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Abstract
Understanding how species are distributed across
landscapes over time is a fundamental question in
biodiversity research. Unfortunately, most species
distribution models only target a single species
at a time, despite strong ecological evidence that
species are not independently distributed. We
propose Deep Multi-Species Embedding (DMSE),
which jointly embeds vectors corresponding to
multiple species as well as vectors representing
environmental covariates into a common high-
dimensional feature space via a deep neural net-
work. Applied to bird observational data from
the citizen science project eBird, we demonstrate
how the DMSE model discovers inter-species re-
lationships to outperform single-species distribu-
tion models (random forests and SVMs) as well
as competing multi-label models. Additionally, we
demonstrate the benefit of using a deep neural net-
work to extract features within the embedding and
show how they improve the predictive performance
of species distribution modelling. An important
domain contribution of the DMSE model is the
ability to discover and describe species interactions
while simultaneously learning the shared habitat
preferences among species. As an additional con-
tribution, we provide a graphical embedding of
hundreds of bird species in the Northeast US.

1 Introduction
Understanding the spatial distribution of species and how
species interact with each other and their environment is
essential for developing science-based conservation plans and
ecological research. However, most species distribution mod-
els only target a single species at a time [Phillips et al., 2004;
Elith and Leathwick, 2009; Fink et al., 2013]. These single-
species models ignore the role of species interactions like
competition for shared resources (food, territory, etc.). For
example, American Robin and Blue Jay are likely to be seen
in the same place since the Blue Jay preys on Robin’s eggs
or fledglings and sometimes even steals its nest. Therefore, a
model that predicts the occupancy of a collection of species
instead of modelling each species individually is needed. The

Figure 1: The ecological relationship between American Robin and
Blue Jay.

most straightforward formulation of a multi-species model
[Tsoumakas and Vlahavas, 2007] directly considers the prob-
ability of seeing a collection of species. However, this direct
approach suffers from combinatorial intractability due to the
large number of possible ways to form the collection. As
a result, an efficient method of jointly modelling species
distribution for large number of species is still lacking.

We propose a novel method called Deep Multi-Species
Embedding which can jointly model the distribution of hun-
dreds of species as well as the correlation among species.
DMSE jointly embeds multiple species as well as envi-
ronmental covariates into a high-dimensional feature vector
space via a deep neural network. Each embedded vector
carries semantic meaning to the modeled entity, and the in-
ner products between them capture the relationships between
entities (such as environmental preference or correlation be-
tween species).

Applied to eBird bird observational data [Munson et al.,
2012], we demonstrate how the DMSE model discovers inter-
species relationships to outperform the predictions of single-
species distribution models (random forests and SVMs) as
well as competing multi-label models. Moreover, as the
number of species goes up, the improvement in predictive
performance between DMSE models and baseline models
keeps widening. Additionally, we demonstrate the benefit of
using a deep neural network for feature extraction and show
how the features improve the quality of species distribution
modelling.

We also show a visualization of the embedding for hun-
dreds of bird species in the Northeast US. It provides an intu-
itive picture about species shared environmental preferences
and the correlations among species, after accounting for those
explained by shared environmental preferences. Through
this model, we are also able to quantitatively measure many
species-species interaction which could only be qualitatively
described by ecologists before.



Figure 2: The left graph depicts the independent joint distribution of two species where the color from light yellow to red (better view in
color) represents the probability from low to high. The probability mass in each quadrant represents the probability of each two-species
co-occurrence. For example, the first quadrant represents the probability that two species occur together. The right graph is derived from the
left one by adding a positive correlation between two species. Here, we plot the marginal distribution for each species on the upper side and
left side of each graph. One can see, though we change the correlation between two species, the distribution of each species, unconditional of
the other, remains the same.

2 Multi-Species Modelling
Our goal is to estimate the joint distribution of multiple
species based on the observational data recording the pres-
ence or absence of each species at a site. More formally,
given a collection of species {species1, ..., speciesn} and
the species observation data D = {(b1, l1), ..., (bN , lN )}, we
would like to estimate the distribution Pr(bi|li). Here bi ∈
{0, 1}n is an indicator for the species co-occurrence of each
observation, bi,j = 1 if and only if speciesj was detected
at site i, and li = (f1, ..., fm)T is an environmental feature
vector that contains the values of m environmental covariates
(or features) that describe site i. To simplify notation, we also
use li to denote the observation site i.

2.1 From One Species to More
Our DMSE method is based on the latent variable formula-

tion of the probit model [Chib and Greenberg, 1998] which is
widely used to model binary outcomes. The probit model
also have been used by [Pollock et al., 2014] on species
distribution modelling. However, their setup is different from
ours and can only handle a handful of species.

For the clarity of presentation, we start by describing how
to model the distribution of single species using the probit
model. For each speciesj , we link the occurrence of speciesj
at observation site li with a random variable ri,j where the
probability that speciesj was detected at observation site li is
equal to the probability that ri,j > 0, i.e.

Pr(bi,j = 1|li) = Pr(ri,j > 0) (1)

Here, ri,j follows a normal distribution N(µi,j , σ) where µi,j
is a function of li and σ is fixed to be 1. According to the
definition of normal distribution, a positive µi,j implies that
the speciesj is more likely to be present than absent at site li
and a negative µi,j implies the opposite. Therefore, we can
model the distribution of each species by parameterizing µi,j .

A general approach to model the joint distribution of mul-
tiple species is to simply join the distribution of each species
assuming each species is independent. For the ease of pre-
sentation, we call this kind of joint distribution “independent
joint distribution”.

The left graph in the picture above (Fig.2) depicts the in-
dependent joint distribution of two species (American Robin
and Blue Jay) corresponding to random variable ri,1 and
ri,2. In the graph, the color from light yellow to red rep-
resents the probability from low to high and the probability
mass in each quadrant represents the probability of each co-
occurrence. For example, the probability mass in the first
quadrant shows the probability that American Robin and Blue
Jay are present together at the observation site li. The one-
dimensional distributions on the graphs’ upper side and left
side are the marginal distributions for American Robin and
Blue Jay respectively. The red area in each one-dimensional
distribution represents the probability of the presence of each
species unconditional of the other.

Since the independent joint distribution can not model the
correlation between species which widely exists in the real
world, we extend the probit model by applying multivariate
normal distribution over the n-dimensional random variables
ri = (ri,1, ..., ri,n) i.e.

ri ∼ Nn(µi,Σ) (2)

where µi = (µi,1, ..., µi,n)T and Σ is the covariance matrix.
In this way, each random variable ri,j still follows a normal
distribution, but we can capture interspecies correlation by
parameterizing the covariance matrix Σ.

As shown in the right graph of Fig 2, we change the
covariance between random variable ri,1 and ri,2 from 0
to a positive number ρ, then the joint distribution changes
significantly. For example, the probability mass in the first
quadrant becomes larger, which means these two species are
more likely to be present together. Although we affect the
joint distribution of two species by changing the covariance
between ri,1 and ri,2, the marginal distribution of each ran-
dom variable does not change. This means the probability
of the presence of each species, unconditional of the other,
is unaffected by the covariance. This property ensures that
our model can maintain the predictive capability derived from
learning habitat preferences of each species. Meanwhile, it
can outperform the independent version when the species
distributions are correlated. In addition, if we restrict the



variance of each species to be 1, the matrix Σ becomes a cor-
relation matrix, a convenient and intuitive parameterization.

2.2 Deep Multi-Species Embedding

Figure 3: The intuitive visualization of DMSE framework.

In order to estimate the parameters µ and Σ, we need
to first model the species-environment relationship as well
as the correlation between species. To achieve this, we
first embed each speciesj with two vectors sj ∈ Rd1 and
λj ∈ Rd2 representing its environmental preference and
interactive behavior respectively. Here d1, d2 are the di-
mensionality of these two vector spaces which are manu-
ally set. In our experiments, we set d1 = d2 = 100.
Because embedding methods are able to take advantage of
high-dimensional representations, it is advantageous to set
this parameters to be high, though the methods are not sen-
sitive to the exact values. We choose to model these two
characteristics separately instead of embedding to the same
vector, because it is not uncommon for groups of species to
share similar environment-distribution relationships, but have
very different inter-species associations. Thus, by modeling
these characteristics separately, DMSE can capitalize on the
shared environment-distribution relationships without biasing
the inter-species correlation estimates. Moreover, because
the environmental features used in the model describe habitat
characteristics at a much coarser spatial resolution than that of
the inter-species interactions, this model formulation can be
seen as multi-scale approach that shares information at coarse
scales at the habitat level while simultaneously allowing fine-
scale variation between species.

When it comes to the environmental features, we apply
a deep neural network and a projection matrix to embed
the low-dimensional raw environmental data into the same
d1-dimensional feature space as the vectors sj . For each
observation (bi, li),

li
embed−−−−→hi : hi = W ·DNN(li), (3)

here DNN(·), a function mapping from Rm to Rnoutput ,
represents a deep neural network. In our experiment, we
empirically found that a 3-hidden-layer fully connected neu-
ral network using tanh as the activation function worked the

best. The number of neurons in each hidden layer was 256,
256, 64. W , a d1-by-noutput projection matrix, is used for
modulating the data range and mapping the DNN’s output
layer to the same high-dimensional feature space with sj , and
noutput is the dimension of output layer. We will include
more discussion about the performance of the neural network
in the experimental section.

With these embeddings for each species and the environ-
mental features at each observation site, we use the inner-
product sjThi to score the relationship between speciesj and
environmental features in the observation site li. Similarly,
we also use the inner-product λTj λk to score the interaction
between speciesj and speciesk.

In order to simplify the presentation, we concatenate the
vectors sj and λj as the columns into two matrices.

S = (s1, s2, ..., sn) ∈ Rd1×n,
Λ = (λ1, λ2, ..., λn) ∈ Rd2×n (4)

Using the notations in equation(2), (3) and (4) , we can
formulate our DMSE model as follows,

Pr(bi,j = 1|li) = Pr(ri,j > 0),

ri ∼ Nn(µi,Σ), (5)

where µi = SThi = ST (W ·DNN(li)) and Σ = ΛTΛ.

Here µi,j = sj
Thi scores the habitat suitability of speciesj

at observation site li and Σj,k = λTj λk represents the cor-
relation between speciesj and speciesk. According to the
definition of multivariate normal distribution, we derive that

Pr(bi|li) =

∫ R1

L1

...

∫ Rn

Ln

f(x)dx1...dxn (6)

where f(x) =
1√

(2π)n|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)),

and Lj =

{
0 if bi,j = 1

−∞ if bi,j = 0
, Rj =

{
+∞ if bi,j = 1

0 if bi,j = 0

2.3 Training and Testing
We train our model by maximizing the log-likelihood on

the observational data. The parameters that should be trained
are the matrix S,Λ,W and the parameters in the deep neural
network denoted by θDNN :

S,Λ,W, θDNN = argmaxS,Λ,W,θDNN

∑N
i=1 log Pr(bi|li) (7)

We use the stochastic gradient descent algorithm as proposed
in [Duchi et al., 2011; Bottou, 2004] to optimize the log-
likelihood function in equation (7).

In order to train and test our DMSE model, we need to be
able to compute the integration in equation (6) and its deriva-
tives with respect to each parameter. For the integration, we
use an adaptive algorithm proposed in [Genz, 1992], which
can calculate the cumulative distribution function (CDF) on
multivariate normal distribution with a high accuracy (relative
error < 10−6).

To compute the derivative of Pr(bi|li), one key observation
is that if we can compute the derivative of Pr(bi|li) with
respect to µ and Σ, we can easily obtain other derivatives



we want by simply applying the chain rule. Since the multi-
variate normal distribution is uniformly continuous, we first
transform the derivative of the integration into the integration
of the derivative of density function as follows.

∂ log Pr(bi|li)
∂µ

=
1

Pr(bi|li)

∫ R1

L1

...

∫ Rn

Ln

∂f(x)

∂µ
dx1...dxn

∂ log Pr(bi|li)
∂Σ

=
1

Pr(bi|li)

∫ R1

L1

...

∫ Rn

Ln

∂f(x)

∂Σ
dx1...dxn

(8)

Using the definition of multivariate normal distribution, we
derive the following equations:

∂f(x)

∂µ
= f(x) · F (Σ, µ, x),

∂f(x)

∂Σ
= f(x) ·G(Σ, µ, x)

where F (Σ, µ, x) = Σ−1(x− µ),

G(Σ, µ, x) = −1

2
(Σ−1 − Σ−1(x− µ)(x− µ)TΣ−1) (9)

According to equation (6), we know that∫ R1

L1

...

∫ Rn

Ln

f(x)

Pr(bi|li)
dx1...dxn = 1 (10)

Thus, we can consider f(x)
Pr(bi|li) as the density function of a

distribution over a hyper-cube Q ⊆ Rn corresponding to the
integration range of equation(10). Thus, we can employ the
Markov Chain Monte Carlo sampling method to estimate the
derivative of log Pr(bi|li) with respect to µ and Σ as follows:

∂ log Pr(bi|li)
∂µ

=

∫ R1

L1

...

∫ Rn

Ln

f(x)

Pr(bi|li)
F (Σ, µ, x)dx1...dxn

= E
[
F (Σ, µ, x)

]
x∈Q
≈ 1

M

M∑
k=1

F (Σ, µ, xk) (11)

∂ log Pr(bi|li)
∂Σ

=

∫ R1

L1

...

∫ Rn

Ln

f(x)

Pr(bi|li)
G(Σ,Σ, x)dx1...dxn

= E
[
G(Σ, µ, x)

]
x∈Q
≈ 1

M

M∑
k=1

G(Σ, µ, xk) (12)

To make our model more efficient, we apply an enhancement
for our model. Using the property of normal distributions,

we know that Pr(|ri,j − µj | > kΣj,j) < e−k2/2

k
√

2π
. As the

result, we can make a cut-off onLi andRi which significantly
reduces our sample range and increases the convergence rate
in our sampling process.

3 Related Works
We refer the reader to [Elith and Leathwick, 2009] for a sur-
vey of general techniques used in species distribution model-
ing. Modeling approaches in this area vary depending on the
type of observational data and application objectives. The
most commonly available observational data records only
where species have been detected and identified, known as
presence-only data. The authors of [Phillips et al., 2004]
developed the popular MaxEnt model using maximum en-
tropy to estimate the population intensity. More recently,

the connections between Poisson point processes and MaxEnt
have been used to develop presence-only data models [Fithian
and Hastie, 2013]. Other data collection protocols, like eBird,
record both when species are and are not detected. These
presence-absence datasets are typically modeled using a vari-
ety of statistical and machine learning methods including ad-
ditive logistic regression, random forests, and boosted regres-
sion trees. Occupancy models [MacKenzie, 2006] account
for imperfect detection of species by explicitly modeling
hierarchically linked observation and occupancy processes,
resulting in stronger ecological inferences [Guillera-Arroita
et al., 2015; Hutchinson et al., 2011]. Species distribu-
tion models have also been extended to capture population
dynamics using cascading models [Sheldon and Dietterich,
2011], Brownian Bridges [Horne et al., 2007], circuit the-
ory [McRae et al., 2008], and non-stationary predictor re-
sponse relationships [Fink et al., 2013]. Recent extensions
to joint species distribution models focus on modelling the
unobserved environmental factors which potentially drive the
correlated distribution [Harris, 2015], and for spatiotempo-
ral dynamics based on Gaussian processes [Thorson et al.,
2016]. In machine learning literature, multi-label classifica-
tion [Yu et al., 2005; Ji and Ye, 2009; Zhang and Zhou, 2010;
Read et al., 2015; Jones et al., 2011; Jun et al., 2011] is also
related to our work and can be applied to multi-species mod-
eling. Most research in multi-label classification is based on
ensemble of classifier chains (ECC), which is different from
our approach and cannot provide direct information about
the species correlation matrix. Among these previous work,
[Harris, 2015], which also uses the latent random variables to
model correlations, is most closely related to ours. However,
their model can only handle a few (no more than 10) random
variables to infer the unobserved factors which potentially
drive the correlated distribution, and it ignores the interaction
between species. In contrast, our DMSE method can handle
hundreds of latent random variables for each species and
can quantitatively measure the interaction among species.
In the experiments section, we show that our DMSE model
outperforms many aforementioned models.

Our model is also inspired by embedding methods which
are widely applied to many areas, including music [Chen
et al., 2012], language [Bengio et al., 2003; Mikolov and
Dean, 2013], online purchase behavior [Rendle et al., 2010]
etc. The core idea is to learn a vector (or other structure) to
represent each of the data points, so that the interaction in
the vector space reflects the semantic meaning in the original
data. Embedding methods have been proven to have bet-
ter generalization performance and to provide a better data
visualization as well. [Rudolph et al., 2016] presents an
embedding model that assumes an exponential family of con-
ditional distributions, similar to Generalized Linear Models
[McCullagh, 1984], to link observed quantities to latent em-
beddings that capture the semantic relationships of interest.
Our DMSE model was developed independently of [Rudolph
et al., 2016]1. While the probit model used in DMSE is in

1We thank Liping Liu and David M. Blei for bringing up to
our attention and discussing the Exponential Family Embedding in
personal communications.



Figure 4: The left map visualizes the embeddings sj representing the environmental preference of each species and the right graph depicts
the embeddings λj corresponding to the correlation among species. One can see (the left map), birds of the same category cluster tightly and
birds of the same breed also have a similar environmental preference. Compared with the right graph, one can find that the birds living in
similar habitat have relative high correlation, but there are still some birds with high correlation that have a different environmental preference.

the exponential family, DMSE differs fundamentally from
the work in [Rudolph et al., 2016]: The DMSE framework
considers two heterogeneous contextual information feature
sets (environmental features and interspecies relationships),
it uses a deep neural network at the latent quantity level to
extract high-level feature from environmental covariates and
it couples the environmental and species embeddings into
a predictive multi-species distribution model. It would be
interesting to adapt the embeddings proposed in [Rudolph
et al., 2016] and incorporate them into our DMSE setting.
To our knowledge, we are the first ones to apply embedding
methods with deep neural network structure to multi-species
modelling.

4 Experiments
We work with crowd-sourced bird observation data collected
from the successful citizen science project eBird [Munson et
al., 2012]. One record in this dataset is often referred to as
a checklist in which the bird observer reports all the species
he/she detects as well as the time and geographical location
of the observation site. Crossed with the National Land Cover
Database for the U.S. [Homer et al., 2015], we can estimate
the landscape composition of each observation site li with
15 different land types such as the percentage of the water,
forest, grass, etc. For the use of training and testing, we
transform all this data into the form (bi, li) as described in
the first paragraph of the Multi-Species Modelling section.
The dataset for this experiment is formed by picking all the
observation checklists from the Bird Conservation Region
[Committee and others, 2000] (BCR) 13 in the last two weeks
of May from the 2002-2012 which contains 39154 observa-
tions. May is a migration period for BCR 13, therefore a
lot of non-native birds pass over this region, which gives us
excellent opportunities to observe their habitat choice during
the migration. Here we choose the top 100 most frequently

observed birds as the species collection which covers 97.6%
of the records in our dataset. In the experiments, we use a 5-
fold cross validation to validate the multiple choices of hyper-
parameters as well as evaluate the stability of models and we
observe no overfitting between the loss on the validation vs
test set during cross-validation.

4.1 What do embeddings look like?
We start by giving a qualitative impression of the em-

beddings produced by our method and visualized by t-SNE
algorithm [Maaten and Hinton, 2008], which is a popular vi-
sualization method that can visualizes high-dimensional data
by giving each datapoint a location in a two-dimensional map
while, to a large extent, maintaining their original proximity.

Fig.4 visualizes the embeddings of environmental prefer-
ence and interactive behavior (sj and λj) of each species. In
the picture, we manually assign the species into four main
categories according to their habitat preference2: (1) Birds
living near residential areas, such as House Sparrow, Com-
mon Grackle, American Robin, Blue Jay, Mallard, Canada
Goose, etc. Most of them are easy to find in the backyards,
city parks, parking lots and agricultural fields. The presence
ratio of these species are more than 25% of the records since
they are easy for bird-watchers to find. (2) Birds living in
wetlands, such as Swamp Sparrow, Northern Rough-winged
Swallow, Killdeer, etc. that live near the water but mainly
feed on insects. (3) Water birds, such as gulls, herons
and cormorants which need a large amount of open water.
(4) Birds living in forest and pasture, such as warblers,
woodpeckers, nuthatches, thrushes, hawks, etc. These kinds
of birds always live in the forest, grassland, pasture, shrubs,
or near forest edges. These are the four categories that do not
overlap with each other.

2We get the habitat preference of birds from the website
www.allaboutbirds.org



One can see in the left map of Fig.4, the birds of the same
category cluster tightly. For example, the birds living near
the human settlements are all on the left, the birds living
in wetlands and the water birds are on the right-top corner.
Since the birds living in forest and pasture have a large habitat
range, we further highlight three taxa in this category: the
warblers, the woodpeckers and the raptors. It is interesting
to note that the birds within a taxon have a high similarity of
habitat preference which coincides with the field observation.

When it comes to the embeddings of correlation (the right
map), it can be observed that in most cases, the species living
in similar places have a relative higher correlation. How-
ever, one can find some interesting cases comparing the left
map and the right map. For example, although the Mallard
and Canada Goose are more common to see near human
habitation, the occurrence of these two birds still has a high
correlation with other water birds. What is more, in the left
map, we find that the locations of Blue Jay and American
Robin are not very close, but from the right map, we know
that they have a very high correlation which coincides with
the ecological relationship as we described in the introduction
section.

4.2 Predictive Performance of DMSE
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of the model
quality based on predictive power. In our experiment, we
analyze the performance of DMSE for modeling both single-
species and multi-species. Here we use two metrics to an-
alyze the predictive performance: (1) Area under Curve
(AUC), i.e. the area under receiver operating characteristic
(ROC) curve which is used to describe the ability of the
model to rank outcomes, and (2) the log-likelihood, i.e.∑N
i=1 log Pr(bi|li). which measures the calibration of the

predicted probabilities of species occurrence.

DMSE’s performance on a single-species model
We compare the single-species predictive performance of
DMSE with random forest (RF) model and SVM in terms of
AUC. Random forest is one of the standard techniques used to
model single species distribution in a wide variety of ecologi-
cal and conservation applications (e.g. [Herrando et al., 2017;
Elith and Leathwick, 2009]) and SVM is also a popular and
robust model which has been successfully used for numerous
applications. We implemented RFs and SVMs using python-
sklearn. The number of trees in RFs was 1000, which satu-
rated the predictive performance. The kernel of SVMs was
RBFs, which perform well across a range of applications.
Here we also analyze the effect of the deep neural network in
the DMSE model by analyzing the performance of a DMSE
model, in which we only use projection matrix W to embed
the environmental features. We test these four models on
different species from very common to rarely seen. As shown
in Fig.5, the deep neural network gives us a significant boost
on the predictive power of DMSE. We expect a similar perfor-
mance boost when we incorporate deep structures into other
relevant models, such as the exponential family embedding
model in [Rudolph et al., 2016]. With the help of deep neural
network, our DMSE model outperforms other models.

Figure 5: With the help of neural network, our single species version
DMSE outperforms other models in terms of AUC.

Figure 6: By modelling the correlation, the two-species DMSE
outperforms the single version.

What are the effects of correlation?
We now explore whether the correlation plays an important
role in multi-species modelling. We start by comparing the
performance of multi-species DMSE and the single version
of DMSE on modelling two-species distribution. The single
version of DMSE can be thought of as the original DMSE
model but with an identity correlation matrix , which means
we model the multi-species distribution by modelling the
distribution of each species independently without their cor-
relation. Here we use log-likelihood instead of AUC to ana-
lyze models’ performance because the AUC averaged across
species still values the distribution of each species separately,
which does not fully reflect the benefit of modeling correla-
tion. According to our experimental results, the multi-species
DMSE outperforms the single version on all the species pairs
that we have tried. Because of space limitation, we only show
the performance on 3 pairs of species.

As shown in Fig.6, multi-species DMSE has a substantial
improvement compared with the single version of DMSE,
which reflects the important role of inter-species correla-
tion. Furthermore, we provide Table. 1, which quantitatively
measures the interaction between some species pairs with
relatively high correlation. These pairs have been validated
by domain experts.

In addition, we compare our DMSE model with (1) the
single version of DMSE, (2) the ensemble of classifier
chains (ECC) method [Jones et al., 2011] which is a stan-
dard class of models used for multi-label prediction within
the discipline of machine learning (We use single version
of DMSE as building blocks of the classifier chain) and (3)
MISTNET model proposed in [Harris, 2015], a recent ex-
tension of species distribution model that models unobserved
environmental factors which potentially drive the correlated
distribution of multiple species.

During the training and testing, all these models use the
same environmental feature as their input, which is the land-



Species Name Species Name correlation
Red-eyed Vireo Eastern Wood Pewee 0.607

Common Grackle Red-winged Blackbird 0.604
European Herring

Gull
Great Black-backed

Gull
0.580

Yellow Warbler Common Yellowthroat 0.567
Blue Jay American Robin 0.535

Common Grackle American Robin 0.510
Blue Jay Northern Cardinal 0.504

American Crow American Robin 0.493
Common Grackle European Starling 0.475
European Starling Red-winged Blackbird 0.474

Table 1: The list for species pairs with high correlation. The
correlation here is derived from covariance matrix Σ.

Figure 7: As the number of species becomes larger, the performance
of multi-species DMSE becomes better and better compared with
single species DMSE and other models. This figure shows the per-
formance difference of all models against the single species DMSE
model.

scape composition of each observation site li with 15 differ-
ent land types. When predicting species, we do not use any
information about other species occurring at a given location.
The hyperparameters of DMSE are the same as the single
version of DMSE , which have been introduced in section 2.2.
The hyperparameters of other models follow the setting of
original literatures with some reasonable adjustment, which
saturated the predictive performace. Finally, we compare all
models against the single version of DMSE to show their
difference.

In Fig.7, as the number of species goes up, the predictive
performance of our multi-species DMSE keeps improving
and it outperforms other models. We believe that the ensem-
ble of classifier chain method does not perform well mainly
because of errors keep cumulating further down the classifier
chain. This experiment not only highlights the importance of
modelling the correlation between species, but also shows the
improvement of DMSE model over previous approaches.

5 Conclusion
We present a novel Deep Multi-Species Embedding model

that can quantitatively capture inter-species correlations of
hundreds of species simultaneously, by jointly embedding
vectors corresponding to multiple species as well as vec-
tors representing environmental covariates into a common

high-dimensional feature space via a deep neural network.
Our DMSE model significantly outperforms existing models
on multi-species distribution modelling. Additionally, we
demonstrate the benefit of using a deep neural network for
feature extraction and show how they improve the predictive
performance of species distribution modelling. The ability
to visualize the learned embeddings is also a key feature for
easy interpretability and open-ended exploratory data anal-
ysis. Furthermore, the embedding models described in the
paper can easily be adapted and extended to include further
information (e.g., spatio-temporal information), providing
many directions for future work.
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