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Proof of Theorem 2.1
Proof. We need show B′1, . . . , B

′
K collectively cover C. First

of all, we prove Bi ⊆ B′i for all i ∈ {1, . . . ,K}. This is
because by definition, Bi ⊆ Cj for all Cj ∈ Ci. Hence, Bi ⊆
∩Cj∈CiCj . On the other hand, B′i = ∩Cj∈CiCj . Therefore,
Bi ⊆ B′i.

For a set Ci in C, because {B1, . . . , BK} covers Ci, we can
write Ci in terms of its sponsors. Let Ci = Bi,1∪. . .∪Bi,m(i),
in which Bi,1, . . . , Bi,m(i) ∈ {B1, . . . , BK}. For notation
purposes, we use B′i,j to mean the counter-part of Bi,j in the
basis set {B′1, . . . , B′K} (for example, if Bi,j is B1, then B′i,j
is B′1). We will prove Ci = B′i,1 ∪ . . . ∪ B′i,m(i). Notice this
completes the proof of the Theorem that B′1, . . . , B

′
K collec-

tively cover C as well.
First Ci ⊆ B′i,1 ∪ . . . ∪ B′i,m(i), because we just proved

Bi,j ⊆ B′i,j for every j and Ci = Bi,1∪. . .∪Bi,m(i). Second,
because Ci = Bi,1∪. . .∪Bi,m(i), we must have Bi,j ⊆ Ci for
j ∈ {1, . . . ,m(i)}. B′i,j is made up from the intersection of
those sets Ck ∈ C who are supersets of Bi,j , which includes
Ci. Hence B′i,j ⊆ Ci for all j ∈ {1, . . . ,m(i)}. This implies
B′i,1 ∪ . . . ∪B′i,m(i) ⊆ Ci. Based on the previous two points,
B′i,1 ∪ . . . ∪B′i,m(i) = Ci.

Mixed Integer Programming Formulation
MIP Formulation For the Set Basis Problem
This MIP formulation determines if there are K basis sets
to cover C1, . . . , Cm from a finite universe U . We indexes
elements in U as element 1 to n. Below are all the variables:

• For the element i (1 ≤ i ≤ n) and the k-th basis set Bk

(1 ≤ k ≤ K), denote a binary variable yi,k, which is 1
if and only if Bk contains element i.

• For Bk and Cj , denote a binary variable zk,j , which is 1
if and only if the Bk is a contributor to set Cj .

• For element i in Cj , define a variable u2(i, j), (0 ≤
u2(i, j) ≤ 1). u2(i, j) ≥ 1 implies element i in Cj is
a false negative element (In other words, it is not cov-
ered by any basis set that is a contributor to Cj).

• For element i not included in Cj , define a variable
t2(i, j) (0 ≤ t2(i, j) ≤ 1). t2(i, j) ≥ 1 implies ele-
ment i outside of Cj is a false positive element (In other

words, it is contained in a basis set that is a contributor
to Cj , but Cj does not have element i).

Below are all the constraints:
• For element i in set Cj , there must exist at least a basis

set k, such that both yi,k and zk,j are true. Otherwise,
this element counts as a false negative element. When
represented using logic, for element i in set Cj ,

(u2(i, j) ≥ 1) ∨
(
∨Kk=1 (yi,k ∧ zk,j)

)
.

This constraint can be translated into a set of linear
constraints, by introducing auxiliary variables u3(i, j, k)
(0 ≤ u3(i, j, k) ≤ 1) in the following way: For every
k ∈ {1, . . . ,K},

yi,k − u3(i, j, k) ≥ 0,

and
zk,j − u3(i, j, k) ≥ 0.

and

u2(i, j) +

K∑
k=1

u3(i, j, k) ≥ 1.

• For element i that is outside of Cj , for the k-th basis set
Bk that is a contributor to set Cj , Bk must not cover
element i. Otherwise, this element counts as a false pos-
itive element. When represented using logic, for element
i outside of Cj ,

(t2(i, j) ≥ 1) ∨
(
∧Kk=1(¬yi,k ∨ ¬zk,j)

)
.

It can be translated into linear constraints as:
−yi,k − zk,j + t2(i, j) ≥ −1,

for k ∈ {1, . . . ,K}.
• The total number of false positives and false negatives

are bounded.
m∑
j=1

∑
i∈Cj

u2(i, j) ≤ FF,

and
m∑
j=1

∑
i 6∈Cj

t2(i, j) ≤ FT.

In both cases to solve the global problem and the explo-
ration phase, we would like an exact solution, hence FF
and FT are set to zero.



• (Symmetry Breaking) The k-th basis set is a contributor
to the 1st set, unless the (k− 1)-th basis set is a contrib-
utor to the 1st set:

zk,1 ⇒ zk−1,1.

Moreover, if the k1-th basis set does not exist on the 1st
till the (m−1)-th set, then the k-th basis set exists on m-
th set, unless the (k − 1)-th basis set exists on the m-th
set (for k > k1).

(∧m−1j=1 ¬zk1,j)⇒ (∧Kk=k1+1(zk,m ⇒ zk−1,m)).

In our experiment, we insert these type of constraints
until m = 4.

• (Redundant Constraint) This constraint is redundant. It
is used to trigger more propagation: if all elements in the
k-th basis set are all contained in set Cj , then zk,j = 1.
In the form of linear constraints,

zk,j +
∑
i6∈Cj

yi,k ≥ 1.

MIP Formulation In the Pre-solving Step
We detail the MIP formulation for the selection sub-step in
the pre-solving step, in which K basis sets are selected from
U which minimize the number of uncovered and falsely cov-
ered elements.

Below are all the variables:

• For the i-th set from U , introduce binary variable bi,k,
which is 1 if and only if the i-th set is selected to be the
k-th final basis set B∗k (1 ≤ k ≤ K).

• Introduce binary variable Ik,j , which is 1 if and only if
the k-th final basis set B∗k is a contributor to the j-th set
Cj .

• Real variable ul,j,k: ul,j,k ≥ 0. ul,j,k ≥ 1 implies the
element l from Cj is covered by the k-th final basis set.

• For element l in set Cj , define a real variable tl,j , (0 ≤
tl,j ≤ 1), tl,j ≥ 1 implies element l in the set Cj is a
false negative element (In other words, it is not covered
by any final basis sets that is a contributor in Cj).

• For element l outside of set Cj , define a real variable
fl,j , (0 ≤ fl,j ≤ 1), fl,j ≥ 1 implies element l outside
of the set Cj is a false positive element (In other words,
it is contained in a basis set that is a contributor for set
Cj , but Cj does not have element l).

Below are all the constraints:

• Every set from U is selected at most once:∑
k

bi,k ≤ 1.

• The k-th final basis set can only pick at most one set
from U : ∑

i

bi,k ≤ 1.

• By definition, ul,j,k ≥ 1 implies the element l from Cj is
covered by the k-th final basis set. Represented in logic:

ul,j,k ⇒
(
∨(i′∈U)∧(l∈i′)bi′,k

)
∧ Ik,j ,

l ∈ i′ means element l is in the i′-th set from U . It can
be translated to linear equations as:

−ul,j,k +
∑

(i′∈U)∧(l∈i′)

bi′,k ≥ 0,

and
−ul,j,k + Ik,j ≥ 0.

• For element l in set Cj , l is covered by at least one basis
set, otherwise l counts as a false negative element; which
is: ∑

k

ul,j,k + tl,j ≥ 1.

• For every element l that does not exist at set Cj , for every
k ∈ {1, . . . ,K}, for the i1-th set in U that contains l,
either bi1,k is not true, or Ik,j is not true, or l counts as a
false positive element, which is:

−bi1,k − Ik,j + fl,j ≥ −1.

The goal of the pre-solving step is to find K basis sets that
minimizes the total number of uncovered elements and falsely
covered elements in C. So the objective function is,

minimize
∑
j

∑
l∈Cj

tl,j +
∑
j

∑
l 6∈Cj

fl,j .

Pseudocode
This is the incomplete algorithm to form U within the space
of B0 in the pre-solving step. In our experiment, p is set to
0.95, c is set to 0.5.

Algorithm 1: The incomplete algorithm to form U within
the space of B0.

1 U ← ∅;
2 while |U| < TU do
3 B ←randomly chosen from B0;
4 b0 ← |B|;
5 while |U| < TU and |B| ≥ c · b0 do
6 if with probability p then
7 C ← argmaxC∈B0,C 6⊇B |B ∩ C|;
8 else
9 C ←randomly chosen from B0;

10 end
11 B ← B ∩ C;
12 U ← U ∪ {B};
13 end
14 end
15 return U


