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Abstract

The multivariate probit model (MVP) is a popu-
lar classic model for studying binary responses
of multiple entities. Nevertheless, the compu-
tational challenge of learning the MVP model,
given that its likelihood involves integrating over a
multidimensional constrained space of latent vari-
ables, significantly limits its application in prac-
tice. We propose a flexible deep generalization
of the classic MVP, the Deep Multivariate Probit
Model (DMVP), which is an end-to-end learning
scheme that uses an efficient parallel sampling
process of the multivariate probit model to exploit
GPU-boosted deep neural networks. We present
both theoretical and empirical analysis of the con-
vergence behavior of DMVP’s sampling process
with respect to the resolution of the correlation
structure. We provide convergence guarantees for
DMVP and our empirical analysis demonstrates
the advantages of DMVP’s sampling compared
with standard MCMC-based methods. We also
show that when applied to multi-entity modelling
problems, which are natural DM VP applications,
DMVP trains faster than classical MVP, by at
least an order of magnitude, captures rich corre-
lations among entities, and further improves the
joint likelihood of entities compared with several
competitive models.

1. Introduction

Understanding multi-entity interactions is a central ques-
tion in many real-world applications. For example, in com-
putational sustainability (Gomes, 2009; MacKenzie et al.,
2004), it is important to understand the spatial distribution
of species and how species interact with each other and
their environment, for developing conservation plans. In
computer vision, the detections of multiple objects are often
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correlated because of the shared background and scenario
(Wang et al., 2016). In natural language processing, a text
often has several correlated labels in terms of its topic, emo-
tion, and semantic meaning (Nam et al., 2014). The multi-
variate probit model (MVP) (Ashford & Sowden, 1970) is
a popular classic model for studying interactions of multi-
ple entities. Nevertheless, learning the multivariate probit
model is challenging because it involves the integration of a
multivariate normal distribution over a constrained space.

A classic approach for optimizing the MVP model is
Bayesian Inference (Chib & Greenberg, 1998; Tabet,
2007), where the posterior distribution is simulated by
Markov Chain Monte Carlo (MCMC) methods (Jeliazkov
& Hee Lee, 2010) and the maximum likelihood estimates
are obtained by a Monte Carlo version of the Expectation
Maximization (EM) algorithm. These approaches require
the simulation of observations from a multivariate truncated
normal distribution involving an arbitrary covariance matrix.
Although observations from a multivariate truncated normal
distribution can be sampled from a sequence of univariate
truncated normal distributions (Genz, 1992), the computa-
tional effort is rather heavy for high dimensional problems.
Extensions of the classic MVP in specific domains have
been proposed under specific assumptions of the covariance
matrix (see e.g, (Song & Lee, 2005; Young et al., 2009)).
Recent approaches for computing the maximum likelihood
of MVP have been proposed using the first-order gradients
and the second-order information (Chen et al., 2017; Mandt
et al., 2017). Those approaches integrate MCMC meth-
ods and the numerical estimation of the multivariate probit
(Genz, 1992), which is based on an importance sampling
using the truncated normal distribution.

The accessibility of massive contextual data, as well as the
success of deep learning, provide additional opportunities
and challenges for boosting MVP. On the one hand, massive
contextual data, such as millions of high-resolution images,
create the possibility of improving predictive performance,
particularly when integrated with deep neural networks,
which are remarkably powerful for extracting high-level fea-
tures from raw data. On the other hand, a scalable learning
scheme, which integrates well with parallelized infrastruc-
ture such as GPUs, is needed to take advantage of various
deep neural networks as well as the massive contextual data.
Unfortunately, the classical approaches such as Bayesian
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inference or previous gradient-based methods, inevitably
contain sequential inferences, such as MCMC simulations,
which is typically not easy to implement on GPUs. A re-
cent approach called Multi-Entity Dependency Learning via
Conditional Variational Auto-encoder (MEDL_CVAE) (Tang
et al., 2017) is compatible with deep neural networks and ex-
ploits GPUs, with competitive wall-clock training time, but
suffers from two key limitations. On one hand, MEDL_CVAE
learns the joint likelihood by optimizing the variational
lower bound of the joint likelihood but has no guarantee
concerning the gap between the lower bound and the true
likelihood. A second limitation is that the empirical op-
timization of the variational lower bound of MEDL_CVAE
suffers from the KL-vanishment problem, which is a known
problem in applications based on variational auto-encoder.
As a result, when integrating it with powerful deep neural
networks such as Convolutional Neural Networks, the KL-
term decreases dramatically to zero, which causes serious
overfitting problems that restrict its performance.

We propose a novel end-to-end learning scheme for the
Deep Multivariate Probit Model (DM VP), which is scal-
able and flexible with various deep neural networks.
Specifically: (1) We introduce the Deep Multivariate Probit
Model (DMVP), a deep generalization of classic MVP, in
which a flexible deep neural network is embedded to extract
the high-level features from the raw data. (2) We propose
an efficient parallel sampling process, which transforms
the integration over a high-dimensional constrained space
into an expectation over the residual multivariate normal
distribution with a variance strictly lower than the rejec-
tion sampling, tightly integrates with various deep neural
networks, and can be implemented end-to-end on GPUs.
(3) We provide both a theoretical and an empirical analy-
sis of the convergence behavior of the sampling process
embedded in DMVP. We provide theoretical convergence
guarantees for DM VP as well as a numerical analysis of the
convergence behavior based on a tighter bound, which is
much closer to the empirical results. Our theoretical bound
also sheds light on the trade-offs between performance and
convergence. (4) We apply DMVP to three multi-entity
modelling problems. In the first application, we use the
crowdsourced eBird dataset combined with the National
Land Cover Database for the U.S (NLCD) (Homer et al.,
2015) and satellite images to study the interaction among
multiple species. In the second application, we study the de-
forestation and human encroachment in Amazon rainforest
with high-resolution satellite images. In the last application,
we study the associated concepts of real-world web images
using the NUS-WIDE-LITE web image dataset collected
from Flickr (Chua et al., July 8-10, 2009).

Preview of results: We show that our DMVP (a) trains
significantly faster than classic MVP models using the end-
to-end learning scheme fully implemented on GPUs; (b)

captures correlations among multiple entities in all appli-
cations; and (c) outperforms the approaches that assume
the independence among entities conditioned on contex-
tual data, classic MVP models, recent gradient-based MVP
methods, and the recent variational approach MEDL_CVAE.

2. Preliminaries
2.1. Notations

We use ¢(x; u, ¥) and @ (z; u, ¥) to denote the density func-
tion and the cumulative distribution function of the multivari-
ate normal distribution with mean ;. € R! and covariance
Y e R e,

1
(2m)1/2|S[1/2

D(x; p, ) :/ / o(s; 1, X).dsy...ds; 2)

where | - | denotes the determinant of a matrix.

d(asp,X) = emalrm R

For the sake of simplicity, we use ®(x) to denote the CDF
of one-dimensional standard normal distribution.

For the comparison between vectors, we use ’<” to denote
the “element-wise less or equal to”, i.e,

a < biffVi,a; < b; 3)

2.2. Deep Multivariate Probit Model

The multivariate probit model (MVP) is described in terms
of a multivariate normal distribution of the underlying latent
variables that are manifested as binary responses through a
threshold specification. More specifically, given the dataset
D = {(z;,y:)|i = 1,..,N}, where z; € R™ is the
m-dimensional contextual data and y; € {0,1} is the I-
dimensional binary label, MVP maps the Bernoulli distribu-
tion of each binary label y; ; to a sequence of latent variables
r; = (i1, ...,75) through the threshold 0, where r; is sub-
ject to a multivariate normal distribution, i.e,

Pr(ym = 1‘I1) = Pr(m,j > 0) “é)
Pr(ym = O‘Il) = Pr(m,j S 0)
where 7; ~ N (u(x;),2).

More specifically, the marginal likelihood is,

e — o (1@
Pr(yi; = 1] z)—q)(m)

(i)
Pr(yi,; =0|z;) = @ (—) ,
’ V2.
and the joint likelihood is,
Pr(yi|zi) :/ o(s; p(wi), X)dsy...ds;
A Ja

(—O0,0] if Yi,j = 0
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Here A; = {
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Let D¢ = diag(2y; —1) € {—1,0, 1}!*! which is a diagonal
matrix using vector 2y; — 1 as its diagonal. Then, we can
further reduce formula (5) into the CDF of a multivariate
normal distribution, using the affine transformation, i.e.,

Pr(yz|$l) = @(07 _l'l/’/L7 Z;)a (6)
where p; = D'pu(x;) and X} = D'SD".

Learning the classic MVP model involves estimating the
coefficient W of the linear function u(x;) = Wa; and the
covariance matrix X. Usually, both the coefficient matrix W
and the covariance matrix X are learnt from data, but in some
cases the variance matrix ¥ can be computed directly from
data. For example, the model in (Mandt et al., 2017) used
linear kernel for the covariance matrix, where the covariance
matrix is the sum of a linear kernel matrix and a diagonal
noise matrix computed from the raw input data.

Taking advantage of the successful development of deep
learning, we introduce the Deep Multivariate Probit Model
(DMVP), which is a deep generalization of the classic MVP,
where pi(z;) changes from the linear function Wz; to a
non-linear function 6(z;), learnt via a deep neural network,
and the covariance matrix X is always learnt from the data.
In this way, the DMVP obtains the flexibility as well as
the predictive power of various deep neural networks while
modelling the correlations of multiple entities by fitting the
correlations of the latent variables.

3. End-to-End Learning for DMVP

The generic learning methods of MVP are maximum-a-
posteriori estimation and maximum likelihood estimation.
Because we have introduced the deep neural networks
into the DM VP, we train DMVP by maximizing the log-
likelihood, which is the most commonly used method for
the training of neural networks, i.e.,

argmax » ., log Pr(y;|z;) = argmax >, log ®(0; —p}, X7).
6,2 9,2

The difficulties with respect to learning the DMVP are
mainly due to the computation of equation (6) as well
as its gradients, which are obtained by integrating over a
high-dimensional constrained space of latent variables. As
pointed out by (Magid, 1994), there is no closed form solu-
tion for equation (6), and to date can only be estimated via
sampling methods.

3.1. End-to-End Sampling Process for DMVP

The vanilla rejection sampling estimates ®(0; — i}, 3%) by
counting the rate that a sample r from N(—u}, 3,) satis-
fies < 0. However, because the value of ®(0; —p}, 3/)
could be exponentially small, on average, it could take ex-
ponentially many trials to get merely one trial that satisfies

the condition. One straightforward solution for this esti-
mation, which has been adopted in (Chen et al., 2017), is
to use the MCMC approaches to estimate the distribution
over the truncated high-dimensional space. Another im-
portance sampling method proposed by (Genz, 1992) uses
Cholesky factorization to compute the equation (6). This
method transforms the sampling of a truncated multivariate
normal distribution into the sampling of a sequence of uni-
variate truncated normal distributions, where the truncation
of each univariate normal distribution depends on the sam-
ples of all preceding random variables. Because both the
MCMC method and the importance sampling require a se-
quentially dependent sampling, they cannot easily integrate
with parallelized deep learning infrastructure such as GPUs.
Therefore, we propose a novel parallel sampling method to
address this approximation problem.

Though there is no closed form for computing the CDF
of a general multivariate normal distribution, the one-
dimensional CDF &(x) has very accurate analytical esti-
mation (Cody, 1969), which has been implemented in al-
most all machine learning tools. Inspired by this fact, we
decompose the covariance matrix X into V' + X, where V'
is a diagonal positive definite matrix and 3, is the residual
covariance matrix, so that a random variable r ~ N (0, X)
can be decomposed as the subtraction of two random vari-
able z ~ N(0,V) and w ~ N(0,%,), i.e., r = z — w.
Thus, the estimation of ®(0; —u, ) in equation (6) can
be transformed into the expectation of the product of [ one-
dimensional CDF’s, conditioned on the residual multivariate
normal distribution w, i.e.,

O(0;—p, ) =Pr(r—pu<0) r~N(0,%)

z~ N(0,V), w~ N(0,%,)
2~ N(0,V)

=Pr(z—w < )
= Eyrn(o,5)[Pr(z < (w4 p)|w)]

l
N
= EynN(u,5, P J
MmLHl ( W,)

!
=E,onw-1/20v-1/25,v-1/2) |:H P (wj):|

J=1

1 M l
<45 (Mo () ). 0

k=1 \j=1

Knowing that the role of the parameter V' is to rescale the
sample w;, without loss of generality, we can assume that
V' is an identity matrix and directly learn the “rescaled”
residual multivariate normal distribution. That is, in the
rest of the paper as well as the Figure (1), we use the
identity matrix 7 to replace V.

Main idea: The high-level idea of our end-to-end learning
scheme for DMVP is based on the transformation shown in
equation (7). The intuition behind our transformation is sim-
ilar to the Rao-Blackwell theorem (Blackwell, 1947), which
improves an estimator by computing its expectation, condi-
tioned on a sufficient statistic. In our case, instead of using a
sufficient statistic, we use the residual distribution w, which
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fully captures the correlations of the original multivariate
distribution. Conceptually, given input features x; and la-
bels y;, DMVP first learns the mean and the covariance of
the residual multivariate normal distribution via a deep neu-
ral network. Then, DMVP samples batches of independent
samples w(*) from the residual multivariate normal distribu-
tion and uses equation (7) to compute the estimation of the
joint likelihood. This sampling process outperforms pre-
vious estimation methods in several aspects. First, the
process samples from an explicit distribution, which is sig-
nificantly more efficient than MCMC-based methods, which
need to burn a lot of intermediate samples to reach the im-
plicit distribution. (We show the experimental results in the
section 5.) Second, the variance of this sampling process
is strictly smaller than the vanilla rejection sampling (See
appendix), therefore DM VP requires fewer samples, since
every sample from this process provides non-trivial infor-
mation. Third, this sampling process can be implemented
in parallel on GPUs, which is not the case for MCMC.

Figure (1) depicts the detailed learning framework imple-
mented in DMVP. The feature network, composed of multi-
layer convolutional networks or fully connected networks,
extracts high-level features from the contextual data source
to learn the p for each data point. The choice of the feature
network depends on the type of contextual data and the prob-
lem, but is flexible enough to be any structure that could be
boosted by GPUs. In DM VP, the residual covariance matrix
>, is a global parameter, which is learned from random ini-
tialization and shared by all data points. To ensure that ¥, is
a semi-positive definite matrix, we actually form the residual
covariance matrix by the product of one matrix and its trans-
pose, i.e., X = E%/Q(Ei/Q)T. The random variable gen-
erator generates batches of the standard normal distributed
random variable z(*) in parallel on GPUs. Then, using Zi/ 2,
1, and the diagonal matrix D? corresponding to 7;, DMVP
computes batches of samples w(®) = Di(y + £/22(0).
According to the affine transformation of the normal distri-
bution, the samples {w(*)} are subject to the multivariate
normal distribution N (D, D', D), which is the desired
residual multivariate normal distribution as derived in equa-
tion (6) and (7). Because there is no dependency among
those samples, all the operations described above could be
computed in parallel using tensor operations. Therefore, we
can integrate DM VP with various deep neural networks and
implement it end-to-end on GPUs using popular machine
learning packages (such as Tensorflow or Pytouch).

3.2. Theoretical Analysis of the DMVP’s Convergence
Behavior

In terms of the convergence behavior of this sampling pro-
cess, we provide a theoretical analysis with respect to the

estimation error. Since the estimate Hé’:1 @ (wyc)) is

Contextual Data Binary outcomes
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Figure 1. The overview of the parallelized learning framework of

the Deep Multivariate Probit Model.

~ 52 (M- @ (w]*)

bounded between 0 and 1, Hoeffding’s inequality guaran-
tees exponentially fast convergence in M between the r.h.s
of equation (7) and Pr(y;|z;), i.e.,

M n
1
Pr |57 > [T ®@) = Pr(yilas)| > ePr(yile:)
k=1j=1

< 2€—M€2 sz(yi\ﬂi). (8)

Though equation (8) converges exponentially fast, the value
of Pr(y;|x;) could be the magnitude of 27!, That is, we
may need to sample O(22!) many times to have a reasonable
multiplicative error bound. To address this issue, another
assertion can be proven for this sampling process using
Chebyshev’s inequality:

Theorem 1 Let 1 € R and ¥ € R be the rescaled
mean and rescaled residual covariance matrix of the random
variable w'*) in equation (7), then we have

M 1
1
Pr || 3 TT #uk;) — Prisd)| > ePr(yile:)
k=1j=1
e 2(0.
PR T Ve o e SN
Me2
2
B (0;—p,25+1)
(S lem+ 11721 (10)
- Me2
l N2 1/2
. D212 + I)1M2 -1
Me2
where g(p;) = max, % See the Appendix for a

more detailed proof.

The function g(1;) in the theorem (1) does not have a closed
form but it is a monotonous decreasing function, which con-
verges to 1 as u; increases. Figure 2 is the visualization of
function g(u;). As can be seen, the function g(u;) is very

close to 1 when p; is positive. Though g(p;) increases ex-
ponentially with an upper bound \/ie 3-2v2

2 .
Pi when p; is a
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Figure 2. The visualization of function g(p;).

very small negative number, the training method - maximum
likelihood estimation - ensures that most p; are positive. In
theorem (1), the equation (9) is the upper bound derived by
exact analysis of the second moment of the random variable
H;’:l <I>(u)iC ;)- Knowing there is no general closed form
for the CDF of multivariate normal distribution, we fur-
ther derive the equation (11) to provide an analytical upper
bound.

Though, in the worst case, the upper bounds could be ex-
ponentially large with respect to the dimensionality, this
still sheds light on the convergence behavior of our sam-
pling process. For example, if the distribution of entities
is independent, then the rescaled residual covariance X is
a zero matrix. In that case, the variance of our sampling
process is zero, so that we only need to sample once to get
the exact likelihood. In more general cases, if the rescaled
residual covariance X is a low-rank matrix, most eigenval-
ues of the matrix 23 4+ [ are 1, which indicates a small
|25 + I|. According to our experiments, most eigenvalues
of the rescaled residual covariance matrix X are very close
to 0, which supports the empirical convergence behavior of
our DMVP. In the experimental section, we provide more
detailed analysis in terms of the performance as well as the
convergence behavior of DMVP with a low-rank residual
covariance matrix, showing that the DMVP’s performance
only degrades significantly when the rank of the residual
covariance matrix is extremely small.

Since our learning scheme is based on stochastic gradient
descent, we also use the derivatives of equation (7) as the
estimation of the true derivatives. The variance analysis
of the derivatives of Pr(y;|z;), which has a similar conver-
gence bound as theorem (1), could also be derived using
the similar method. Because of space limitations, see the
appendix for a more detailed proof.

4. Other Related Work

Multi-entity modelling problems are studied extensively un-
der the names of multi-label classification, multi-entity em-
bedding and structured prediction. The simplest approach is
to model the distribution of each entity independently, given
the contextual data, known as the binary relevance model.
This approach is quite popular in multi-label image classifi-
cation because of its simplicity and flexibility. (We chose it
as a baseline for this problem.) However, this could perform

poorly, particularly when certain labels are rare or some
are highly correlated. Therefore, max-margin (Sarawagi &
Gupta, 2008), ranking losses (Elisseeff & Weston, 2002)
and embedding methods (Rudolph et al., 2016) have been
used to address the correlations. Along this line of research,
recent approaches (Belanger et al., 2017; Belanger & Mc-
Callum, 2016) use SSVM minimizer to optimize energy-
based structured models. Those approaches mainly focus on
the classification problem, in which the correlation among
entities is implicit and therefore it is hard to derive the struc-
tured probabilistic distribution of entities. Our applications
of DMVP, on the other hand, focus more on probabilistic
modeling rather than classification. Another classic ap-
proach related to MVP is the Conditional Random Field
(CRF) (Lafferty et al., 2001), which offers a general frame-
work for structured prediction based on undirected graphical
models. Instead of using correlated latent variables, CRF
models the correlation among entities directly, where the
joint probability of multiple outcomes is proportional to
an energy function. However, optimizing CRF models suf-
fers from the computational intractability of the partition
function. To remedy this issue, (Xu et al., 2011) applied en-
semble methods and (Deng et al., 2014) proposed a special
CREF for problems involving specific hierarchical relations.
Nevertheless, optimizing CRF models still inevitably de-
pends on gibbs sampling for approximate inference, and has
the same problem as the MCMC-based MVP models. A
newly proposed ecological model, the Deep Multi-Species
Embedding model (DMSE) (Chen et al., 2017), introduces
deep neural networks into the classic MVP. Nevertheless,
the learning methods of DMSE are also based on sequential
inference such as the MCMC simulations, so that they are
not easily boosted using GPUs.

The mixed-logit model (McFadden & Train, 2000) is another
statistical model for analyzing discrete outcomes, whose
marginal likelihood is similar to the formula of the transfor-
mation step in DMVP. However, the mixed-logit model is
a general way to inject random variables into the logistic
regression while the transformation in DM VP uses the aux-
iliary residual covariance to estimate the likelihood. Multi-
Entity Dependency Learning via Conditional Variational
Learning (MEDL_CVAE) uses a conditional variational auto-
encoder to handle correlation between multiple entities, and
is also compatible with parallelized deep structures. Despite
its limitations, as discussed in the introduction, MEDL_CVAE
is a state-of-the-art multi-entity modelling method and is
also closely related to our DMVP model. Therefore, we
chose MEDL_CVAE as the representative approach among
those competitive multi-entity modelling methods and com-
pare its performance to DM VP, in the experimental section.
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5. Experiments
5.1. Datasets and Implementation Details

We evaluate our DMVP'. on three datasets of multi-entity
modelling problems.

eBird is a crowd-sourced bird observation dataset collected
from the successful citizen science project eBird (Munson
et al., 2012). One record in this dataset is referred to as a
checklist in which the bird observer records all the species
he/she detects as well as the time and the geographical lo-
cation of the observational site. Crossed with the National
Land Cover Dataset for the U.S. (NLCD) (Homer et al.,
2015), we obtain a 15-dimensional feature vector for each
observational site which describes the landscape composi-
tion with respect to 15 different land types such as water,
forest, etc. We also collect the satellite images for each
observation site by matching the geographical location of
the observational site to Google Earth?. Each satellite image
covers an area of 12.3km? near the observation site and has
256256 pixels. The dataset for this experiment is formed
by picking all the observation checklists from the Bird Con-
servation Region (BCR) 13 (Committee et al., 2000) in the
last two weeks of May from 2004 to 2014, which contains
50,949 observations. We choose the top 100 most frequently
observed birds as the target species which cover over 95%
of the records in our dataset.

Amazon is the Amazon rainforest landscape satellite image
dataset collected for Amazon rainforest landscape analy-
sis,? in which raw images were derived from Planet’s full-
frame analytic scene products using 4-band satellites in
sun-synchronous orbit and International Space Station orbit.
The organizers used Planet’s visual product processor to
transform raw images into 3-band 256x256-pixel jpg for-
mat. The Amazon contains a total of 34,431 samples and
each sample in this dataset contains a satellite image chip
covering an area of 0.9 km? in Amazon rainforest. The
chips were analyzed using the Crowd Flower* platform to
obtain a ground-truth composition of the landscape. There
are 17 different labels for each satellite image chip, which
represent a reasonable subset of phenomena of interest in
the Amazon basin such as atmospheric conditions, common
land cover phenomena, and land use phenomena.

NUS-WIDE-LITE is a light version of the NUS-WIDE
datasets collected by the National University of Singapore

!Code to reproduce the experiments can be found at
https://bitbucket.org/DiChen9412/icml2018_dmvp

“https://www.google.com/earth/. Google Earth has already
conducted preprocessing including cloud removing on the satellite
images.

3https://www.kaggle.com/c/planet-understanding-the-
amazon-from-space.

*https://www.crowdflower.com/

Dataset eBird Amazon | NUS
#Training Set 40759 27545 44493
#Validation Set | 5095 3443 5561
#Test Set 5095 3443 5561
#Entities 100 17 81

Table 1. the statistics of the eBird and the Amazon dataset

(Chua et al., July 8-10, 2009), which contains 55,615 sam-
ples and each sample is the low-level features (such as
wavelet texture, histogram, correlogram, etc) of the real-
world web image associated with tags from Flicker. The 81
tags represent 81 different concepts related to the web im-
ages, such as the concepts related to the objects in the image
(dog, cat, building, etc) and the concepts of the background
(clouds, sunset, etc). For the ease of presentation, we use
NUS to denote this dataset.

We randomly split the datasets into three parts for training,
validation, and testing. The details of the three datasets are
listed in table 1.

5.2. Performance Analysis of the DMVP on
Multi-Entity Modelling Problems

We compare the proposed DMVP with baseline models
from three different groups. The first group, which we re-
fer to as conditional independent model (CIM), assumes
independence among entities, conditioned on the contextual
data. Within this group, we chose different models based
on the type of the input features. For example, when the
input features are images, we choose to use convolutional
neural networks (CNN), while we use the multi-layer fully
connected neural network (MLP) for one-dimensional fea-
ture inputs. For the sake of fairness, the structure of CIM
as well as the feature networks in other baseline models are
always the same as the feature network of DMVP. More
specifically, for the data resources of low-level features,
such as the NLCD features of eBird dataset and the NUS
dataset, we use a 4-layer fully connected neural network
with hidden units of size 128, 256, 256, [, where the activa-
tion function of the first 3 layers is ReLU (Nair & Hinton,
2010) and there is no activation function in the last layer.
For the image data resources, we use a CNN similar to
the Alexnet (Krizhevsky et al., 2012) with some minor ad-
justments. The second group is the previously proposed
Multivariate Probit Model, which can also model correla-
tions among entities, but uses different inference methods.
Within this group, we chose the Deep Multi-Species Embed-
ding (DMSE) model (Chen et al., 2017), a gradient-based
MVP model, which uses the numerical computing method
proposed by (Genz, 1992) to estimate the likelihood and a
MCMC-based method to estimate the gradients. This model
represents a wide class of MCMC-based multivariate probit
models while further improving the classic MVP by tak-
ing advantages of the flexibility of deep neural networks to
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obtain useful feature extractions. Nevertheless, its training
process involves MCMC approaches as well as the sequen-
tial importance sampling, and therefore cannot be integrated
on GPUs. For the last group, we chose the MEDL_CVAE(Tang
et al., 2017) model, which is a state-of-the-art multi-entity
modelling approach proposed recently. This model uses
conditional variational auto-encoder to handle correlation
between multiple entities, in which it approximates the joint
likelihood by its variational lower bound.

Because we study multi-entity modelling problems, in

our experiments, we use Negative Joint Distribution Log-

likelihood (Neg.JLL) as the indicator of a model’s perfor-
N

mance: — > log Pr(y;|z;), where N is the number of
=1

samples in che test set. Based on the theorem (1) we obtain
1,000,000 samples from the residual multivariate normal
distribution for testing DMVP’s performance, which is suffi-
cient to guarantee the accuracy of the estimation. However,
for the training, DMVP empirically converges well with
only 100 samples.

All the training and testing process of our DMVP and other
baseline models, which are compatible with the GPUs,
are performed on one NVIDIA Quadro P4000 GPU with
8GB memory. The training and testing process for the
DMSE model is performed on Intel(R) Core(TM) i7-7700K
CPU@4.20Gz with 8 cores. Since the bottleneck of the
DMSE model is on the MCMC sampling, which could not
be parallelized trivially, additional cores do not improve the
wall-clock time significantly. The whole training process
lasts 200 epochs, using the batch size of 128, Adam opti-
mizer (Kingma & Ba, 2014) with learning rate of 10~% and
utilizing batch normalization (Ioffe & Szegedy, 2015), 0.5
dropout rate (Srivastava et al., 2014) and early stopping to
accelerate the training process and to prevent overfitting for
not only DMVP but all baseline models.

Table 2 shows the average performance of DMVP as well
as other baseline models on the 3 datasets (4 different
type of input features) in terms of the negative joint log-
likelihood (Neg.JLL) and the wall-clock time of training.’
There are multiple key results in Table 2: (1) By com-
paring the Neg.JLL of the conditional independent model
(CIM) with other models, one can observe significant ad-
vantages of modelling the correlations among entities.
(2) DMVP trains more than 100 times faster than the
MCMC-based DMSE model in terms of the wall-clock
time. This huge gap between DMVP and DMSE is due
not only to the parallelization but also to the advantage of
sampling from an explicit distribution. For DMVP, empiri-
cally we only need to sample 100 samples per data point to
converge very well and every sample here is an unbiased esti-

SWe thank the authors of (Tang et al., 2017) and (Chen et al.,
2017) for sharing the codes.

eBird-NLCD
Method CIM | DMSE | MEDL_CVAE | DMVP
wall-clock -, 1200 10 10
time (mins)
Neg.JLL 3496 | 30.53 30.86 29.68
eBird-Images
Method CIM | DMSE | MEDL_CVAE | DMVP
wall-clock 1 g5 | 3000 847 843
time (mins)
Neg.JLL 34.14 N/A 33.68 28.26
Amazon
Method CIM | DMSE | MEDL_CVAE | DMVP
wall-clock 1 gg0 | 3000 502 495
time (mins)
Neg.JLL 1.70 N/A 1.64 1.50
NUS-WIDE-LITE
Method CIM | DMSE | MEDL_CVAE | DMVP
wall-clock 1410 12 12
time (mins)
Neg.JLL 6.17 5.76 5.82 5.73

Table 2. Comparison of various methods on 3 datasets ( 4 different
input features) in terms of the Negative Joint Log-likelihood (the
smaller the better ) and the wall-clock time.

mation of the joint likelihood. However, in DMSE, we need
to burn every 1000 intermediate samples to merely get one
quasi-unbiased sample from the implicit distribution, which
is not cost-efficient. What’s more, the high-resolution image
data resources are way beyond the capacity of the MCMC-
based method, where the DMSE model cannot reach a rea-
sonable performance after 2-day-long training. (3) In terms
of the Neg.JLL, DMVP outperforms all baseline mod-
els including the competitive MEDL_CVAE model, which is
compatible with deep neural networks and also models the
correlations among entities. There are two reasons of why
DMVP outperforms MEDL_CVAE: (i) DMVP directly learns
the joint likelihood while MEDL_CVAE approximates the joint
likelihood by optimizing its variational lower bound. (2)
there is a KL-vanishment issue, which is notorious in all ap-
plications based on variational autoencoder, in the training
of variational lower bound that hampers the performance of
the MEDL_CVAE model.

5.3. Empirical Analysis of the DMVP’s Convergence
Behavior

In Section 3.2 we provide the theoretical upper bound of the
DMVP’s convergence behavior. Based on the theorem (1),
one way to reduce the sampling variance is to assume the
low-rank property of the residual covariance matrix. There-
fore, we conducted the empirical analysis of the DMVP’s
performance as well as the convergence behavior on three
datasets with residual covariance matrix of different rank.
Based on the theorem (1), we use the numerators of both
equation (9) and equation (11) to indicate the convergence
rate, where the former is a tighter bound without an analytic
form and the latter is the theoretical upper bound. Though
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Figure 3. The analysis of DMVP’s performance and the conver-
gence behavior on three datasets with respect to low-rank residual
covariance matrix. The performance is indicated by Neg.JLL and
the convergence rate are measured using both the theoretical bound
derived from equation (11) as well as the numerical estimation of
the tighter bound derived from equation (9). (For both of them,
the smaller the better.) As the rank of ¥, goes lower, the DMVP
converges better while the performance of DM VP only degrades
significantly when the rank of X, is extremely low. The subplots
(a) (b) (c) correspond to eBird, Amazon and NUS respectively.

the tighter bound (equation (9)) does not have a analytic
form, we could show the value estimated using the numeri-
cal method proposed in (Genz, 1992). What’s more, because
the value of the indicators derived from equation (11) and
equation (9) vary across data points over time, we pick the
median at the end of the training as the representative. We
implement the constraint of rank(X,) by restricting the
dimensionality of Ei/Q, ie., 271,/2 € R>*k where k < L.
Figure (3) show the experimental results conducted on three
datasets. Because of the similarity, for the eBird dataset,
we only show the analysis using NLCD features. One obser-
vation from Figure (3) is that the theoretical bound is way
looser than the numerical estimation of the tighter bound,
which is actually closer to the empirical results. In our
experiments, DMVP converges well in all datasets using
only 100 samples. Nevertheless, the theoretical bound still
sheds light on the convergence behavior of DMVP. One
can see, as we restrict the rank of the residual covariance
matrix to be lower, both the theoretical bound and the nu-
merical estimation of the convergence rate become better
while the performance of DM VP only degrades significantly

rank(Z,) =3 rank(z,) =2

rank(Z,) =1

Figure 4. The visualization of the residual covariance matrix (3;)
on the Amazon dataset, with 3, of different ranks, which capture
the correlations in different resolutions. The pattern of X, only
degenerates with extremely low ranks. (less or equal to 3)

when the rank of X, is extremely small. The reason behind
this phenomenon is that the rank of X, actually describes
the the resolution of how fine-grained DM VP models the
residual covariance. Therefore, it is possible to approxi-
mate a full-rank matrix by a low-rank matrix with minimal
discrepancy. As an example, the Figure 4 is the heatmap
of the residual covariance matrix on Amazon dataset with
rank from full-rank to rank-1. (Because of the space limi-
tation, we only show the covariance heatmap of Amazon
datasets.) One can see, the pattern of residual covariance
does not change too much until the resolution is extremely
low. These facts are consistent with the empirical results of
learning DM VP with full-rank residual covariance matrix,
where most eigenvalues of X, are very close to zero. Based
on these observations, we can naturally balance the com-
putational complexity and the predictive performance of
DMVP by tuning the resolution. This provides the potential
benefits of using DMVP to analyze large scale multi-entity
correlation with low-rank constraints.

6. Conclusion

In this paper, we propose an end-to-end learning scheme for
DMVP, in which we propose an efficient parallel sampling
process to integrate DM VP with various GPU-boosted deep
neural networks. Tested on three real-world applications of
multi-entity modelling, we show that DM VP trains 100x
faster than previous MCMC-based methods, captures rich
correlations among entities, and consistently performs better
than previous models. We further provide both theoretical
and empirical analysis of DMVP’s convergence behavior,
revealing the benefits of balancing the computational com-
plexity and the predictive performance by restricting the
rank of the residual covariance matrix. Future directions
include exploring the potential of applying DMVP on large
scale correlation analysis with the low-rank residual covari-
ance constraint.
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7. Appendix

Theorem 1 Let 1 € R' and ¥ € R'™! be the rescaled
mean and the rescaled residual covariance matrix of the

random variable w'™*) in the equation (7) of the main text,
then we have

M 1
1
Pr |57 > [T ®@w) = Pr(yilas)| > ePr(yile:)
k=1j=1
OB 1) - 9O -p S+ D) 12
- M®2(0; —p, X + I)e2
2
3(0;—p,25+1) 1/2
(Sosin) P11 (13)
- Me?
[lir 9(u)* 25 + 112 — 1
< == 14
< e (14
where g(u;) = max, %. The function g(u;) does

not have a closed form but it is a monotonous decreasing
Sfunction, which converges to 1 as p; increases.

Proof. For the ease of expression, we omit the subscripts
related to ¢-th data point in our proof. Without loss of
generality, we can also assume the diagonal matrix V' is
an indentity matrix. Defining Pr(ylw) = [[j_, ®(w;),
Pr(y|lr) = Ey~on(us)[Pr(ylw)]. We prove this conver-
gence bound by analysing the first and second moment of

random variable Pr(y|w).
Eq, [Pr(ylw)] = / [T 2(w))Pro(w)dw
w1
= / Pr.(z = w|w)Pry,(w)dw
= Pr, ,(z 2 w)

= Pr, w(z—w =0)
Here z N(0,7) and a < b means Va; < b;

5)

Since z is subject to multivariate gaussian distribution, z —w
is still a multivariate gaussian random variable, which is
subject to N (—p, X+1). Thus, Pr(y|z) = E,[Pr(y|w)] =
®(0; —p, X+ I). (P(+) denotes the cumulative function of
multivariate gaussian distribution.)

Similarly, we can derive that

E[Pr(ylw)?] = Pr(z1 S wAz < w)
-re([5]=[])
oo 757 s1)

_ X+1 X —
Let B = s nag| We hae |B =
det ({220—%] ﬂ)‘ = |2% + I|. Since ¥ is a positive

definite matrix, we can decompose ¥ = UDUT, where U is
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an orthogonal matrix and D is a diagonal matrix. Similarly,
we can decompose

Bl [U 0] [(2D+1)‘1(D+I)
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Thus,

E[Pr(y|r)?]"? < |28 + I|V*0(0; —p, 28 + 1)
Using the inverse transformation in equation (15), we have
O(0;—p, 22+ 1)
— W/Hq)(m)ei(w—u)Tzl(w—u)dx

1 1, Ty —1
— Nez¥ XY
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% then we have

Let g(p;) = max,
D(0; —p, 25 + 1)
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Using the Chebyshev’s inequality, we have
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The function g(p;) does not have a closed form but it is a
monotonous decreasing function, which converges to 1 as
1; increases. The figure (5) is the visualization of function

g(u)
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Figure 5. The visualization of function g(u; ).

g(ui). As you see, the function g(u;) is very close to 1
when y; is positive. The following lemma provides a more
analytical upper bound for function g(y;).

O(V2y +p) < g(p)®(y+ p), where

g(n) < VaeTER i <o
= 1182 if p>0

Lemma 1 Forany vy,

Proof. f:ﬁﬁ‘ ) achieves the maximum when its derivative

is equal to zero, i.e.,
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Since ®(x) is a monotonic
tion’ maxy\/ief%(y2+2(\/§*l)l‘y) =

increasing  func-

3—-2v2 2
V2 Tz H

when p < 0. Similarly, when p > 0, we
know y* = Wty 5 Th

y argmazy =gt > 0. us,
®(y* + p) > 3. By analysing the maximal value
of ®(v2y + p) — ®(y + u) as well as the fact that
B(V2y+p) = Dy +p) < (V2= Dy x Sb=e s,
we could know that ®(v2y + p) — ®(y + p) < 0.091.
That is,

9(n) < {ﬂef“ if <0

1.182 if p>0

Theorem 2 Let j1 € R' and ¥ € R'! be the rescaled
mean and rescaled residual covariance matrix of the random
variable w'*) in equation (7) of the main text, we have

pr |22 2
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Here A\ q. denotes the largest eigenvalue of ¥ and 1/ =
w— v+121/2b (b; denotes the i-th row of ¥y /3.)

Proof. For the ease of symbolism, we omit all the subscript
1 related to the index of ¢-th data point. Forany 1 < i </,

O Pr(y|x) _E 81_[5‘:1 O (w;)
o wr~N (p,X) O
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Let B = X./2 and let b; denote the j-th row of B.
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(Where z ~ N(—55b;,C) and z ~ N(0,1).)
—¢( ) «|C1Y2 % Pr(z < w)

(where w ~ N(p—; — &5 B_ibi, B,CBT)),
1_; € R~ denotes the vector derived from p by

eliminating the i-th entry. B_; € R'~"*! denotes the
matrix derived from B by eliminating the i-th row.)

Thus, using the transformation above, we can transform
the derivative in terms of p; into the form similar to theo-

rem (1). Because B_;CBT, = B_;BT, — W
where B_;B”, is a principal submatrix of Y, whose
eigenvalues are interlaced with the eigenvalues of X, and
M is a rank-1 matrix, we have [2B_;C BT, +

* Amaa:

In terms of the second moment of the derivative of y;, we
have,

2
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Here we use the same notation as the proof above.

i, C)dz

Using the similar trick as theorem (1), we have
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Here p/ = p — £ 3/2;.
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In this way, we bound the convergence of the derivatives in
terms of y, so that the derivatives in term of the parameters
in feature network can be derived by chain rule. However,
because the derivatives of 3'/2 could be negative or zero,
we can not apply the Chebyshev’s inequality to have a sim-
ilar multiplicative error bound. Nevertheless, because all
the data points share a global residual covariance matrix,
empirical experiments show that $'/2 converges well on all
the datasets.

Here we show that the variance of our sampling process is
strictly lower than the rejection sampling.

Theorem 3 Here we follow the notation of equation(7) in
the main paper. Let 01 be the reject sampling estimator

of ©(0;—p, X), where E61] = E,.nos)[{r < n}.
Let 05 be the estimator of DMVP’s sampling process,
where E[0y] = E,no,s,)[Pr(z < (v + p)|w)] and
z ~ N(0,V). We have Var[f2] < Var[0:].
Proof.

Var(6] = E[(62 — E[62))]

= Eu~noo, 2r>[(Pr( < (w+ p)|w) — E[ D ]

= Eunos) [(Bennown[I{z < (w+ 1)} — E[62]|w])’]

< Eyano,s)[Eennowvy[(I{z < (w+p)} — E[GZ]) |w]]

= E,~nqo, E)[([{T M} E[Q ])2}

(Herer = z — w and E[61] = E[02])
= E[(6: — E[61])"] = Var[61]

The inequality follows the fact that E[z%] > E[x]? given
Var|z] # 0.



