training process of
residents and novice surgeons, leading to significant improve-
ment of their technical skills gradually and over time [2]. The
tasks that are predominantly presented for training using the
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simulation and bench-top models include, but are not limited
to, peg transfer, pattern cut, suture, and needle passing [3].

There are other key-benefits in using simulation: (a) It
provides unlimited amount of training time while avoiding
human/animal tissue manipulation or expensive single-use
mock models [4] and (b) It allows researchers to collect
enormous amount of data at a lower cost and in a scalable
manner [5]. While some Da-Vinci datasets are publicly
available, including surgical maneuvers during a variety of
procedures, there is a lack of datasets featuring other types
of surgical robots which may be less popular. This limits
the ability to generalize across other robotic platforms. This
limitation is particularly critical when in-field deployable
surgical robots are needed (e.g. military, disaster-relief sce-
narios). The scarcity of publicly available datasets prevents
researchers from exploring novel strategies to transfer the
knowledge gained in the surgical simulator to a variety of
other robots, less common in the Operating Room (OR) but
more suitable to field conditions.

The goal of this paper is to provide a dataset that can
allow for “transfer learning” across robotic platforms. As a
test-case study, we will rely on the peg transfer task, which
is a task of primary importance in surgical skill learning.
In this regard, this paper introduces a library of motions for
the robotic peg transfer task obtained from multiple domains:
robotic simulator and two real robots (Taurus and YuMi). We
refer to this database as DExterous Surgical SKills Transfer
dataset (DESK). In addition to providing the dataset, we will
present a proof-of-concept for learning to classify surgemes
with a very limited or no training information from the real
robots. The goal is to transfer the knowledge gained from
the simulator to accelerate the learning on real robots by
leveraging on abundant data obtained from the simulation
environment. This instance of transfer learning is known
as domain adaptation, a scenario in transductive transfer
learning [6], where the source and target tasks are the same,
but the data distribution of target and source domain are
different.

The main contributions of this work are to: 1) Provide an
annotated dataset of surgical robotic skills (DESK) collected
in three domains: two real robots with different morphology
(Taurus II and YuMi) and one simulated robot (Taurus
II), and 2) Transfer the knowledge gained from abundant
simulation data to real robot’s data in context of surgeme
classification.



II. BACKGROUND AND RELATED WORK

The advancement of surgical robotic activity recognition
and semi-autonomous surgeries benefits from the availability
of robotic surgical datasets. Two such prominent datasets are
the JIGSAWS [7] (JHU-ISI Gesture and Skill Assessment
Working Set) and MISTIC-SL (Johns Hopkins Minimally
Invasive Surgical Training and Innovation Center; Science
of Learning Institute). These datasets comprise procedures
preformed with the da Vinci Surgical System on a bench-
top model, including synchronized video and kinematic data
[8]. A main advantage of these datasets is that they allow
elucidating patterns associated with skill learning. With this
goal in mind, surgical tasks are decomposed into a finite set
of maneuvers [7]. This process of decomposition is known
as surgical skill modelling [9]. In this modelling technique,
each surgical skill is represented as a sequence of atomic
units referred as gestures or surgemes [7]. These datasets
have been used to learn representations of surgical motions
[10] and recognize surgical activities [11]. However, the
MISTIC-SL dataset is not publicly available at the moment.
In contrast, the JIGSAWS is publicly availiable and has been
used for multiple applications such as motion generation of
expert demonstrations [12], recognition of surgical gestures
[13], and surgical trajectory segmentation [14]. Nonetheless,
the data collection for the JIGSAWS dataset did not inten-
tionally introduce variability in the environment and initial
conditions of the task. In realistic surgical tasks, the videos
and kinematics will vary greatly between demonstrations,
stressing the need of surgical datasets that include variability
in the experimental setup to facilitate generalization.

The segmentation and classification of time series data on
surgical datasets has been evaluated on the JIGSAWS and
MISTIC-SL dataset using several approaches. Previous su-
pervised learning methods include the use of hidden Markov
models [15], conditional random fields [16], and bag of
spatio-temporal features [13]. More recent methods include
the use of Recurrent Neural Networks for recognizing surgi-
cal activities [10], [11]. Nonetheless, these approaches were
tested using data from the same distribution as the training
data, and do not account for the disparity encountered from
randomized initial conditions.

Several efforts have been made in autonomous classifica-
tion and execution of surgical tasks using multiple surgical
robots and simulation platforms [17], [18]. However, the
obtained models are specific for a given platform and setup,
and cannot be directly transferred to other robots/procedures.
As surgical data sets become available, it is desirable to use
principles of transfer learning to leverage previous models
to accelerate learning in new domains.

Research in transfer learning and domain adaptation has
leveraged simulation environments to boost learning in real
systems [19], [20]. Knowledge transfer between a robot and
a simulated environment is challenging due to the differences
in data distribution. Methods of domain randomization have
been proposed to increase generalization in real scenarios
for models trained in simulation [5], [21], by randomizing

object position and appearance over the training set.
Transfer learning between dissimilar robots has been ex-

tensively studied in the area of Reinforcement Learning
(RL) [22], [23]. The work in [24] shows a modular policy
strategy for networks that allows to jointly train data from
different robots with a common task, or data coming for the
same robot with varying tasks. In domain transfer scenarios,
dimensionality reduction techniques can be used to transfer
learning between different robots [25]. Bcsi et al. proposed
a knowledge transfer approach that is agnostic to the robot
parameters, were the source and the target dataset are reduced
to a common lower-dimension manifold [25]. This method
does not require any kinematic knowledge of the target
domain. Instead, the users must propose a bijective mapping
between each dataset and the lower dimensional manifold.
In contrast with this approach, our method does not require
mapping back to the original space. We take a dimensionality
reduction approach that intends to preserve the common
features and the transfer learning is done directly in the
reduced space.

Our DESK dataset provides RGB images, depth and
kinematic information for the peg transfer task from multiple
domains including two real robots (SRI Taurus II and ABB
YuMi) and a simulation environment (SRI Taurus II). These
three robotic setups possess inherent variance in peg board
configuration, object size and appearance. Furthermore, we
provide the data annotations concerning atomic surgical
actions (start frame ID, end frame ID and if the action was
a success or a failure). Additional variability is added to the
dataset by randomizing the pick and place locations for the
pegs and orientation of the board, while leaving the order
of the pegs to be transferred unrestrained. In addition, the
dataset contains examples of success and failure of surgemes
employed during the task and subsequent recovery maneu-
vers. This work provides a baseline for transfer learning,
from simulated to real robots using the DESK dataset.

III. DESK DATASET

Fig. 1: Experimental setup for data collection on three different
robotic domains.

A. Peg transfer surgical training task

The peg transfer task is one of the five tasks present
in the Fundamentals of Laparoscopic Surgery [26] and has
been commonly used to train residents [27], [28]. The task



consists of picking an object from a peg board with one
robotic arm, transferring it to the other arm and positioning
the object over a target peg on the opposite side of the
board. These tasks require a high level of sensorimotor skill
due to the small clearance between pegs and objects, and
the limited maneuverability of the manipulator caused by
multiple objects in the workspace.

The peg transfer setup for the DESK dataset has two
sets of numbered poles (from 1 to 6), each object has to
be picked from its peg with one gripper, transferred to the
other gripper and placed in a specified peg on the other
side. Variability is introduced in the dataset by completely
randomizing the following elements in the setup: 1) Initial
and final positions of objects, 2) direction of the transfer
(objects on the left side are transferred to the right and
vice versa) and 3) position/orientation of the peg board. The
experimental design for each of the robotic platforms was
summarized in the table II. The data collection on all robotic
platforms was performed by trained non-surgeon operators.
Since multiple pegs were present in each trial, the order of
the pegs to be transferred was selected by the user.

B. Data description

The kinematic data, the RGB video and the depth video
were segmented according to surgical gestures (surgemes)
observed in RGB video frames. A graphical tool was de-
veloped to facilitate the surgeme annotation based on RGB
video recordings. A total of 7 surgemes were annotated for
the peg transfer task. All the surgeme names, excluding the
ones related to transfer, are self explanatory. The surgeme
Get Together refers to the action of aligning and getting the
grippers close to each other. The surgeme Exchange refers to
the action of passing the peg from one gripper to the other. In
addition, each surgeme was marked as a success or a failure.
Table I and Figure 2 show the list of annotated surgemes for
the DESK dataset. Each peg transfer video was associated
with an annotation file that describes the following for each
surgeme: name, the start and end frame, and whether the
surgeme execution was a success (True) or a failure (False).
In addition, timestamps were stored for each recording which
allow to synchronize all the recordings (depth, kinematic and
controller data) with respect to the RGB videos.

Fig. 2: Surgemes in the peg transfer task for the Taurus II robot.

C. Data collection with the Taurus robot

The Taurus II robot is controlled using the Razer Hydra®

over a stereoscopic display. It is interfaced with two foot
pedals that allow to switch control between the arms and the

TABLE I: Surgical gestures in the peg transfer task. The columns
indicate surgeme ID, name of the surgeme, number of instances
present for each surgeme for the simulator, real Taurus and the
YuMi robot.

ID Surgeme name # Sim # Taurus # YuMi
S1 Approach peg 192 111 117
S2 Align & grasp 206 115 123
S3 Lift peg 203 112 123
S4 Transfer peg - Get together 180 113 117
S5 Transfer peg - Exchange 175 113 118
S6 Approach pole 167 109 117
S7 Align & place 163 107 116

camera. A clutch pedal was used to toggle the robot between
operation mode and standby mode to enable the user to reset
to an ergonomic position for manipulation. In this setup, the
robot only moved when the clutch of the foot pedal was
pressed.

The data collected from the Taurus robot included
RGB video and depth video recorded from the top view
Realsense® camera. In addition, the kinematic data of the
Taurus robot’s end-effector was captured using 16 kinematic
variables as shown in Table III. For each arm, we recorded:
the rotation matrix of the wrist (nine values), the translation
in x, y and z coordinates of the wrist with respect to the
robot origin and the gripper state, which is a value between
30 and 100 (30 when completely closed and 100 when the
gripper is completely open).

TABLE II: Experimental design for data collection.

Taurus Simulator Taurus II YuMi
DOF 7 7 7

# of subjects 7 3 1
# of trials/subject 6 12 3
# of transfers/trial 6 3 40
# of total transfers 252 108 120

D. Data Collection with the Taurus Simulation Environment

The simulated Taurus robot is controlled using the Oculus
Rift touch controllers. Similar to the Taurus robot, the
simulated Taurus system has a foot pedal that enables the
motion of the robot and allows to switch control between
the arms and the stereoscopic camera.

This dataset includes the following recordings: the kine-
matic data of the robot’s wrist and RGB videos recorded
from the point of view of the user’s virtual environment,
stereo view of both the left and right robot’s cameras (the two
stereo videos can be used to compute the depth information).
The kinematic data consists of 14 kinematic variables that
represent the robot’s end-effector pose, as displayed in Table
III. It also includes the wrist orientation (yaw, pitch and roll
angles), the translation in x, y and z coordinates with respect
to the robot’s origin, the joint angles (7 DOF) and the griper
state (also a value between 30 and 100) for both the arms.



E. Data collection with the YuMi robot

The YuMi collaborative robot was adapted to surgical
tasks using 3D printed gripper extensions [29]. The end-
effectors of the robot are controlled using the HTC VIVE
controllers. The recorded data includes RGB video and
depth video obtained from the top view using a Realsense®

camera. In addition, the kinematic data of each robot arm is
captured using 20 kinematic variables that provide joint state
information, translation of the tooltip in x,y,z coordinates,
rotation matrix of the tooltip with respect to the robot’s
origin, and gripper state (see Table III).

The YuMi robot is significantly different from the Taurus
robot. For instance, the Taurus II is designed specifically for
small dexterous tasks such as bomb disposal and surgery,
while the YuMi is suitable for larger workspaces and collab-
orative tasks. For this reason, the setup for peg transfer using
the YuMi was scaled by a factor of 2 (the size of the peg
board is larger). Other differences include robot morphology
and the interface used for manipulation. The pitch, yaw, and
roll angles of the Taurus are computed with respect to the
wrist, which causes minimal movement of the wrist when
the operator changes the orientation the tool. In contrast,
the YuMi robot has a kinematic control that reorients with
respect to the tooltip. Given the large distance between the
tooltip and the wrist, even minor changes in the orientation
of the tool causes large motions at the robot’s wrist and the
arm configuration.

TABLE III: Kinematic variables. Note that ts is the Unix times-
tamp, ~J is the vector of joint angles, ~p is the position vector (x, y
and z), ~θ be the Euler angles (yaw, pitch and roll), gs is the gripper
state of the end-effector and R be the 3 x 3 rotation matrix.

Taurus Taurus Simulator YuMi
ID Variable ID Variable ID YuMi
1 ts 1 ts 1 ts

2-13 R and ~p 2-4 ~p 2-8 ~J
- 5-7 ~θ 9-11 ~p

14-16 ~p 8-14 ~J 12-20 R
17 gs 15 gs 21 gs

IV. EXPERIMENTS AND RESULTS

The data collected from the simulator and the real robots
had different dimensions, as shown in Table III. The first step
in the pipeline was to ensure that the dimensions of the data
were equivalent in the three domains. Therefore, we reduced
the feature dimension by considering the features that are
commonly shared between these two domains (position,
orientation and gripper status of the end-effector). Overall,
we considered 14 features per frame (seven features in each
arm).

The experiments conducted in this work are two-fold: 1.
Train and test on the data obtained from the same domain
(no-transfer scenario) and 2. Train on one domain and test
on the other (domain-transfer scenario). Furthermore, we
considered two kinds of classification tasks: 1. frame-wise
and 2. sequence-wise. The former method associates each
frame to a particular class label and treats each frame as a

sample point (frame-wise instances), while the latter method
considers the entire surgeme (sequence of frames) as a
single sample point (sequence-wise instances). Next, we used
three supervised learning methods for our experiments: 1.
Support Vector Machines (SVM), 2. Random Forest (RF)
and 3. Multi-layer Perceptron (MLP). These three learning
techniques are commonly used in the machine learning
community for creating the baselines for classification. We
used the scikit-learn [30] implementation of these models for
our experiments.

Hyperparameter setting. A linear kernel was used SVM
classifier. For RF, we set n estimators= 200 (number of trees
in the forest), and maximum depth = 10. For the MLP, we
used a hidden layer of size = 100, tanh as the activation
function with adam as the optimizer.

Each surgeme instance consists of a variable number of
frames. Thus, we re-sampled (via linear interpolation) the
original instances to a fixed number of frames to generate
sequence-wise instances. Next, we concatenated the seven
features corresponding to each frame, for both the arms, to
create a single feature vector. In our case, we set the number
of frames to 40 and each sequence-wise instance is a 560
dimensional vector (40×7×2). In our experiments, we did
not differentiate between successful and failed instances of
the same surgeme class.

A. Surgeme classification
In the first experiment, our goal was to study the classifi-

cation in the no-transfer scenario where the learning model
is trained and tested on data coming from the same domain.
In other words, the training and testing data follow the same
distribution. We have two such scenarios: train and test on
1. simulator data (S→ S) and 2. real robot data (R→ R).
In our experiments, we have used 60-40% split for training
and testing respectively. Furthermore, we have used five-fold
cross validation approach to tune the learning parameters (or
weights) of the models.

Next, we performed the classification on both the frame-
wise and sequence-wise instances as shown in the Table
IV. The sequence-wise features contain the temporal in-
formation embedded into them. Hence, these features give
superior accuracy except for the random forest approach on
simulator data. Therefore, we used sequence-wise features
for the experiments associated with the domain transfer.
We conducted the two-sided paired t-test and found that
SVM significantly outperforms the RF and MLP with the
sequence-wise features (p < 0.05).

TABLE IV: Classification accuracy on the no-transfer scenario for
both the frame-wise and sequence-wise features. S is the Taurus
simulator, R1 is Taurus robot, and R2 is the YuMi robot.

Sequence-wise Frame-wise
RF SVM MLP RF SVM MLP

S→ S 88±2 87±1 78±4 86±0 58±1 73±1
R1→ R1 94±2 92±1 92±2 95±0 60±0 92±1
R2→ R2 91±1 93±1 95±1 88±1 48±1 86±1



B. Domain transfer: Simulator to real robot

In this experiment, our goal is to build a learning model
that was trained on the data obtained from one domain but
tested on the data coming from a new domain. In other
words, the input data distribution is different in the train and
test datasets. We start with the assumption that it is much
easier to collect the data from the simulator when compared
to the data from the physical surgical robot. Therefore, the
real robot’s data is assumed to be limited or not available
in extreme cases. Hence, we trained our models on the
simulator data with very little or no data from the real robot
and tested this model on the real robot’s data.

To simulate the limited availability of the real data, we
added a small fraction (α) of the real data into the training,
where α was varied from zero to one. The value of α is
defined as the ratio of number of examples of the real data to
the simulator data present in the training. An α = 0 indicates
complete transfer, where there is no real data present in the
training, while α = 1 implies that the data from the simulator
and real data are in equal proportions.

Fig. 3: Performance comparison for transfer learning from Taurus
simulator to Taurus Robot using SVM. The blue curve indicates
the transfer accuracy and the blue curve indicates accuracy on real
data without transfer.

TABLE V: Domain transfer accuracy when the models are trained
on the domain C but tested on domain R. Note that the domain R
is the real Taurus domain C is the combination of S and R.

RF SVM MLP
α # C→ R R→ R C→ R R→ R C→ R R→ R

0.00 0 34±3 0±0 55±2 0±0 40±2 0±0
0.03 24 53±3 39±4 67±2 50±5 57±3 51±4
0.06 49 66±1 64±4 74±0 67±3 68±4 72±2
0.09 73 77±3 73±5 77±1 74±3 74±1 80±3
0.12 98 78±1 80±3 79±2 80±1 78±1 85±1
0.15 123 84±2 84±2 81±1 83±0 82±2 86±1
0.18 147 85±0 85±0 82±1 84±1 79±3 88±1

Moreover, accuracy (γ - the percentage of test examples
that are correctly classified) and confusion matrices are used
as performance metrics to evaluate how well the model is
performing on the unseen data. Let us define γM

A→B as the test
accuracy of the model M trained on the data from domain
A and tested on the data from domain B. Note that γM

A→B

depends on the value of α . Also, let us define C as the
domain that is a combination of both real and simulator
domains. The goal of this study is to determine the behavior
of γM

C→R (trained on both simulator and real data and tested
on the real data) and γM

R→R (trained and test on real data) as
the value of α increases.

Figure 3 shows the behavior of γSV M
R→R(α) and γSV M

C→R(α)
for SVM classifier. In the extreme case when there was
no real data in the training process (i.e. α = 0 - complete
transfer), the accuracy was approximately 55%. As the value
of α gradually increases from 0 to 0.2, the value of γSV M

C→R
increases and converges in comparison to γSV M

R→R. At α = 0.18,
the values of γRF

C→R and γRF
R→R were approximately equal to

80%. Moreover, this plot shows that adding the simulator
data into the training procedure considerably improved the
accuracies on the real data.

Fig. 4: Confusion matrix for transfer learning with SVM when
α = 0.05 for real Taurus robot data.

Table V shows the transfer accuracies obtained using
three learning models for a range of values of α . Note
that there are 1286 samples in the simulator domain. The
second column (#) is the number of examples of the real
data present in the training procedure. In the first row, it was
assumed that there were no real data examples in the training,
hence accuracy in R→ R is 0. For illustration purposes, the
confusion matrix presented in Figure 4 shows the transfer
accuracies for all the classes when α = 0.05. Overall, the
Table V shows that it is beneficial to augment the training
data with the samples obtained from robotic simulators.
Irrespective of the learning model, it helps greatly enhance
the performance of those models on the real robot’s data.

In the last experiment, our goal was to verify the transfer
across the robots i.e. to train the model on the simulation
data of Taurus robot and test on the data of YuMi robot.
The workspace, morphology and dimension of the data of
these robots was significantly different. Hence, we used the
principal component analysis (PCA) to rank the features
based on the Eigen values and transform the data into the
Eigen space. Next, we chose a fixed number of features (a
value of 8 is used in our experiments) in the Eigen space in
order to unify the feature dimensions. We followed a similar



Fig. 5: Performance comparison for transfer learning from the
Taurus simulator to the YuMi Robot.

experimental design to test the transfer of knowledge from
the Taurus simulator to the YuMi domain. The accuracy of
complete transfer scenario is close to the random accuracy
indicating that the model is overfitting to the simulator, as
there is no data from the real robot in the training. However, a
slight increase in the number of examples of YuMi data in the
training produces an swift increase in the transfer accuracies.
For instance, when the number of YuMi examples = 100,
the transfer accuracy is approximately 80% as shown in the
Figure 5. When we add more than 200 examples of YuMi in
the training, the transfer accuracies marginally surpasses the
accuracies in R→ R scenario. This shows that transferring
the knowledge between two completely different robots is
a challenging task and requires relatively more examples to
achieve superior transfer accuracies.

V. DISCUSSION AND FUTURE WORK

The interaction modality of the Taurus robot and the
Taurus simulated robot are completely different, however,
the robot configuration is similar. Hence, transferring the
knowledge to the physical domain is relatively easier in the
case of the real Taurus robot in comparison to the YuMi
robot. Thus, the transfer accuracy is significantly higher for
the real Taurus. Furthermore, the transfer accuracy obtained
on the YuMi robot increases with the increase in α and
surpasses R→ R scenario for α > 0.2. In other words, the
amount of real data needed to achieve the transfer accuracy
of 80% is much higher for the YuMi (α = 0.3) in comparison
to the real Taurus (α = 0.12). The relatively lower transfer
accuracies obtained on YuMi data show that the transfer from
one robot to another robot is a challenging task.

It was mentioned in the results that the sequence-wise
features provide significantly better accuracies in comparison
to the frame-wise features for the transfer learning tasks.
Note that the sequence classification approach assumes that
the test data is annotated beforehand with respect to the start
and end of the surgemes. However, this assumption is not
valid when we want to deploy these trained classifiers in real-
time as the real-time data cannot be segmented beforehand.
In contrast, the frame-wise classification approach does not
require the surgemes to be segmented. Hence the frame-wise

classifier can potentially act as the model that can be used
to know the start and the end point of the surgemes.

In this regard, we have made our database publicly
available to encourage researchers to further investigate the
problem of transfer learning between the real robots or
between the simulator and a real robot. In addition to the
RGB-D videos and the kinematic data, we also provide
bounding boxes of the objects and pegs for each frame.
These annotations are created in a semi-autonomous manner
i.e. first, the color-based image processing techniques were
used to create the bounding boxes automatically and next,
a human annotator was asked to verify those annotations
and manually annotate the frames with erroneous annota-
tions. The instructions to obtain the data are available at
https://github.com/nmadapan/Forward Project.git.

The potential future works and applications of our dataset
include: 1. Incorporating the object bounding boxes and
visual data (RGB-D images) into the feature vectors to
improve the transfer accuracies, 2. Developing task specific
deep models with the goal of transferring the knowledge
from one robot to the other, 3. Learn to predict the surgemes
from one physical robot instead of the simulator and test on
another physical robot (in our case, train on YuMi and test
on Taurus), 4. Learning to predict the surgemes only with the
partial information, and 5. Developing learning models that
do not require the surgemes to be segmented beforehand.

VI. CONCLUSIONS

The main goal of this paper is to learn to transfer the
knowledge (surgical skills in our case) from one domain
(simulator or a physical robot) to another domain (physical
robot). Previous datasets concerned with surgical tasks were
mainly focused on a unique robotic platform (e.g. da-Vinci).
This limits researchers to explore novel ways to transfer
the surgical skills learned from one platform to the other.
Therefore, it is essential to have the data collected from
various robotic platforms. Hence, we created a database
DESK of surgical robotic skills (peg transfer task) collected
from three domains: simulated Taurus robot, real Taurus
robot and YuMi industrial robot. In addition, we proposed a
simple, yet effective, technique to improve the learning for a
surgical gesture classification task over real robot’s data using
the data obtained from the simulation. We presented three
supervised models as baselines for surgeme classification.
Results show that augmenting the training data with simula-
tor data considerably improves the accuracies of prediction
on the real data. More specifically, in the extreme case when
there is no real Taurus robot’s data present in the training,
the transfer accuracy on the real Taurus data is 55%.
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