
Improving Your Chances: Boosting Citizen Science Discovery
Yexiang Xue and Bistra Dilkina and Theodoros Damoulas

Cornell University, Ithaca, NY
{yexiang, bistra, damoulas}@cs.cornell.edu

Daniel Fink
Cornell Lab of Ornithology, Ithaca, NY

df36@cornell.edu

Carla P. Gomes
Cornell University, Ithaca, NY

gomes@cs.cornell.edu

Steve Kelling
Cornell Lab of Ornithology, Ithaca, NY

stk2@cornell.edu

Abstract
Citizen scientists are playing an increasing role in helping
collect, process, and/or analyze data used to study a variety
of scientific phenomena. We address the problem of identi-
fying tasks that are rewarding to the citizen scientists, which
results in greater participation, leading to more data and better
models. We apply our methodology to eBird, whose partici-
pants are avid birders interested in observing different species
while contributing to science. In order to improve the bird-
ers’ chances of meeting their goals, we consider the follow-
ing probabilistic maximum coverage problem: Given a set of
locations, select a subset of size k, such that the birders max-
imize the expected number of observed species by visiting
such locations. We also consider a secondary objective that
gives preference to birding sites not previously visited. We
consider two variants of the probabilistic maximum cover-
age problem, provide a theoretical analysis, describe several
algorithms with provable approximation guarantees, as well
as heuristic approaches, and provide empirical results using
eBird data. Our algorithms are fast and provide high quality
recommendations.

1 Introduction
The advancements in Information Technology, such as the
World Wide Web, mobile devices, and social networking
technology, have provided new opportunities for large-scale
citizen science programs (Bonney et al. 2009). Citizen sci-
ence engages the public in collecting, processing and/or an-
alyzing data, with the goal of contributing to scientific re-
search. A large number of successful citizen science appli-
cations have been developed in recent years, with online citi-
zen science communities contributing to a variety of projects
across different disciplines. For example in astronomy, citi-
zen scientists classify galaxies in Galaxy Zoo (Lintott et al.
2008) and search for new exoplanets, i.e., Earth-like plan-
ets beyond our solar system, in Planet Hunters (Schwamb et
al. 2012).In biology, citizen scientists contribute to bird and
arthropod research using eBird (Sullivan et al. 2009) and
BugGuide (Bartlett 2011). In environmental studies, citi-
zen scientists help monitor coral bleaching trends (Marshall,
Kleine, and Dean 2012).

Our research is motivated by our collaboration with the
Cornell Lab of Ornithology. The Cornell Lab of Ornithology
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has developed a variety of citizen science projects concern-
ing bird conservation, each designed to inform specific sci-
entific questions, while engaging the public in science 1. For
example, eBird enlists bird watchers to identify bird species,
a task that only humans are able to reliably perform, given
current technology. In eBird, bird watchers report their ob-
servations to a centralized database via online checklists that
include detailed information about the observed birds, such
as the species name, number of individuals, gender, time and
location of the observation. To date more than 141,000 indi-
viduals have volunteered more than 9 million hours and col-
lected over 125 million bird observations. Since 2006, eBird
data have been used to study a variety of scientific questions,
from highlighting the importance of public lands in conser-
vation to studies of evolution and climate change (Kelling et
al. 2012).
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Figure 1: Bird-Watcher Assistant recommends birding sites
to improve the birders’ chances of seeing a set of di-
verse species, combining birders’ information with species
distribution information, inferred from predictive spatial-
temporal models that integrate bird observational data, sub-
mitted by the birders, with environmental data.

The overall scientific goal of citizen science projects of-
ten involves the study, understanding, and characterization

1http://www.cornellcitizenscience.org



of phenomena that occur across different spatial and tem-
poral regions: citizen scientists play a key role in helping
gather, process, and/or analyze data used for the develop-
ment of predictive models of such phenomena. Citizen sci-
ence projects face several challenges in order to ensure (1) a
high level of participation and engagement of citizen sci-
entists, (2) a reasonable distribution of the citizen scien-
tists’ contributions (e.g., geographically and throughout the
year) and (3) high quality of the citizen scientists’ contribu-
tions. In this paper we address some of the issues concern-
ing the challenges (1) and (2). We illustrate our research and
methodology using eBird, but our results can be generalized
to other citizen science projects.

eBird’s approach to stimulate participation and engage-
ment of citizen scientists is to develop clear rules of partic-
ipation and incentives that appeal to the birding community
(Wood et al. 2011). eBird provides several record-keeping,
exploration, and visualization tools that nurture and reward
participation. The success of eBird, with exponential data
growth since 2006, is in part due to the fact that it appeals
to the competitiveness of the participants, providing a vari-
ety of tools that allow participants to determine their relative
status compared to other participants (such as numbers of
species seen) and by geographical regions (such as check-
lists submitted per state and province).

To further boost participation and scientific discovery in
eBird, we are developing a set of tools for recommending in-
teresting birding sites, encapsulated in an application we call
Bird-Watcher Assistant. Figure 1 provides a high-level view
of Bird-Watcher Assistant and Figure 2 shows a snapshot
of the birding sites suggested by the system, using hotspots
voted by birders. Bird-Watcher Assistant uses information
from species distribution models, which predict species oc-
currence at a given location and date based on the associa-
tions between current eBird observations and local environ-
mental data. These species distribution models inform the
selection of the most desirable or useful new tasks for the
citizen participants. A related process is active learning, in
which one seeks to select the set of unlabeled data points
that when added to the labeled training data would have the
most significant impact on the fitted predictive model. In the
context of citizen science, however, one cannot simply maxi-
mize informativeness of the tasks but has to take into account
the interests of the citizen scientists to maintain high partic-
ipation rates. In eBird, participants are avid birders who are
interested in contributing to science, but also enjoy seeing a
diverse sets of species. Designing tasks that are rewarding to
the citizen scientists results in greater participation, which
in turn results in more data, better models, hence to better
designed tasks.

In order to improve the birders’ chances of seeing a di-
verse set of species, we consider the following problem:
Given a set of locations, select a subset of size k, such
that the birders maximize the expected number of observed
species by visiting such locations. We consider two variants
of this problem: (1) a local scale variant, in which we are
choosing among birding sites that are within a given region,
for example when planning a birding trip within a county,
and (2) a large scale variant, in which we want to choose a

sub-region (with a given radius), from a given larger region,
from which we want to choose the set of locations to visit.
For example, birders might want to fly to Colombia and visit
a sub-set of birding sites within a sub-region of Colombia.
We formalize the first problem as the probabilistic maximum
coverage problem, and the second as probabilistic maximum
coverage with locality constraints.

We note that in addition to the primary objective of max-
imizing the expected number of observed species we also
consider a secondary objective that gives preference to bird-
ing sites not previously visited, when in the presence of
multiple solutions with a comparable number of expected
species. This secondary objective helps expand the spatial
coverage of eBird by promoting new birding sites, typi-
cally in less populated areas. Observations made at the Bird-
Watcher Assistant recommended sites will help mitigate the
spatial bias in eBird where observations are concentrated to-
ward regions with high human density.

Figure 2: (Left) Interesting birding sites in a county; (Right)
A subset of three sites recommended by Bird-Watcher Assis-
tant: a forest, a lake-side, and a grassland site.

We show that the problem of probabilistic maximum cov-
erage can be formulated as maximizing a submodular func-
tion, subject to cardinality constraints. While we show that
the problem is NP-hard, we use the classical (1-1/e)
approximation algorithm (Nemhauser, Wolsey, and Fisher
1978), and compare our results with the sets of locations rec-
ommended by human experts. We then show that the prob-
lem of probabilistic maximum coverage with locality con-
straints can also be encoded as optimizing a submodular
function, but subject to both cardinality and locality con-
straints, specified by a given radius. To our knowledge, the
most similar problem studied previously concerns submodu-
lar optimization subject to a path length constraint (Chekuri
and Pál 2005; Singh et al. 2009). The state-of-the-art for
that problem is a quasi-polynomial algorithm with a log-
arithmic approximation bound. In contrast, we are able to
prove that our problem, with radius locality constraints, ad-
mits a strongly polynomial (1-1/e) approximation bound.
This algorithm makes a quadratic number of calls to the clas-
sic submodular greedy algorithm, and in practice, when the
number of locations to choose from is large, it is still not
practical. To address this issue, we propose a bi-criteria ap-
proximation algorithm that relaxes the locality constraint,
but makes only a linear number of submodular optimiza-
tion calls. We also propose a local search based sampling



method, without optimality guarantees.
We evaluate the performance of the proposed algorithms

in the context of eBird. At the local scale, we consider Tomp-
kins County, NY, the home of the Cornell Lab of Ornithol-
ogy and eBird. To test the performance of Bird-Watcher As-
sistant, we compared locations recommended by our model
to locations recommended by a set of expert birders. Qual-
itatively, the locations suggested by our model were judged
to be of quality by the domain experts. Quantitatively, the
locations suggested by our model achieve higher expected
numbers of species than the locations suggested by the ex-
perts. The Bird-Watcher Assistant locations systematically
covered the three most important habitat types for birds,
while promoting increased spatial coverage of the county. At
a larger scale, we consider planning birding trips across mul-
tiple states, spanning more than 70,000 potential locations,
revealing that in practice our local search based sampling
method performs very close to the approximation algorithm
but with a much better runtime. Overall our algorithms are
remarkably fast and provide high quality birding site recom-
mendations.

In the rest of the paper, we formulate the two variants
of the probabilistic maximum coverage problem and pro-
vide a theoretical analysis, describe several algorithms with
provable approximation guarantees, as well as heuristic ap-
proaches, and provide empirical results.

2 Local Scale Problem:
Probabilistic Maximum Coverage

Birders are often interested to know: what are the 5 most
interesting places to go birding in a given area? Typically
birders can visit any interesting location within a relatively
small region such as a county during a day or a weekend
trip, and hence do not care about the distance between lo-
cations within such a region. However, birders might be
limited to visiting at most a given number of places, due
to both time and resource constraints. Although there are
many reasons one can consider a location or a set of loca-
tions “interesting”, most birders are concerned with max-
imizing their chances of observing different species. Avid
birders, for example, participate in online birding contests
such as the eBird Top100 lists,2 where birders are ranked by
the number of different species they have observed within a
given county, state, or region. To support birders in planning
day trips at a local scale, we consider the following problem:
what is the set of k locations within a given region that when
visited maximizes the expected number of species observed?

Formally, suppose a birder has a list of m species that
he/she considers interesting. Let P = {1, 2, . . . , n} be the
set of all candidate locations within the region of interest.
We assume the existence of prior models of species distribu-
tions. For a given time of the year, let pij be the probability
of observing species i ∈ {1..m} at location j ∈ {1..n}.
Note this should not be an important limitation. In general,
when such a prior model does not exist in the beginning,

2http://ebird.org/content/ebird/about/
about-the-ebird-top100

Data: Point set P = {1, . . . , n}, submodular function
f : S → R, and k, k ≤ n.

Result: Point set S, S ⊆ P , |S| ≤ k.
1 S ← ∅;
2 for i in 1 . . . k do
3 p← argmaxp∈P\Sf(S ∪ {p})− f(S);
4 S ← S ∪ {p};
5 end
6 return S

Algorithm 1: (1-1/e) approximation algorithm for
the k-BestPlaces problem.

a uniform prior can be used which would recommend uni-
formly spread locations. Let f(S) be the expected number
of species seen by visiting all places in S, S ⊆ P . Let
Xi(S) be a binary random variable where Xi(S) = 1 if
and only if we observe species i when visiting all places
in S. We assume that the number of detections of a single
species seen by visiting all places in S follows an inhomo-
geneous Poisson process (Diggle 2003) where the intensity
of detections vary with local environmental features. Thus,
given the number of detections in S, these detections form
an independent random sample and the probability of ob-
serving species i by visiting S is 1 minus the probability of
not observing the species at each of the location in S, i.e.:
Pr(Xi(S) = 1) = 1 −

∏
j∈S(1 − pij). We can now define

our problem: PROBABILISTIC MAXIMUM COVERAGE
(short name: k-BestPlaces):

maximize f(S), subject to |S| ≤ k.

where the total expected number of observed species by vis-
iting S is:

f(S) = E[

m∑
i=1

Xi(S)] =

m∑
i=1

1−
∏
j∈S

(1− pij)

 .

Theorem 2.1. f(S) is submodular and monotone.
Theorem 2.2. PROBABILISTIC MAXIMUM COVERAGE ∈
NP-COMPLETE.

Because f(S) is a special case of a weighted cover-
age function as defined in (Călinescu et al. 2011), we can
show it is submodular and monotone. Maximizing a general
weighted coverage function subject to cardinality constraints
is NP-hard; we show that it is still NP-hard if the function
takes the special form of f(S). The proofs of Theorem 2.1
and Theorem 2.2 can be found in the appendix.

Based on the classical result from (Nemhauser, Wolsey,
and Fisher 1978), Algorithm 1 is a (1-1/e) approximation
algorithm that given an instance of k-BestPlaces runs in
O(nmk) time, where n is the number of locations and m is
the number of species in the list.

3 Large-Scale Problem:
Probabilistic Maximum Coverage with

Locality Constraints
Consider a birder who lives in upstate New York. He would
like to plan a birding trip going anywhere within 300 miles



from his home. However, once he decides on one destina-
tion, he could visit at most 10 nearby places around that
selected place due to the time constraints of the visit. This
leads to another interesting extension of our problem. For-
mally, we define the problem: PROBABILISTIC MAXIMUM
COVERAGE WITH LOCALITY CONSTRAINTS
(short name: (k,r)-BestPlaces):

maximize f(S), subject to |S| ≤ k and
all points in S are covered by a circle of radius r.

Here we consider the spatial coordinates of all candidate lo-
cations and use Euclidean distance.
(k,r)-BestPlaces is a submodular optimization

problem subject to both cardinality and locality constraints.
There have been several studies on maximizing submod-
ular functions beyond cardinality constraints. (See e.g.,
(Călinescu et al. 2011)). To our knowledge, the most rel-
evant research related to our problem is by (Chekuri and
Pál 2005), who consider maximizing a submodular func-
tion subject to the constraint that all vertices in the set are
linked by a path of at most a given length. They propose
an algorithm with quasi-polynomial runtime and a logarith-
mic approximation bound. Unfortunately, this method does
not scale to problems with hundreds or thousands of loca-
tions. Later, (Singh et al. 2009) improve the runtime of the
algorithm of (Chekuri and Pál 2005) by applying spatial de-
composition heuristics and by using branch and bound to
speed up the search, but they loose the formal approxima-
tion bound. Note that the path-length constraint considered
in these two papers is slightly different from ours, thus a di-
rect comparison to their algorithms is not possible. However,
the path-length constraint is indeed an interesting variant and
we look forward to addressing it in future research.

We developed EnumAllCircles, a polynomial
time (1-1/e) approximation algorithm for the
(k,r)-BestPlaces. We show that to enumerate
all subsets of points that meet the locality constraints,
one only needs to enumerate all pairs of points within 2r
distance, and for each point pair of this type to only consider
the set of points covered by each of the two circles of radius
r that pass through the point pair (see figure 3 (Left)).
Then for each such set of points, we apply the greedy
algorithm 1. The overall complexity is O(n2(d + n0mk)),
where n is the number of points, n0 is the maximal number
of points within a circle of radius r, m is the number of
species, and d is the time to find the set of points that are
covered by a circle. For full details, please see the appendix.
Although it has polynomial runtime, EnumAllCircles
does not scale very well to real instances. For instance,
there are typically tens of thousands of locations in the
problem instances we consider. Running on these instances,
EnumAllCircles needs to enumerate millions of circles,
which requires hours to days of computation time.

We developed EnumHexagonCircles, an algorithm
that is much faster than EnumAllCircles, enumerat-
ing only a linear number of circles at the expense of
providing weaker approximation guarantees. In particular,
EnumHexagonCircles is a ( 13 (1 − 1/e), 2r) bi-criteria
approximation algorithm returning solutions that can violate

A

B

Figure 3: (Left) The solid and dash circles of radius r
both pass through points A and B. (Right) A tessellation of
regular hexagons of side length 2r. Circles circumscribing
hexagons are shown in dashed line. A circle of radius r can
intersect with at most 3 hexagons (example is in red shade).

the locality constraint by up to two times the required radius
and with objective value within 1

3 (1− 1/e) of optimum.
EnumHexagonCircles uses a tessellation of

hexagons with side 2r across the space spanned
by the input point set P (see Figure 3(Right)).
EnumHexagonCircles only considers the circles
circumscribing a hexagon in the tessellation and containing
at least one point (See Algorithm 2). Because one point
can be contained in at most three circles of this type, in the
worst case the number of circles cannot exceed three times
the number of points. Therefore, the number of calls on
line 5 to Algorithm 1 is only linear in n. This results in an
O(n(d+ n0mk)) overall complexity.

Data: Point set P = {1, . . . , n}, f , k and r
Result: Point set S, S ⊆ P , |S| ≤ k and S is covered

by a circle of radius 2r.
1 Sbest ← ∅;
2 Denote circle set Ctess(r) to be all the circles

circumscribing a fixed tessellation of regular hexagons
of side length 2r across the space spanned by the input
point set P ;

3 for C ∈ Ctess(r) and C contains at least one point do
4 extract points PC covered by circle C;
5 S ← Algorithm 1(PC , f, k);
6 if f(S) > f(Sbest) then
7 Sbest ← S;
8 end
9 end
Algorithm 2: EnumHexagonCircles: a
fast bi-criteria approximation algorithm for
(k,r)-BestPlaces.

To prove the approximation bound, we first notice the fol-
lowing geometrical observation:
Proposition 3.1. For a tessellation of regular hexagons of
side length 2r, as shown in Figure 3, any circle with radius
r can intersect with at most 3 hexagons.
Theorem 3.2. Suppose the optimal value of prob-
lem (k,r)-BestPlaces is OPT . Algorithm
EnumHexagonCircles returns a set of locations
Sbest, such that Sbest is covered by a circle of radius 2r and
f(Sbest) ≥ 1

3 (1− 1/e)OPT .



See the appendix for the proofs. We remark that
EnumHexagonCircles represents a general class of al-
gorithms harnessing the fact that a circle of a given radius
can only intersect with a constant number of polygons in a
tessellation, in the worst case. In this case, the optimal set of
points can be split into at most a constant number of subsets,
with each subset contained in a polygon of the tessellation.
Similarly to Theorem 3.2, we can prove a constant approx-
imation when we only apply submodular optimization for
each polygon individually. As a second example, one can
consider a tessellation of squares of side length 2r, and de-
sign a similar algorithm that returns a set of points within a
circle of radius

√
2r and achieving 1

4 (1 − 1/e) approxima-
tion bound.

4 Experiments
Local Scale Problem
We consider the study area of Tompkins County in New
York State, where we have the highest density of observa-
tions in eBird, high spatio-temporal coverage, and available
human expertise. We focus on n = 165 locations in the
county that have been voted by birders as “hotspots” and
a species list (number of species m = 54) that includes a
diverse set of birds (resident, migrants, aquatic and forest
species) native to the North East. Very common species such
as the American Crow and the Black-capped Chickadee are
excluded so that the resulting list is a representative, diverse
portfolio of species that is of primary interest to birders3.

The probability ptij of observing species i at location j in
month t is derived from spatiotemporal exploratory models
(STEM) of this region for each month between January and
June (Fink et al. 2010; Fink, Damoulas, and Dave 2013). The
models utilize historical checklists from the eBird dataset,
and employ a multi-scale strategy to model local and global
spatiotemporal correlations. The resulting probabilities are
on stratified random locations sampled from a grid of 3km x
3km pixels.

To quantify the performance of the approximation algo-
rithm in practice, we implemented an exact brute-force algo-
rithm, which enumerates all subsets of cardinality k and re-
turns the best one. Because of the combinatorial nature of the
problem, we are only able to compare with the brute-force
algorithm for k = 2 and k = 3. The results show that the
approximation algorithm performs considerably better than
the guaranteed bound (1 − 1/e) ≈ 0.63, recovering the ex-
act solution on all instances except for a tiny loss (< 0.18%)
in February for k = 3. This empirical performance occurs
because in smaller scales, such as the county-level, the prob-
ability distribution for a species is rather homogeneous for
the same types of landscapes.

We compare both quantitatively and qualitatively the so-
lutions obtained by our model to recommendations made by
expert birders. We asked 10 experts from the Cornell Lab
of Ornithology to list for each month the three best hotspots

3The dataset of hotspots for Tompkins County and the
species list can be found online at www.cs.cornell.edu/
˜yexiang.

in Tompkins County that collectively maximize the number
of species they expect to see. While other preferences such
as aesthetics or convenient access might have indirectly af-
fected experts’ decision process, the experts were instructed
to provide recommendations to maximize the performance
in online birding contests, where birders are ranked by the
number of different species they have observed within a
given region. Figure 4 (Top) presents the expected number of
species for each month based on the solution obtained by the
greedy approximation algorithm and by the experts. 4 The
algorithm outperforms the human experts across all months.
This indicates that although the experts are very familiar
with birding and the local hotspots, they cannot reason per-
fectly across many complementary locations and many di-
verse species. Hence, our tool will be useful to novices and
experts alike, and will aid the scientific objectives of eBird
by improving the information content of the citizens’ contri-
butions.

To qualitatively compare the solutions between experts
and algorithms, we study the distribution of land cover types
across the sets of locations, as land cover is a significant
factor in habitat suitability for different bird species. We
estimate the landscape composition of a location by con-
sidering a 750-meter region around it, using the National
Land Cover Database for the U.S. (Homer et al. 2007) and
group the original categories into four classes: water, for-
est, grass, and other. The water class includes water and
wetlands; the forest class includes deciduous, evergreen and
mixed forests; the grass class includes shrub land, herba-
ceous, planted or cultivated land, open spaces and light in-
tensity developed area; and the other class includes barren
and developed land with mid to high intensity. For a set
of locations, the aggregate landscape composition is com-
puted by summing the area covered by each of the four land
cover classes across all locations in the set and normaliz-
ing by the total area. Figure 4 (Middle) presents the results
based on the recommendations of the best among the 10 ex-
perts (ranked by the expected number of species across the
6 months). Figure 4 (Bottom) presents the results obtained
from the greedy approximation algorithm. We see that both
the expert and model recommendations systematically cover
the three important types of bird habitats: water, forest and
grass. Both the expert and the model recommendations re-
veal similar trends, where water habitat is more preferred in
winter months, while slightly more forest habitat is preferred
towards the summer months. Ecologically these trends make
sense as migrant birds, which include a lot of species with
a woody habitat association, leave during the winter and re-
turn back during the summer months. Figure 5 shows maps
of the solutions obtained by the greedy approximation algo-
rithm for January and June.

4We did not compare the number of species reported in his-
torical checklists because in practice birding activities are highly
biased towards famous places. As a result, the number of species
reported in popular hotpots are significantly higher than those of
nearby sites, even if they share the same environmental condition.
From this point of view, it is unfair to make comparisons based on
historical checklists, as it will improperly favor frequently visited
locations.
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Figure 4: Results for Tompkins County with k = 3: (Top)
Comparison of solutions returned by the greedy approxima-
tion algorithm with the experts’ suggestions (showing the
average among the 10 experts with the worst and best per-
formance as error bars). (Middle) Landscape composition
for the recommendations by the expert who achieves highest
expected number of species. (Lower) Landscape composi-
tion for the solutions obtained by the model. The “random”
column shows the landscape composition obtained by uni-
formly choosing three locations in Tompkins County.

Large Scale Problem
We consider an area along the East Coast of the U.S. (see
Figure 7 (Right)), and focus on n = 70, 637 stratified ran-
dom locations specified in the STEM model output for that
area. We use the same probability model and species list as
in the local scale problem. Algorithms EnumAllCircles
and EnumHexagonCircles described in section 3 are
compared with the following algorithm variants:

• SampleCirclesGreedy This variant samples l cir-
cles of radius r uniformly at random; then it applies the
submodular optimization for points in each circle, and se-
lects the best answer among all the circles sampled. In our
experimental setting, l is set to 10,000.

• SampleCirclesRandom This variant samples l cir-
cles of radius r uniformly at random; then it selects a ran-
dom subset of size k among the points in each circle, and
returns the best answer among all the circles sampled. It
serves as a baseline to our algorithms. In our experimental
setting, l is set to 10,000.

Figure 6 shows the performance of the different al-
gorithms for r = 5 and r = 20 km for the
month of June and for k varying from 5 to 20.
Our results show that when r is reasonably large
(≥10 km, see Fig.6(Left)) EnumHexagonCircles and

Figure 5: The solution for k = 3 suggested by the greedy ap-
proximation algorithm for January (Left) and June (Right).
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Figure 6: Comparison of the algorithms for the
(k,r)-BestPlaces problem across varying k: (Left)
June, r = 20 km; (Right) June, r = 5 km.

SampleCirclesGreedy return solutions of quality very
close to EnumAllCircles. Since EnumAllCircles
essentially enumerates all circles of interest, the only sub-
optimality of the obtained solution comes from using the
greedy approximation algorithm for each point set cov-
ered by a circle. From our experiments on the local scale
problem, we know that in practice the greedy approx-
imation algorithm is likely to return solutions of qual-
ity much closer to optimal than the proven (1-1/e)
bound, and hence also is EnumAllCircles. Unfortu-
nately, in practice EnumAllCircles is computation-
ally prohibitive for large number of locations. Table 1
provides a summary of the number of circles enumer-
ated and the runtime for the algorithms for the month of
June, k = 20 and r = 20 km. Note that switching to
EnumHexagonCircles or SampleCirclesGreedy
generates huge computational savings (see Table1). While
EnumHexagonCirclesmight return solutions, which vi-
olate the locality constraints, SampleCirclesGreedy
returns feasible solutions, which are of comparable quality.
Hence, while lacking formal optimality guarantees, in prac-
tice SampleCirclesGreedy is both computationally ef-
ficient and accurate for large scale problems with larger r.

Algorithm # circles runtime
(secs)

EnumAllCircles 30,786,130 68,839
EnumHexagonCircles 333 2
SampleCirclesGreedy 10,000 15

Table 1: Runtime comparison of the different algorithms for
(k,r)-BestPlaces (June, k = 20 and r = 20 km). The
corresponding solution quality is shown in Figure 6(Left).



We note that it becomes harder to find good quality so-
lutions when r is relatively small. For example, we ex-
periment on a special case when r = 5 km as shown
in Figure 6(Right). In this case EnumHexagonCircles
likely overestimates the objective function, while re-
laxing the locality constraint to circles of radius 2r.
On the other hand, SampleCirclesGreedy and
SampleCirclesRandom saturate early on and cannot
find good solutions for large values of k. Intuitively, a
smaller radius makes the problem harder, as there are fewer
circles that cover a particular set of points. Thus, to find the
optimal set of points, good algorithms need to spend much
effort searching for the “correct” circle – the circle contain-
ing the optimal set of points.
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Figure 7: (Left) A histogram of the 50 best solutions found
by EnumAllCircles showing how many solutions had
the corresponding number of checklists previously reported
to eBird (June, k = 3, r = 20 km). (Right) Trace map of
the solutions for each month from January to June (k = 5,
r = 20 km).

In order to show that the our techniques can also help
in exploring under-sampled areas, we perform the follow-
ing evaluation: We count the number of checklists sub-
mitted for regions within 5 km radius around the rec-
ommended locations from the 50 best solutions found by
EnumAllCircles. Figure 7(Left) shows a histogram of
the amount of existing checklists for these 50 best solutions,
when considering the month of June, k = 3 and r = 20
km. The results reveal that while some solutions may al-
ready have a large number of checklists submitted (with the
maximum near 150), most solutions contain locations in ar-
eas with few checklists (most solutions have less than 50
existing checklists, and many in fact have zero checklists).
While some of these areas might be inconvenient to access,
we argue that a lot of under-sampling results from a lack of
attention, rather than inaccessibility. For example, Tompkins
County, where the Cornell Lab of Ornithology is located, re-
ceives numerous checklists every year, while nearby Tioga
county receives many fewer checklists, though it has a sim-
ilar degree of accessibility. We hope our tool can direct bird
watchers to under-sampled areas; thus improving the spatial
coverage of eBird data and hence the quality of species dis-
tribution model.

Finally, Figure 7(Right) shows the best regions found by
EnumAllCircles from January to June (k = 5, r = 20
km), grouped by month. The places are clustered in the map,

so we use one marker to represent all places recommended in
each month. It is clearly seen that the best locations are mov-
ing farther north as the weather gets warm, which matches
the known species migration patterns.

5 Conclusions
In this paper we address the task of identifying rewarding
tasks to citizen scientists, while promoting scientific discov-
ery. We developed Bird-Watcher Assistant to recommend in-
teresting birding sites, aiming at boosting participation and
scientific exploration of eBird. We propose two variants of
the probabilistic maximum coverage problem, provide the-
oretical analysis of the two variants, describe several algo-
rithms with provable approximation guarantees, as well as
heuristic approaches, and provide empirical results using
eBird data. Our algorithms are very fast and provide high
quality solutions. Future directions include other variants of
the problem with other types of constraints as well as the de-
velopment of models that factor in the expertise level of the
citizen scientists. We are also implementing our model as a
mobile application.
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A Appendix
Enumerating circles

We first introduce some notation. For any circle C, we call
the set formed by all the points in P contained in C the point
set induced by C, denoted as QC . The family of point sets
Qr is formed by all point sets that are induced by circles of
radius r. More formally:

Qr = {Q ⊆ P | ∃ circle C of radius r, C induces Q}.

Any set S, that is a solution to the (k,r)-BestPlaces
problem, satisfies the locality constraint and hence must be a
subset of one member in Qr. On the other hand, any subset
of a set in Qr satisfies the locality constraint. Therefore, the
(k,r)-BestPlaces problem could be rewritten as:

maximize f(S)

subject to |S| ≤ k, and ∃ QC ∈ Qr, S ⊆ QC .

If we have a way to enumerate all members in Qr, then
for each such point set, the problem reduces to a submodu-
lar optimization subject to solely a cardinality constraint, for
which we have an efficient approximation algorithm. Thus,
the hardness of the problem is in how to enumerate all mem-
bers in Qr. We define Q′r as:

Q′r = {Q ⊆ P | ∃ circle C of radius r, C induces Q, and
C intersects with at least 2 points in P}.



It is clear that Q′r ⊆ Qr. As we will prove in proposi-
tion A.1, Qr ⊆ Q′r holds as well. Therefore, Q′r = Qr.
This is encouraging because we have an obvious way to enu-
merate all members in Q′r (or equivalently in Qr); namely,
enumerating all pairs of points in P , and for each pair of dis-
tance at most 2r we form circles (possibly two) intersecting
with this pair, and consider the point sets induced by these
circles.

Proposition A.1. Qr ⊆ Q′r.

Proof. For any Q ∈ Qr, by definition, there exists a cir-
cle C0 of radius r, such that C0 induces Q. In the worst
case, suppose all vertices in Q lie in the interior region of
C0. We can locally perturb C0 until one vertex q′ ∈ Q hits
the boundary of C0. Note at this stage, C0 still has one ex-
tra degree of freedom; therefore, we could continue moving
C0, while keeping q′ fixed on its border, until another vertex
q′′ ∈ Q falls into the boundary. The resulting circle is C1.
C1 has at least q′, q′′ lying on its boundary, and contains the
same set of vertices as C0. In other words, C1 induces Q as
well. Thus, Q ∈ Q′r. This implies Qr ⊆ Q′r.

Based on this proposition, we propose a polynomial time
approximation algorithm, EnumAllCircles. This algo-
rithm enumerates all members in Q′r. For each Q ∈ Q′r, the
algorithm calls Algorithm 1 as an approximation procedure
to get S ⊆ Q with cardinality less than or equal to k. The
set S with the best objective value across all members ofQ′r
is returned.

Data: Point set P = {1, . . . , n}, f , k and r.
Result: Point set S, S ⊆ P , |S| ≤ k and S is covered

by a circle of radius r.
1 Sbest ← ∅;
2 for i, j ∈ P , and dist(i, j) ≤ 2r do
3 Find circle(s) C1 (and potentially C2) that intersects

with both i and j;
4 for C ∈ {C1, [C2]} do
5 extract points PC covered by circle C;
6 S ← Algorithm 1(PC , f, k);
7 if f(S) > f(Sbest) then
8 Sbest ← S;
9 end

10 end
11 end
12 return Sbest

Algorithm 3: EnumAllCircles: an (1-1/e) ap-
proximation algorithm for (k,r)-BestPlaces.

Algorithm 3 runs in O(n2(d + n0mk)), where n is the
number of points, n0 is the maximal number of points within
a circle, m is the number of species and d is the time to find
the set of points that are induced by a circle. To minimize the
time d, we use a KD-tree which stores all points according
to their coordinates. Thus finding the set of points within a
circle takes d = O(

√
n+ n0).

EnumAllCircles achieves approximation bound of
(1− 1/e) for the (k,r)-BestPlaces problem. Suppose

the optimal value is OPT obtained on the point set Sopt.
From the second formulation of the problem, there must
exist Q ∈ Qr, such that Sopt ⊆ Q. Because Qr = Q′r, Q
must be enumerated during the execution of Algorithm 3,
i.e. there is a circle C considered by the algorithm such that
PC in line 5 is Q. Because Sopt is also the optimal solution
to the k-BestPlaces problem when considering only
points in Q, the solution S returned by the k-BestPlaces
approximation algorithm 1 in line 6 during that iteration
must satisfy f(S) ≥ (1 − 1/e)f(Sopt) = (1 − 1/e)OPT .
This implies that f(Sbest) ≥ f(S) ≥ (1− 1/e)OPT .

Enumerating Hexagons: Proof of Theorem 3.2

Proof. It is easy to see that Sbest is covered by a circle of
radius 2r. To prove the approximation guarantee, assume R
is a shape. It could be either a circle or a hexagon. With-
out causing confusion, we also use R to represent all the
points contained in R. Denote by OR an optimal set of
points for k-BestPlaces(R). Moreover, denote AR as
the set of points returned by Algorithm 1 when running on
the set R. Hence, f(AR) ≥ (1 − 1/e)f(OR) for any shape
R. Let Ctess(r) be the set of circles circumscribing regular
hexagons of side length 2r in the tessellation, as shown in
Figure 3.

Given a (k,r)-BestPlaces instance, suppose Copt

is a circle of radius r that contains the optimal set of points
Sopt. From Proposition 3.1, Copt cannot intersect more than
3 hexagons. Without loss of generality, suppose Copt inter-
sects with hexagons H1, H2 and H3. Let Pi be the points
that are in Sopt ∩ Hi. From the submodularity of f(S),
it follows that OPT = f(Sopt) = f(P1 ∪ P2 ∪ P3) ≤
f(P1) + f(P2) + f(P3). Again without loss of generality,
assume f(P1) = max{f(P1), f(P2), f(P3)}, then we have
OPT ≤ 3f(P1).

Note P1 is a subset of points of size at most k and
P1 ⊆ H1. Therefore, f(P1) ≤ f(OH1). Because C1 cir-
cumscribes H1, thus f(OH1) ≤ f(OC1). Combining with
f(AC1) ≥ (1 − 1/e)f(OC1), we have f(P1) ≤ (1 −
1/e)−1f(AC1).

Therefore, f(AC1
) ≥ (1−1/e)f(P1) ≥ 1

3 (1−1/e)OPT .
Finally, because f(Sbest) is obtained by taking the max-

imum value f(ACj ) for all circles Cj enumerated by the
algorithm, we get the approximation bound.

Proof to Theorem 2.1
Proof. (Monotone) For any finite set B and element a

f(B ∪ {a}) = NSpecies−
∑

i∈Species

∏
j∈B∪{a}

(1− pi,j)

≥ NSpecies−
∑

i∈Species

∏
j∈B

(1− pi,j) = f(B).

(Submodularity) For any finite set A, B, A ⊆ B, and an
item a, a /∈ B, it suffices to prove

f(A ∪ {a})− f(A) ≥ f(B ∪ {a})− f(B). (1)



It follows from the following calculation,

f(B ∪ {a})− f(B)

=
∑

i∈Species

(1−
∏

j∈B∪{a}

(1− pi,j))−

∑
i∈Species

(1−
∏
j∈B

(1− pi,j))

≤
∑

i∈Species

∏
j∈A

(1− pi,j)pi,a

=
∑

i∈Species

(1−
∏

j∈A∪{a}

(1− pi,j))−

∑
i∈Species

(1−
∏
j∈A

(1− pi,j))

=f(A ∪ {a})− f(A).

Proof to Theorem 2.2
Proof. The decision version of k-BestPlaces is whether
there is a set S, S ⊆ P , |S| ≤ k, such that f(S) ≥ d.
We give a reduction from the Set Cover Problem. The Set
Cover Problem is defined as: given an element set R =
{r1, r2, . . . , rn} and m subsets R1, R2, . . . , Rm, are there
k subsets Ri1 , Ri2 , . . . , Rik such that all elements in R are
covered by ∪kj=1Rij ?

Given a Set Cover instance, we construct a
k-BestPlaces instance, where a species i corresponds
to each element ri ∈ R, and a location j corresponds to
each set Rj . Consider the following deterministic setting,
where pij = 1 if and only if ri ∈ Rj ; otherwise pij = 0.
Finally, we set d = n = |R|.

Let S be the set of k locations corresponding
to Ri1 , Ri2 , . . . , Rik . It is sufficient to prove that
Ri1 , Ri2 , . . . , Rik covers R if and only if f(S) ≥ n. Given
a k-BestPlaces solution S such that f(S) ≥ n, for
the sake of contradiction suppose that ri is not covered by
Ri1 , Ri2 , . . . , Rik ∈ S. By our construction, this implies
that pij = 0 for all location j ∈ S. Thus 1 −

∏
j∈S(1 −

pij) = 0, which implies f(S) < n. Conversely, given
a Set Cover solution Ri1 , Ri2 , . . . , Rik that covers R, for
the sake of contradiction suppose that the corresponding
k-BestPlaces solution S has f(S) < n. Then, there
must exist a species i, such that pij = 0 holds for all j ∈ S.
By construction, this implies ri /∈ Rj ,∀j ∈ {i1, . . . , ik},
i.e. ri is not covered.

Finally, it is trivial to show k-BestPlaces admits a
polynomial certificate, which completes our proof of NP-
completeness.

References
Bartlett, T. 2011. Bugguide. bugguide.net.
Bonney, R.; Cooper, C. B.; Dickinson, J.; Kelling, S.; Phillips,
T.; Rosenberg, K. V.; and Shirk, J. 2009. Citizen science: a
developing tool for expanding science knowledge and scientific
literacy. BioScience 59(11):977–984.
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