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Abstract. Despite much interest, physics knowledge discovery from
experiment data still remains largely a manual trial-and-error process.
This paper proposes neural differential equation embedding (NeuraDiff),
an end-to-end approach to learn a physics model characterized by a set of
partial differential equations directly from experiment data. The key idea
is the integration of two neural networks – one recognition net extracting
the values of physics model variables from experimental data, and the
other neural differential equation net simulating the temporal evolution of
the physics model. Learning is completed by matching the outcomes of the
two neural networks. We apply NeuraDiff to the real-world application of
tracking and learning the physics model of nano-scale crystalline defects
in materials under irradiation and high temperature. Experimental results
demonstrate that NeuraDiff produces highly accurate tracking results
while capturing the correct dynamics of nano-scale defects.

Keywords: Physics Knowledge Discovery · Neural Differential Equation
Embedding · Nano-scale Materials Science.

1 Introduction

The advancement and application of machine learning in the last decade has
been crucial in many domains. In spite of its wide outreach, the potential
to leverage machine learning for scientific discovery in a closed loop has not
been fully realized. Real-world experimentation and physics-based simulation
provide a forward approach to validate a given physics model. The accuracy of
a hypothetical model can be verified by testing if the simulated results match
actual experiments. Nonetheless, the more important backward learning task,
namely, knowledge discovery and refinement of physics models from experimental
data, remains largely a manual trial-and-error process relying on the intuitions
and inspirations from the physicists (upper panel Figure 1). Recently, a series of
research [16, 29, 40, 9, 39, 36] aim at learning partial differential equations from
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Fig. 1. (Upper) Physics experiments and simulation provides a forward approach to
validate a physics model. Our Neural Differential Equation Embedding (NeuraDiff) is a
backward approach to learn a physics model directly from experimental data. (Lower)
The high-level idea of NeuraDiff. A recognition network extracts model parameters
at time t0, which are fed to a neural differential equation net to simulate evolution for
T steps, and are compared with the recognized results at t0 + T . Back-propagation is
utilized to match the output of the recognition and the neural differential equation net.

data. However, they did not achieve fully automatic physics model identification
from experiment data because the input of these models are the trajectories
of differential equations, which may be unavailable from experiment data and
need to be extracted as a separate step. Unfortunately this is the case in the
application domain considered in this paper.

We develop neural differential equation embedding (NeuraDiff), an end-to-
end approach to learn a physics model characterized by a set of partial differential
equations directly from experiment data. The key idea is the integration of two
neural networks, one neural differential equation net simulating the temporal
dynamics, and the second recognition net extracting the values of physics model
variables from experimental data. The high level idea is shown in the lower panel
of Figure 1. Here, the recognition net extracts physics model variables at time t0
and feed it to the differential equation net to simulate the temporal evolution for
T steps. Then, the predicted model parameters are compared with the recognized
values at time t0 + T and with additional annotations. Back-propagation is
utilized to minimize the difference among the predictions of the recognition net,
the differential equation net, and the annotations. The three predictions converge
when the training is complete.

The development of NeuraDiff was motivated by the real-world application
of tracking and learning the physics model of nano-scale crystalline defects in
materials. These materials and alloys are critical for current nuclear fission
reactors and future fusion devices. Nano-scale crystalline defects can appear in
different forms in these materials. Extreme environments of heat and irradiation
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Fig. 2. (Upper Left) The Intermediate Voltage Electron Microscopy (IVEM) – Tan-
dem Facility at the Argonne National Laboratory which provides in-situ TEM data.
Source: anl.gov. (Middle and Right) Sample images captured during in-situ radiation
experiments. The middle image shows void defects embedded in a Cu specimen at
350oC and irradiation dose 0.25 – 1.00 dpa (dose increases with time). Void migration
is illustrated by the change in sizes and in the angles of yellow lines in the right images.

can cause these defects to evolve in size and position. As shown in Figure 2,
void shaped defects are captured by transmission electron microscope (TEM)
cameras during in-situ radiation experiments. These defects appear in round
shapes, and drift in position as demonstrated by the change of angles α, β to
α′, β′ respectively, as time progresses. They also change size. These changes can
affect the physical and mechanical properties of the material in undesirable ways
as discussed in [31]. For this reason, characterizing these defects is essential in
designing new materials that can resist adverse environments.

In-situ radiation experiments are carried out to analyze the evolution of
crystalline defects in materials. During these experiments, changes in a material
specimen, subjected to high temperature and irradiation, is recorded through
a TEM camera and stored in high-resolution high frame rate videos. The huge
amount of data calls for a data-driven approach to expedite the video analysis,
which can bring in new scientific knowledge and insights for alloy designs. However,
manual video analysis requires huge effort. According to our calculation, it takes a
graduate student 3.75 months to fully annotate the defects in a 10-minute in-situ
video if he spends 5 minutes per frame and devotes 40 hours a week. Phase-field
modeling is a simulation tool commonly used to study the evolution of point
defects. In this model, the evolution of the void shaped defects is characterized
by a number of field variables. These field variables are continuous, vary rapidly
at the interface of the void defects, and are governed by a number of differential
equations. Data assimilation is often used to estimate the model parameters of a
phase-field model from data. However, tuning phase-field models relies heavily
on expert knowledge, and the results are often qualitative.

Our proposed NeuraDiff learns the phase field model automatically as de-
scribed in [30] that governs the void nucleation and growth in irradiated materials,
while provides accurate tracking of void clusters. NeuraDiff connects phase-field
simulation and physics experiments, enabling an automatic pipeline to discover
correct physics models from data. Our experimental results show that NeuraDiff
produces highly accurate tracking results while learning the correct physics.
Our model’s accuracy is close to 100% on both the synthetic dataset and a
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real-world in-situ dataset of Cu under 350oC and an irradiation dose of 0.25
– 1.00 dpa (dose increases as time goes by). Moreover, our model learns the
correct physics. The simulation based on the phase-field parameters learned by
our model demonstrate similar dynamics as the ground truth, while a neural
model without embedding physics cannot discover the correct dynamics. We also
tested our model for transfer learning. Our NeuraDiff model correctly predicts
the evolution of nano-structures from an unseen start condition while competing
approaches cannot.

In summary, our contribution is as follows: 1) we propose NeuraDiff, an end-
to-end approach integrating the recognition and the neural differential equation
net to learn a physics model characterized by a set of partial differential equations
directly from experiment data. 2) We apply NeuraDiff in tracking and learning
the physics model of nano-scale crystalline defects in materials from in-situ
experiments. Our approach enables detailed analysis of nano-structures at scale,
which otherwise is beyond reach of manual efforts by materials scientists. 3) Our
experimental results show that NeuraDiff produces close to 100% accuracy in
tracking void defects. 4) Our NeuraDiff learns the correct physics while neural
networks without embedding physics cannot. 5) Our NeuraDiff performs well in
a transfer learning setting.

2 Phase-field Model

Micro-structures in nano-scale physics are spatial arrangements of the phases
that have different compositional and/or structural characters; e.g., the regions
composed of different crystal structures and/or having different chemical composi-
tions, grains of different orientations, domains of different structural variants, and
domains of different electric or magnetic polarizations. The size, shape, volume
fraction, and spatial arrangement of these micro-structural features determine
the overall properties of multi-phase and/or multi-component materials.

In a phase-field model, micro-structures are defined by a set of field variables.
Field variables are assumed to be continuous and changing rapidly across the
interfacial regions. For example, in the phase field model of irradiated metals,
3 different phase-filed variables cv, ci and η together represent the system state.
cv(r, t) represents the voids concentration, ci(r, t) represent interstitial concen-
tration and η(r, t) differentiates between the two phases - solid phase and void
phase (details discussed later). Here, r = (x, y) represents the spatial coordinates
and t represents time. We work with 2-dimensional case in this paper, but high
dimensional cases can be handled similarly.

cv and ci represents two types of defects in irradiated metals – voids and
interstitials. Voids result from the missing of atoms in certain crystal lattice
locations, as shown in Figure 2. cv is zero in the region consisting of 0% of voids
and is one in regions of 100% voids. cv changes continuously albeit rapidly at
the interfaces of void and non-void regions. The interstitials, represented by ci,
are another variety of crystallographic defects, where atoms assume a normally
unoccupied site in the crystal structure. ci is defined similarly to cv. The void
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cluster variable η is an order parameter that spatially differentiates the 2 phases.
η takes a constant value η = 0 in the solid phase and η = 1 in the void phase.

Phase-field modeling leverages a set of differential equations of these field
variables to model the microstructure evolution. The temporal evolution of a
conserved field variable u(r, t) is governed by the Cahn–Hilliard [7] equation:

∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
. (1)

Here, F is the free energy. M is the diffusivities of the material species and N

is the number of lattice sites per unit volume of the material. ∇ =
(
∂
∂x ,

∂
∂y

)
is

the diffusion operator. ∇ · ∇ is the laplacian i.e., ∇2f = ∂2f
∂x2 + ∂2f

∂y2 . δF
δu is the

functional derivative. A non-conserved field variable v evolves according to the
Allen–Cahn [1] equation: ∂v

∂t
= −L δF

δv
. (2)

Here L is the mobility constant. In the phase-field model for irradiated metals,
cv, ci are conserved field variables and η is a non-conserved field variable. Allen-
Cahn and Cahn-Hilliard equations are the cornerstones of phase-field modeling.
They offer good descriptions of the basic physics of many multi-phase systems.
Finite Difference Approach. Finite difference is a useful tool to obtain
numerical solutions to differential equations. Let (x1, . . . , xNx

) and (y1, . . . , yNy
)

be a finite discretization of the x-axis and the y-axis covering the region of
interest. We use uniform step sizes, i.e., xi − xi−1 = yj − yj−1 = ds for all
i ∈ {2, . . . , Nx} and j ∈ {2, . . . , Ny}. As a result, the region is covered by a finite
mesh of the size Nx×Ny. We also assume the time is discretized into (t1, . . . , tNt)
and tk − tk−1 = dt for k ∈ {2, . . . , Nt}. Let u(r, t) be a function that depends on
location r = (x, y) and time t. We discretize u onto this mesh by denoting ui,j,k
as a shorthand for u(xi, yj , tk). The finite difference algorithm uses the finite
difference to approximate derivatives. For example, the value of ∂u∂x (xi, yj , tk) can
be approximated by:

(u(xi+1, yj , tk)− u(xi, yj , tk))/(xi+1 − xi) = (ui+1,j,k − ui,j,k)/ds.

Similarly, ∇2f , the second order laplacian ∇2 of a 2D function f , can be approx-
imated by five point stencil centered second-order difference:

∇2fi,j,k =
1

ds2
(fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k − 4fi,j,k)

Using this idea, both the Cahn-Hilliard and the Allen-Cahn equations can be
discretized. A finite approximate solution can be obtained by simulating the
evolvement of field variables from a given starting state.

3 Problem Statement

Our phase field model of irradiated metals follow largely from the work of
[30]. This model incorporates a coupled set of Cahn–Hilliard and Allen–Cahn
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equations to capture the processes of point defect generation and recombination,
annihilation of defects at sinks. The phase-field model includes 3 field variables,
cv, ci, and η, which vary both spatially and temporally. All of the variables are
continuous, yet vary rapidly across interfaces. The total free energy F of the
heterogeneous material is expressed in terms of the free energy of each constituent
phases and interfaces:

F =N

∫
V

[
h(η)fs(cv, ci) + j(η)fv(cv, ci) +

κv
2
|∇cv|+

κi
2
|∇ci|+

κη
2
|∇η|

]
dV.

Here, fs(cv, ci) is the contribution term from the solid phase. h(η) = (η −
1)2 makes sure that fs contributes 0 when η = 1. Similarly, fv(cv, ci) is the
contribution term from the void phase, and j(η) = η2. We use the formulation
from [30] for fs and fv:

fs(cv, ci) = Efv cv + Efi ci + kBT [cv ln cv + ci ln ci + (1− cv − ci) ln(1− cv − ci)],
fv(cv, ci) = (cv − 1)2 + c2i .

According to the phase-field model, the dynamics of the field variables cv, ci
and η should follow the Cahn-Hilliard and the Allen-Cahn equations. Nevertheless,
new voids and interstitials can form due to irradiation and thermal fluctuation.
Therefore, the standard equations need to be updated to the form:

∂cv
∂t

=∇ · (Mv∇
1

N

δF

δcv
) + ξ(r, t) + Pv(r, t)−Riv(r, t),

∂ci
∂t

=∇ · (Mi∇
1

N

δF

δci
) + ζ(r, t) + Pi(r, t)−Riv(r, t),

∂η

∂t
=− LδF

δη
+ ι(r, t) + Pv(r, t).

Here, ξ, ζ and ι are thermal fluctuation terms, modeling the fact that voids and
interstitials can appear randomly in the environments of high temperature and
irradiation. Pv and Pi reflect the voids (and interstitials) introduced during the ir-
radiation process. Irradiation hits the surface of the materials and both voids and
interstitials can form as a result. Riv models the cancellation of voids and inter-
stitials. We refer the details of these terms to the original publication [30]. In this

model, the following set of parameters P = {Efv , E
f
i , kBT, κv, κi, κη,Mv,Mi, L}

determine the evolution of nanovoids. Our physics learning task is to identify the
values of these parameters from a partially annotated video of void dynamics.

We assume access to partial video annotations, in which part of regions in a
subset of frames are annotated. For simplicity, we assume one pixel in one frame
V can be in three states: 0 means the pixel is annotated to be in a solid state;
i.e., η = 0; 1 means the pixel is annotated to be part of a void cluster; i.e., η = 1;
∗ means the pixel is not annotated or the annotator is not sure of its state. We
denote A as a matrix of these annotations, each entry of which is one of the
three states for the corresponding pixel. The physics-aware micro-structure
tracking problem is defined as:
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Fig. 3. The architecture of NeuraDiff. Our architecture consists of a recognition net,
which predicts field variable values (cv, ci and η) based on video frames. A second
neural differential equation net simulates phase field evolution for T steps. Finally, a loss
function is applied which penalizes the difference among the predictions from the neural
differential equation net, the recognition net and the annotations. Backpropagation is
then used to train the two neural networks to minimize the loss function.

– Given: {(t1, V1, A1), (t2, V2, A2), . . . , (tN , VN , AN )} as a partially annotated
video of nano-structural evolution, where t1, . . . , tN are time stamps, Vi is
the video frame for the time stamp ti and Ai is the partial annotation for Vi,
in which each pixel is annotated to one of the three states.

– Find: (i) track microstructures: for each frame Vi, find matrix ηi, which
contains the predicted η value for each pixel. (ii) learn physics: find the
set of phase-field parameters P , along with the values of the unobserved
variables cv and ci, which best fit the micro-structure evolution.

4 Neural Differential Equation Embedding

Our NeuraDiff model learns a physics model directly from experiment data via
a tight integration of a neural differential euqation net and a recognition net,
embedding phase-field simulation into neural network learning. The high level
idea is shown in Figure 3. A recognition net extracts the values of the three field
variables, cv, ci and η from noisy video frames. Taking these field variables as
initial condition, the neural differential equation net uses the finite difference
method to simulate a phase-field model. We implement the finite difference
method as a convolutional neural net (details discussed later), the parameters of
which can be updated via back-propagation. This architecture is related to the
recurrent neural networks (RNN), where the same operational step is repeatedly
applied during the forward pass. Contrary to RNNs, each step in our neural
differential equation net represents a simulation step of the phase-field model.

NeuraDiff works through a triage process. First the recognition net extracts
the three field variables from the video frame at time stamp t0. The predicted
field values are partially replaced by the groundtruth annotations (if they are
present at t0) and are sent to the neural phase-field net. The neural differential
equation net then simulates the phase-field model for T steps and outputs the
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simulated field variable values at time t0 + T . We also have partial annotations
at the time t0 + T and the predictions of these field variable values from the
recognition net. Ideally, if the recognition net is trained to predict the three field
variables accurately and the neural differential equation net has the ground-truth
parameters, then the three outcomes, namely, the simulated, the recognized
field variables, and the partial annotations at the time t0 + T should match.
Therefore, we enforce a loss function which penalizes the differences among the
three outcomes. Back-propagation is then used to minimize this loss function. At
the end of training, when the predictions from both neural nets and the partial
annotations all match, the recognition net is able to extract phase field values
from video frames and the neural differential equation net captures the correct
phase-field parameters.

Recognition Net. The recognition net predicts the three field variables cv,
ci and η from in-situ experiment video frames. Under a transmission electron
microscope (TEM), void clusters, or the η variable, can be reliably observed (see
Figure 2 for void clusters in the actual TEM pictures). The void and interstitial
defect percentages (cv and ci) are depicted as black shades but cannot be reliably
observed due to noise caused by small perturbations, e.g., slight bending of the
material samples. The bending of samples is in the scale of nanometers, which
cannot be eliminated experimentally, even given the best effort. Therefore, we
treat cv and ci as unobserved variables.

The η variable can be predicted mainly from the video frames by the recogni-
tion net, i.e., η(., t) = RNη(Vt). As a way to estimate hidden variables cv and
ci, we introduce location embedding vectors into our recognition net model. Let
l1, . . . , lN be N vectors, where lt is the location embedding vector for time t. The
value of these vectors vary continuously and slowly with time t. Our first idea was
to build the recognition net for cv and ci as cv(., t) = RNv(lt) ci(., t) = RNi(lt).
Here, RNv and RNi are two neural nets which translate the location embedding
vector lt into the field variables cv and ci at time t, which are both matrices of
the size Nx ×Ny. As a second idea, we also include the video frame at time t,
Vt, as the input, since it offers partial information (the black shades). As the
final result, the three field variables are predicted from an uniform architecture
cv(., t) = RNv(lt, Vt), ci(., t) = RNi(lt, Vt), and η(., t) = RNη(lt, Vt).

In practice, the three recognition nets, RNv(lt, vt), RNi(lt, vt), RNη(lt, vt)
are all implemented using the UNet architecture [35]. UNet follows a contracting
then expanding neural path. Our motivation for using UNet as the recognition net
stems from its wide use in scientific community, although in principle any pixelwise
pattern recognition network can be used in this case. In our implementation, the
input of the UNet are the video frames Vt. The location embedding vectors lt
are appended to the bottleneck vector in UNet.

Neural Phase-field Net. One of our key contributions is to encode a finite
difference phase field model as a differential equation network. As a result, the
neural differential equation net can be embedded in the overall neural network
architecture, allowing end-to-end training. The high-level idea is to use finite
difference to approximate the Cahn-Hilliard and Allen-Cahn equations. We
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present here the details of embedding the Cahn-Hilliard equation. Similar process
applies for the Allen-Cahn equation. Recall the Cahn-Hilliard equation is as
follows: ∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
=
M

N
∇2

(
δF

δu

)
.

Using finite difference approach as described previously, especially noting
∇2f can be approximated by the five point stencil centered second-order differ-
ence, ∇2fi,j,k = 1

ds2 (fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k − 4fi,j,k), the Cahn-
Hilliard equation can be written as:

uk+1 = uk +
M

N

dt

ds2
Conv(

δF

δu
,K). (3)

Here, uk is a discretized matrix of field variable u in which the i, j-th entry of uk
is u(xi, yj , tk). The functional derivative δF

δu is also a matrix, whose i, j-th entry

is δF
δu (xi, yj , tk). δF

δu can be derived by hand. Conv means to convolve δF
δu with

kernel K, where

K =

0 1 0
1 −4 1
0 1 0

.
Equation 3 gives out a finite difference form to obtain the value of the field
variable uk+1 in the next time stamp from the current value uk. Interestingly, the
temporal dynamics of uk can be calculated via a convolutional operator, which
can be implemented as a neural network layer relatively easily and subsequently
embedded into NeuraDiff. Notice that a key difference between our neural
differential equation net and a common convolutional layer is that, the convolution
kernel is learned through training in a classical convolutional net. However, in
our neural differential equation net, we keep the convolution kernel fixed, and
learn the parameters associated with the variables in free energy F .
Overall Architecture and Training. The overall architecture of NeuraDiff
combines the recognition net with the neural differential equation net. We
arrange the dataset into pairs of frames which are T time stamps apart: D =
{(ti, Vti , Ati , Vti+T , Ati+T ) | i = 1, . . . ,M}. Here, Vti is the video frame at the
time stamp ti. Ati is the annotation for Vti . Vti+T and Ati+T are the video
frame and its annotations at the time stamp ti + T . First, Vti are fed into the
recognition net together with the location embedding lti to produce the predicted
field variables c∗v, c∗i , and η∗ at time stamp ti. We replace the portion of η∗ with
the ground-truth annotation if the annotation is available. The updated value
of η∗ is denoted by η∗∗. After this update, c∗v, c

∗
i , and η∗∗ values are sent to

the neural differential equation net to simulate for T steps. The results of the
simulation are c∗v(ti + T ), c∗i (ti + T ), and η∗(ti + T ). At ti + T , the recognition
net produces the recognized field variables ĉv(ti + T ), ĉi(ti + T ) and η̂(ti + T ).
Along with the annotations, the triage loss function that the neural network
model optimizes, penalizes three types of mismatches:

L = Lsim + λ1Lrec + λ2Lsim−rec.

Here, Lsim denotes the loss function for the mismatch between simulated η∗

and the annotations A: Lsim = ‖1A(η∗ − A)‖2. 1A is the indicator matrix
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of annotations, the entry of which is 1 if the corresponding entry in A is
not ∗. Lrec denotes the loss penalizing the mismatch between recognized η̂
and the annotations A, Lrec = ‖1A(η̂ − A)‖2. Lsim−rec denotes the penal-
ties between the simulated and recognized phase-field variables Lsim−rec =(
‖η∗ − η̂‖2 + ‖c∗v − ĉv‖2 + ‖c∗i − ĉi‖2

)
In these equations, all phase-field variables

are at time ti + T . λ1 and λ2 are hyper-parameters that balance the relative
importance of terms. The entire neural network structure is trained via stochastic
gradient descent. A minibatch of frames are sampled for the back-propagation
algorithm in each iteration.

5 Related Work

AI Driven Scientific Discovery There has been a recent trend to leverage
AI for scientific discovery. In materials science, CRYSTAL is a multi-agent
AI system to solve the phase-map identification problem in high-throughput
materials discovery [15]. Neural models have been proposed to generate optimized
molecule designs; see, e.g., the Attentive Multi-view Graph Auto-Encoders [28],
the Junction Tree Variational Autoencoder [19, 20], message passing neural
networks [33]. Attia et al. demonstrate a machine learning methodology to
efficiently optimize the parameter space for fast-charging protocols in electric-
vehicles [3]. Bayesian optimization and reinforcement learning have also been used
in budgeted experimental designs [4]. Embedding physics knowledge in machine
learning has also attracted attention. The work by [27] adds to variational
autoencoders constraints as regularization terms to improve the validity of the
molecules generated. Grammar Variational Autoencoders [23] provided generative
modeling of molecular structures by encoding and decoding directly to and from
these parse trees, ensuring their validity. Constraint driven approaches such as
satisfiability modulo theory (SMT) have also been used to ensure physically
meaningful results [12]. In addition, the work of [38] proposed a new supervising
approach to learn from physical constraints.
Embedding Optimization in Neural Architectures Amos et al. proposed
to embed quadratic program as a layer in an end-to-end deep neural network [2].
Recently, Ferber et. al. proposes to embed a mixed integer program as neural
network layers [13]. Devulapalli et al. proposed a neural network capable of back-
propagating gradients through the matrix inverse in an end-to-end approach for
learning a random walk model [11]. Dai et al. proposed learning good heuristics
or approximation algorithms for NP-hard combinatorial optimization problems to
replace specialized knowledge and trial-and-error [21]. The work by [18] proposes
a new programming language for differentiable physical simulation. [37] proposes
a graph network based simulator, where a stack of embedded graph networks
in an encoder-decoder architecture is used to learn the dynamics of particles
interacting in a 3D environment.
Learning PDEs Previous work has discovered approaches that include physics
information in machine learning, where the physics models are represented by
differential equations; see, e.g., in turbulence prediction [32]. Bezenac et al. used
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a convolutional-deconvolutional (CDNN) module to predict the the motion field
from a sequence of past images for sea surface temperature forecasting, motivated
by the solution of a general class of partial differential equations [6]. Lutter et
al. proposed Deep Lagrangian Networks that can learn the equations of motion
of a mechanical system with a deep network efficiently while ensuring physical
plausibility. Their approach incorporates the structure introduced by the ODE of
the Lagrangian mechanics into the learning problem and learns the parameters
in an end-to-end fashion [26]. Time-aware RNNs [10] utilized the similarities
between a set of discretized differential equations and the RNN network to model
the system equations from a physics system. PDE-Net [24] was proposed to
accurately predict dynamics of complex systems by representing the PDEs with
convolutional networks where all filters are properly constrained. Neural ODE
was introduced in [8, 25], where the output of a neural network is treated as the
continuous-time derivative of input, thus providing an interface to incorporate
differential equation modeling into machine learning models. Their work have
inspired a number of other ideas. For example [22] uses a natural spline to handle
irregularly observed time series data with Neural CDE model. While the original
Neural ODE model was designed for continuous time modeling, discrete time
modeling have been proposed as well by [29]. Hamiltonian neural network (HNN)
as proposed in [16] uses partial derivatives of the final output instead of the
actual output value, to approximate an energy function and build a Hamiltonian
system with a neural network. To make learning easier in HNN, [14] propose a
change in system representation along with explicit constraints. A separate line
of work [17, 5] exploit this connection to solve PDEs. Most of these works learn
PDEs from the observed trajectories, which in many applications need to be
extracted in separate steps. For example, the TEM videos in our application only
provide partial information on the actual trajectories of the phase-field variables.
Our NeuraDiff integrates a computer vision neural network with a PDE neural
net in the discovery of physics models directly from experiment data.
Image Analysis for In-situ Data Automated image segmentation models are
being developed to identify defects and other nanostructures in TEM images [34].
However, they do not learn any physics models.

6 Experiments

Our experiments on both the synthetic and real-world datasets demonstrate that
our NeuraDiff provides highly accurate tracking while at the same time learns
the phase-field model that governs nanostructure dynamics.
Training. In the experiments, we first pre-train the recognition net before the
entire architecture, to predict the 3 phase-field variables using only video frames.
The details of this pre-training step is provided in the supplementary materials.
The stochastic optimization algorithm we used for both pre-training and the
actual training is Adam, with the initial learning rate set to be 0.01. Additional
details on the experiment setup, train-test split and hyperparameter tuning are
in the supplementary materials.
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Accuracy NeuraDiff UNet Baseline

Synthetic Data 98.5% 99.9%

Real Data 96.2% 96.4%

Table 1. Our NeuraDiff obtains similar and near perfect tracking accuracy as a UNet
baseline in both the synthetic and the real-world datasets.

t=0s t=10s t=20s t=30s t=40s t=50s t=60s t=70s t=80s t=90s

Original 
Video

Tracking
(void in red)

(our alg)

Simulation
from given 
initial cond

(our alg)

Simulation
from given 
initial cond
(baseline)

Fig. 4. Our NeuraDiff provides reliable tracking (2nd row, the tracking result of the
voids shown in red) while learning the correct physics on synthetic data. In the third row,
we simulate our NeuraDiff with the learned parameters from a given initial condition.
The learned model simulates a similar dynamics as the original video. Nevertheless, a
neural network baseline without embedding the phase-field model produces unsatisfying
result (4th row).

Dataset Description. We use both synthetic data and real-world in-situ ex-
periment data to evaluate our model. Both the synthetic and real-world data
are in high frame rate high resolution video format. For generating synthetic
video data, we use the void evolution model as described in [30]. For real-world
data, we use the in-situ experiment video showing the evolution of void defects in
Cu 110, as captured through Transmission Electron Microscopy (TEM) imaging.
The details of synthetic data generation process, the testbed conditions during
in-situ radiation experiments and annotation process for in-situ experiment data
are provided in the supplementary materials.

Highly Accurate Tracking Accuracy. Our NeuraDiff provides highly accu-
rate tracking accuracy, together with a UNet baseline, which were trained to
predict the η values from the video frames using supervised learning. From the
phase-field model, η varies continuously, is close to 1.0 within the void cluster and
is close to 0.0 outside. However, the annotation matrix A is binary (1 for void
cluster and 0 for others). We cut off η values at 0.5 and evaluate the accuracy in
the following way: 1

NxNy

∑
x,y 1(ηx,y ≥ 0.5, Ax,y = 1) + 1(ηx,y < 0.5, Ax,y = 0).

We can see from table 1 that both our NeuraDiff and the UNet baseline
produce close to optimum tracking results. The second row of Figure 4 and
Figure 5 depict the actual tracking of void clusters on synthetic data as well as
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t=0s t=200s t=400s t=600s t=800s t=1000s t=1200s t=1400s t=1600s t=1800s

Original 
video

Tracking 
(void in red)

(our alg)

50nm

Fig. 5. Our NeuraDiff provides accurate tracking (in red) on real in-situ experiment
of Cu at the temperature of 350◦C and 0.25 – 1.00 dpa of irradiation.

t=0s t=5s t=10s t=15s t=20s

Original 

Video

Tracking

(void in red)

(our alg)

Simulation

from given 

initial 

condition 

(our alg)

t=0s t=5s t=10s t=15s t=20s

Fig. 6. Transfer learning result for NeuraDiff. It provides reliable tracking (second row,
in red) and predict correct void progression on unseen data. NeuraDiff was trained on
the dataset used in Figure 4 including a single nanovoid, and was not fine tuned when
evaluated on this dataset of several nanovoids.

on real experimental data. The region of void clusters is highlighted with the red
color. We can visually inspect that the tracking is close to optimum.

Capture the Physics. Aside from providing accurate and reliable tracking, our
NeuraDiff also learns the phase-field model that correctly predicts void cluster
evolution. Our key contribution lies within the fact that our model can learn the
dynamics of void evolution without compromising the tracking task, and needs
less data for the tracking purpose. With the learned parameters, we simulate the
evolution of the phase-field variables from the initial condition of the synthetic
dataset using finite difference. The initial condition is given as the first frame
of the video, instead of the values of the three field variables. Our model has
to infer their values from the recoginition net. The result is shown in the third
row of Figure 4. We can see that the dynamics closely resembles that of the
original video, suggesting that our approach identifies the correct phase-field
model. We point out that the learned parameters as well as the predicted cv
and ci unobserved field variables are different from the original values used to
synthesize the dataset. This suggests that there are multiple parameter values
which lead to similar dynamics. We also evaluated our model performance in
transfer learning. Here, the model was trained on the synthetic dataset involving
one void, but was tested for both tracking and void evolution in an unseen
dataset involving multiple void of different sizes (figure 6). Our model produces
reasonable tracking results and simulates the correct dynamics. See more details
in the supplementary materials.

We tried hard to use a neural network model to predict void evolution
without embedding the phase-field model. However, the result is not satisfying.
For example, in the fourth row of Figure 4, we used the UNet to predict the next
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frame given the current frame. Then we use the UNet to synthesize the entire
video via repeated predictions of the next frame. However, the performance is
not satisfying as the noise quickly dominates the signals. We even tried to feed
the neural network with the correct values of the three field variables and ask
it to predict the next frame. Note the field variable values are not available in
real-world experiments. The baseline neural network cannot predict the dynamics
even with these additional inputs.

7 Conclusion

We present NeuraDiff, an end-to-end model to learn a physics model character-
ized by a set of partial differential equations directly from data. Our key idea is to
embed the physics model as a multi-layer convolutional neural net into the overall
neural architecture for end-to-end training. We apply NeuraDiff in the task of
tracking and characterizing the dynamics of point defect clusters in materials
under high temperatures and heavy irradiations. Our approach produces near
perfect tracking and is able to capture a physics model that predicts future
nanostructure dynamics correctly, which are not possible for pure data-driven
machine learning models. Our model is validated on both synthetic and real
experimental data. Future work include to scale up the computation for high
dimensional, high frame rate videos, and to validate the physics models learned
from our framework with more real-world irradiation experiments.
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