Supplementary Materials for Paper "Uncovering Hidden Structure through Parallel Problem Decomposition for the Set Basis Problem: Application to Materials Discovery "

Yexiang Xue Cornell University, USA yexiang@cs.cornell.edu Stefano Ermon Stanford Univerity, USA ermon@cs.stanford.edu

Proof of Theorem 2.1

Proof. We need show B'_1, \ldots, B'_K collectively cover C. First of all, we prove $B_i \subseteq B'_i$ for all $i \in \{1, \ldots, K\}$. This is because by definition, $B_i \subseteq C_j$ for all $C_j \in C_i$. Hence, $B_i \subseteq \bigcap_{C_j \in C_i} C_j$. On the other hand, $B'_i = \bigcap_{C_j \in C_i} C_j$. Therefore, $B_i \subseteq B'_i$.

For a set C_i in C, because $\{B_1, \ldots, B_K\}$ covers C_i , we can write C_i in terms of its sponsors. Let $C_i = B_{i,1} \cup \ldots \cup B_{i,m(i)}$, in which $B_{i,1}, \ldots, B_{i,m(i)} \in \{B_1, \ldots, B_K\}$. For notation purposes, we use $B'_{i,j}$ to mean the counter-part of $B_{i,j}$ in the basis set $\{B'_1, \ldots, B'_K\}$ (for example, if $B_{i,j}$ is B_1 , then $B'_{i,j}$ is B'_1). We will prove $C_i = B'_{i,1} \cup \ldots \cup B'_{i,m(i)}$. Notice this completes the proof of the Theorem that B'_1, \ldots, B'_K collectively cover C as well.

First $C_i \subseteq B'_{i,1} \cup \ldots \cup B'_{i,m(i)}$, because we just proved $B_{i,j} \subseteq B'_{i,j}$ for every j and $C_i = B_{i,1} \cup \ldots \cup B_{i,m(i)}$. Second, because $C_i = B_{i,1} \cup \ldots \cup B_{i,m(i)}$, we must have $B_{i,j} \subseteq C_i$ for $j \in \{1, \ldots, m(i)\}$. $B'_{i,j}$ is made up from the intersection of those sets $C_k \in \mathcal{C}$ who are supersets of $B_{i,j}$, which includes C_i . Hence $B'_{i,j} \subseteq C_i$ for all $j \in \{1, \ldots, m(i)\}$. This implies $B'_{i,1} \cup \ldots \cup B'_{i,m(i)} \subseteq C_i$. Based on the previous two points, $B'_{i,1} \cup \ldots \cup B'_{i,m(i)} = C_i$.

Mixed Integer Programming Formulation

MIP Formulation For the Set Basis Problem

This MIP formulation determines if there are K basis sets to cover C_1, \ldots, C_m from a finite universe U. We indexes elements in U as element 1 to n. Below are all the variables:

- For the element i (1 ≤ i ≤ n) and the k-th basis set B_k (1 ≤ k ≤ K), denote a binary variable y_{i,k}, which is 1 if and only if B_k contains element i.
- For B_k and C_j , denote a binary variable $z_{k,j}$, which is 1 if and only if the B_k is a contributor to set C_j .
- For element i in C_j, define a variable u₂(i, j), (0 ≤ u₂(i, j) ≤ 1). u₂(i, j) ≥ 1 implies element i in C_j is a false negative element (In other words, it is not covered by any basis set that is a contributor to C_j).
- For element *i* not included in C_j , define a variable $t_2(i,j)$ $(0 \le t_2(i,j) \le 1)$. $t_2(i,j) \ge 1$ implies element *i* outside of C_j is a false positive element (In other

Carla P. Gomes	Bart Selman
Cornell University, USA	Cornell University, USA
gomes@cs.cornell.edu	selman@cs.cornell.edu

words, it is contained in a basis set that is a contributor to C_j , but C_j does not have element *i*).

Below are all the constraints:

• For element *i* in set C_j , there must exist at least a basis set *k*, such that both $y_{i,k}$ and $z_{k,j}$ are true. Otherwise, this element counts as a false negative element. When represented using logic, for element *i* in set C_j ,

$$(u_2(i,j) \ge 1) \lor \left(\lor_{k=1}^K \left(y_{i,k} \land z_{k,j} \right) \right)$$

This constraint can be translated into a set of linear constraints, by introducing auxiliary variables $u_3(i, j, k)$ ($0 \le u_3(i, j, k) \le 1$) in the following way: For every $k \in \{1, \ldots, K\}$,

$$y_{i,k} - u_3(i,j,k) \ge 0$$

and

 $z_{k,j} - u_3(i,j,k) \ge 0.$

and

$$u_2(i,j) + \sum_{k=1}^{K} u_3(i,j,k) \ge 1.$$

• For element *i* that is outside of C_j , for the *k*-th basis set B_k that is a contributor to set C_j , B_k must not cover element *i*. Otherwise, this element counts as a false positive element. When represented using logic, for element *i* outside of C_j ,

$$(t_2(i,j) \ge 1) \lor \left(\land_{k=1}^K (\neg y_{i,k} \lor \neg z_{k,j}) \right)$$

It can be translated into linear constraints as:

$$-y_{i,k} - z_{k,j} + t_2(i,j) \ge -1$$

- for $k \in \{1, ..., K\}$.
- The total number of false positives and false negatives are bounded.

$$\sum_{j=1}^{m} \sum_{i \in C_j} u_2(i,j) \le FF,$$

and

$$\sum_{j=1}^{m} \sum_{i \notin C_j} t_2(i,j) \le FT.$$

In both cases to solve the global problem and the exploration phase, we would like an exact solution, hence FF and FT are set to zero.

 (Symmetry Breaking) The k-th basis set is a contributor to the 1st set, unless the (k − 1)-th basis set is a contributor to the 1st set:

$$z_{k,1} \Rightarrow z_{k-1,1}.$$

Moreover, if the k_1 -th basis set does not exist on the 1st till the (m-1)-th set, then the k-th basis set exists on m-th set, unless the (k-1)-th basis set exists on the m-th set (for $k > k_1$).

$$(\wedge_{j=1}^{m-1} \neg z_{k_1,j}) \Rightarrow (\wedge_{k=k_1+1}^K (z_{k,m} \Rightarrow z_{k-1,m}))$$

In our experiment, we insert these type of constraints until m = 4.

• (Redundant Constraint) This constraint is redundant. It is used to trigger more propagation: if all elements in the k-th basis set are all contained in set C_j , then $z_{k,j} = 1$. In the form of linear constraints,

$$z_{k,j} + \sum_{i \notin C_j} y_{i,k} \ge 1.$$

MIP Formulation In the Pre-solving Step

We detail the MIP formulation for the selection sub-step in the pre-solving step, in which K basis sets are selected from \mathcal{U} which minimize the number of uncovered and falsely covered elements.

Below are all the variables:

- For the *i*-th set from \mathcal{U} , introduce binary variable $b_{i,k}$, which is 1 if and only if the *i*-th set is selected to be the *k*-th final basis set B_k^* $(1 \le k \le K)$.
- Introduce binary variable $I_{k,j}$, which is 1 if and only if the k-th final basis set B_k^* is a contributor to the j-th set C_j .
- Real variable $u_{l,j,k}$: $u_{l,j,k} \ge 0$. $u_{l,j,k} \ge 1$ implies the element l from C_j is covered by the k-th final basis set.
- For element *l* in set C_j, define a real variable t_{l,j}, (0 ≤ t_{l,j} ≤ 1), t_{l,j} ≥ 1 implies element *l* in the set C_j is a false negative element (In other words, it is not covered by any final basis sets that is a contributor in C_j).
- For element l outside of set C_j , define a real variable $f_{l,j}$, $(0 \le f_{l,j} \le 1)$, $f_{l,j} \ge 1$ implies element l outside of the set C_j is a false positive element (In other words, it is contained in a basis set that is a contributor for set C_j , but C_j does not have element l).

Below are all the constraints:

• Every set from \mathcal{U} is selected at most once:

$$\sum_{k} b_{i,k} \le 1.$$

• The *k*-th final basis set can only pick at most one set from \mathcal{U} :

$$\sum_{i} b_{i,k} \le 1$$

 By definition, u_{l,j,k} ≥ 1 implies the element l from C_j is covered by the k-th final basis set. Represented in logic:

$$u_{l,j,k} \Rightarrow \left(\lor_{(i' \in \mathcal{U}) \land (l \in i')} b_{i',k} \right) \land I_{k,j},$$

 $l \in i'$ means element l is in the i'-th set from \mathcal{U} . It can be translated to linear equations as:

$$-u_{l,j,k} + \sum_{(i' \in \mathcal{U}) \land (l \in i')} b_{i',k} \ge 0,$$

and

$$-u_{l,j,k} + I_{k,j} \ge 0.$$

• For element *l* in set *C_j*, *l* is covered by at least one basis set, otherwise *l* counts as a false negative element; which is:

$$\sum_{k} u_{l,j,k} + t_{l,j} \ge 1.$$

• For every element l that does not exist at set C_j , for every $k \in \{1, \ldots, K\}$, for the i_1 -th set in \mathcal{U} that contains l, either $b_{i_1,k}$ is not true, or $I_{k,j}$ is not true, or l counts as a false positive element, which is:

$$-b_{i_1,k} - I_{k,j} + f_{l,j} \ge -1.$$

The goal of the pre-solving step is to find K basis sets that minimizes the total number of uncovered elements and falsely covered elements in C. So the objective function is,

minimize
$$\sum_{j} \sum_{l \in C_j} t_{l,j} + \sum_{j} \sum_{l \notin C_j} f_{l,j}$$
.

Pseudocode

This is the incomplete algorithm to form \mathcal{U} within the space of \mathcal{B}_0 in the pre-solving step. In our experiment, p is set to 0.95, c is set to 0.5.

Algorithm 1: The incomplete algorithm to form \mathcal{U} within the space of \mathcal{B}_0 .

1 $\mathcal{U} \leftarrow \emptyset$: ² while $|\mathcal{U}| < T_{\mathcal{U}}$ do $B \leftarrow$ randomly chosen from \mathcal{B}_0 ; 3 $b_0 \leftarrow |B|;$ 4 while $|\mathcal{U}| < T_{\mathcal{U}}$ and $|B| \ge c \cdot b_0$ do 5 6 **if** with probability p **then** $C \leftarrow \arg \max_{C \in \mathcal{B}_0, C \supseteq B} |B \cap C|;$ 7 else 8 $C \leftarrow$ randomly chosen from \mathcal{B}_0 ; 9 end 10 $B \leftarrow B \cap C;$ 11 12 $\mathcal{U} \leftarrow \mathcal{U} \cup \{B\};$ 13 end 14 end 15 return U