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Abstract. Multi-objective optimization plays a key role in the study
of real-world problems, as they often involve multiple criteria. In multi-
objective optimization it is important to identify the so-called Pareto
frontier, which characterizes the trade-offs between the objectives of dif-
ferent solutions. We show how a divide-and-conquer approach, combined
with batched processing and pruning, significantly boosts the perfor-
mance of an exact and approximation dynamic programming (DP) al-
gorithm for computing the Pareto frontier on tree-structured networks,
proposed in [18]. We also show how exploiting restarts and a new instance
selection strategy boosts the performance and accuracy of a mixed in-
teger programming (MIP) approach for approximating the Pareto fron-
tier. We provide empirical results demonstrating that our DP and MIP
approaches have complementary strengths and outperform previous al-
gorithms in efficiency and accuracy. Our work is motivated by a problem
in computational sustainability concerning the evaluation of trade-offs in
ecosystem services due to the proliferation of hydropower dams through-
out the Amazon basin. Our approaches are general and can be applied
to computing the Pareto frontier of a variety of multi-objective problems
on tree-structured networks.

Keywords: Multi-objective optimization, Pareto frontier, approxima-
tion algorithms, dynamic programming, and mixed-integer programming.

1 Introduction

In recent years there has been a rapid proliferation of hydropower dams through-
out the Amazon basin, which dramatically affects a variety of ecosystem services
provided by the river network such as biodiversity, nutrient and sediment trans-
port, freshwater fisheries, navigation, and energy production [4, 17, 21, 22] (see
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Fig. 1: Left panel Amazon basin: around 300 hydropower dams are proposed
or planned. Three objectives are depicted: (1) Energy (dot sizes denote dam
capacity in MW); (2) Longitudinal connectivity (continuous unobstructed river
segments from the root of the basins, which are marked with stars); and (3)
Seismic risk (map background colors). Right panel: The approximate DP (ε =
0.001) overlaps the exact DP. The new MIP approach is substantially better
than the previous MIP approach (ε = 0.1) and its solutions are on the exact
Pareto curve, slightly better than the DP approximation for the same ε = 0.1.
For a given ε, DP produces substantially more Pareto solutions than MIP.

Fig. 1). Hydropower dam placement is a good example of a challenging real-
world problem in computational sustainability [6], which often involves multiple
objective problems concerning the balancing of environmental, economic, and
societal needs. More concretely, hydropower dam placement is a multi-objective
optimization problem concerning the placement of dams throughout a river net-
work, which is naturally a tree-structured network, trading-off various ecological,
social, and economic goals. In multi-objective optimization, the so-called Pareto
frontier captures the trade-offs among multiple objectives. The Pareto frontier
is the set of all Pareto optimal solutions; a solution is considered Pareto optimal
if its vector of objective values is not dominated by any other feasible solution.
See Fig. 1 for an example of a 2-dimensional Pareto frontier.

Recently there has been considerable interest in the study of multi-objective
optimization problems (see e.g., [20, 16, 3, 10, 11, 8, 2, 13, 14]). Existing approaches
are primarily heuristic, based on local search or evolutionary algorithms, with-
out theoretical guarantees, and do not exploit the tree structure. [5] provides
a constraint programming exact algorithm which is extended by [12] with large
neighborhood search. Both algorithms are designed for general problems. [1] pro-
vides data structures to store Pareto optimal policies in an exact algorithm. This
paper focuses on computing the Pareto frontier, both exact and with approxi-
mation guarantees, on tree-structured networks. In [18] we proposed a dynamic
programming algorithm for trees which computes the exact Pareto frontier, as
well as a rounding technique applied to the exact dynamic programming algo-
rithm that provides a fully polynomial-time approximation scheme (FPTAS).
The FPTAS finds a solution set of polynomial size, which approximates the
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Pareto frontier within an arbitrary small ε factor and runs in time that is poly-
nomial in the size of the instance and 1/ε. We also formulated the problem
of optimizing the placement of dams as a mixed integer programming problem
(MIP) and used it to approximate the Pareto frontier. While the results in [18]
are encouraging, there is room for improvement.
Our Contributions: (1) A key component of our DP algorithm is the prun-
ing of dominated solutions. We provide a divide-and-conquer approach that
significantly improves the efficiency of the pruning of dominated so-
lutions and outperforms the previous approach, leading to speed-ups of two
to three orders of magnitude, in practice; (2) To cope with the large mem-
ory requirements of a multi-objective Pareto frontier, we propose batching to
identify and prune dominated solutions incrementally, scaling up to
much larger problems; (3) We also propose a new MIP based approxima-
tion scheme that exploits restarts and a new instance selection strategy, which
boosts the performance and accuracy of the previous MIP approach for approx-
imating the Pareto frontier. (4) We design a visualization tool of our results
intended for decision makers. (5) We provide empirical results showing that our
proposed algorithms significantly outperform previous approaches.

Preview of Results: Our DP and MIP Pareto frontier algorithms are com-
plementary and scale up to much larger real-world instances than previous al-
gorithms: the DP can now approximate the Pareto frontier for the
entire Amazon basin, when optimizing for energy, connectivity (a proxy for
e.g., unimpeded fish migrations and transportation), seismic risk, and sediment,
in around 5 days, with a coverage of 2, 193, 314 non-dominated solutions, with
the guarantee that the solutions are within at most 5% of the true optimum
(ε = 0.05); in less than 6 hours, the DP provides a coverage of 491, 578 non-
dominated solutions (ε = 0.1); in around 6.5 minutes, the DP provides a coverage
of 23, 019 non-dominated solutions (ε = 0.25); for the same ε = 0.25, the MIP
approach approximates the Pareto frontier in around 25 minutes, with a smaller
coverage of 95 non-dominated solutions, but the MIP approach provides more
flexibility when considering additional constraints and, in practice, its solutions
tend to be closer to the exact Pareto frontier for a given ε. Our overall goal is to
enable more informed decisions concerning the trade-offs of multiple objectives
of optimization problems.

2 Problem Formulation

In this section, we first introduce the hydropower dam placement problem as an
example of a multi-objective optimization problem on a tree structured network.
Then, we show the general formulation of such problems.

2.1 Hydropower Dam Placement Problem

We are given a set of planned dams and need to decide the optimal subset
of dams to build. We refer to this problem as the hydropower dam placement
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(a) River Network (b) Directed Rooted
Tree

Fig. 2: Converting a river network (left) into a more compact directed rooted tree
(right: x is the root). Each contiguous region of the river network (represented
by different colors, and labeled x, u, v, w) is converted into a node, also referred
to as a hypernode (labeled with the corresponding letter, x, u, v, w) in the
tree network. Each potential dam site (represented by a red-yellow circle) is
represented by an edge in the directed rooted tree.

problem. We first point out that a river network is a directed tree-structure
network and that, for the purposes of our hydropower dam placement problem,
we don’t need to explicitly consider every river segment. So, we first abstract the
river network and potential dam locations into a more compact directed rooted
tree that captures the key problem information. Each contiguous section of the
river network uninterrupted by existing or potential dam locations is represented
by a node (we also call it hypernode to emphasize that it encapsulates a river sub
network). Each existing or potential dam location is represented by a directed
edge pointing from downstream to upstream. See Fig. 2 for an example of our
conversion of a river network into a more compact directed rooted tree.

A policy (or solution) π is a subset of potential dam sites to be built. We
can encode many environmental and economical objectives as a function of π.
In this paper, we focus on the following four objectives:

Energy (E): Given a solution π, the total hydropower produced by the
selected dams is E(π) =

∑
e∈π he, where he is the hydropower of the dam rep-

resented by edge e. We want to maximize this objective.
Longitudinal Connectivity (C): For a given solution π, the connectivity

of a river network is measured by the total length of the unobstructed stream
segments that one can travel starting from the root (river mouth) without passing
any dam site in π. We want to maximize this objective.

Sediment (Sd): For a given solution π, this objective represents the total
amount of sediment transported to the river mouth (the ocean in the case of
the entire Amazon basin). We assume that each node produces a fixed amount
of sediment and each dam traps a certain percentage of the sediment from up-
streams. We want to maximize this objective.
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Seismic Risk (Se): Each dam is associated with a seismic risk factor
computed based on its location and its capacity. Given a solution π, this objective
is just the sum of seismic risk factors of all dams in π. We want to minimize this
objective.

The goal of the hydropower dam placement problem is then to optimize the
objective function: (E(π), C(π), Sd(π), Se(π)). Here we are not just looking for
a single solution. For every possible solution, we say that the solution is optimal
as long as there does not exist another solution that is superior in every aspect.

2.2 General Formulation

In general, a multi-objective optimization problem is to optimize a given multi-
objective function: (z1(π), z2(π), ..., zd(π)), where the value of each function zi

depends on a common solution π, also referred to as a policy. Without loss
of generality, we only consider the problem of maximizing objective functions.
Minimizing objective functions can be treated in a similar fashion.
Pareto Dominance: Given two policies π and π′, we say that π dominates π′

if the following two conditions hold: (1) for all i, zi(π) ≥ zi(π′); (2) at least one
strict inequality holds for some i.
Pareto Frontier: A Pareto optimal policy is the one that is not dominated by
any other policies. The Pareto frontier is the set containing all Pareto optimal
policies.
An Example: Consider a multi-objective function (z1, z2, z3) and policies π1,
π2, and π3, leading to: (z1(π1), z2(π1), z3(π1)) = (5,7,10), (z1(π2), z2(π2), z3(π2))
=(4,7,9), and (z1(π3), z2(π3), z3(π3))=(6,6,9). π1 dominates π2 because it has
higher or equal values in all objectives, with some objectives with higher values.
π1 does not dominate π3 because of the first objective. π3 does not dominate π1
because of the second and third objectives. π1 and π3 are Pareto optimal and
form the Pareto frontier.
Multi-objective Function on a Tree: We now give a formal definition of
the multi-objective optimization problem on a tree structured network: the hy-
dropower dam placement problem is a particular example. Given a tree structured
network (such as a river network), the objective function zi is defined recursively.
Node rewards r1v, . . . , r

d
v are associated with each node v in the tree. The objec-

tive function defined on a leaf node v is its corresponding reward, i.e., ziv(π) = riv.
Each edge is associated with a transfer coefficient that is affected by whether
the corresponding dam is built or not. If the dam represented by (u, v) is built,
then (u, v) has a transfer coefficient of piuv ; otherwise, qiuv. Also associated with
each edge (u, v) is a reward siuv and an indicator variable denoting whether the
corresponding edge is in π or not. The objective function on a non-leaf node u
is defined recursively:

ziu(π) = riu +
∑

v∈ch(u)

I(uv ∈ π)siuv +
∑

v∈ch(u)

(
I(uv ∈ π)piuv + I(uv /∈ π)qiuv

)
ziv(π).

(1)
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Here, I(·) is an indicator function. ch(u) is the child set of u. The objective
function for the entire tree network T is the function at the root node s, i.e.,
zi(π) = zis(π). Given a multi-objective function defined on a tree network T , our
multi-objective optimization problem on a tree structured network
is to find the Pareto frontier consisting of all non-dominated policies, which is
NP-hard even though it is defined on a tree. See [18] for further details.

Application to the Hydropower Dam Placement Problem: In the hy-
dropower dam placement problem, when modeling connectivity (i.e., i = con-
nectivity), we set riu to be the total lengths of all stream segments in the region
represented by node u. We set piuv = 0 and qiuv = 1; that is, we either acquire all
upstream segments (when the dam corresponding to edge (u, v) is not built) or
lose all of them (when the dam is built). We set siuv = 0. When modeling energy
(i.e., i = energy), we set siuv = huv, in which huv is the hydropower produced
by the dam site (u, v). riu is set to 0, piuv and qiuv are both set to 1.

3 DP-Based Pareto Frontier

In [18] we proposed a dynamic programming (DP) algorithm (shown in Algo-
rithm 1) that recursively computes the Pareto optimal partial solutions from leaf
nodes up to the root. The key insight is that at a given node u we only need to
keep the Pareto optimal partial solutions [18]. To increase incremental pruning,
we convert the original tree into an equivalent binary tree. Given a binary tree,
we first compute Pareto optimal solutions for the two children of u (line 6 and
7), enumerate the partial policies from the children and consider four different
combinations of whether to include each of the edges from the children, comput-
ing the objective values based on Equation (1), and adding them to the policy
set P (line 8). We then remove all dominated policies (line 9). So, the remaining
policies are Pareto optimal for the parent node.

Algorithm 1: ParetoT (u): compute the Pareto frontier for the value func-
tion defined on the subtree of T rooted at node u.

1 if is leaf(u) then
2 return {(r1u, . . . , rmu )};
3 else
4 l← u.left child;
5 r ← u.right child;
6 Pleft← ParetoT (l);
7 Pright← ParetoT (r);
8 Su ← the set of all possible partial solutions at u obtained by combining

solutions from Pleft and Pright and possible policies on (u, l) and (u, r);
9 return Non Dominated(Su);

10 end
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Algorithm 2: Non Dominated 2D(S): given a set S of 2-dimensional partial
solutions, find the set of non-dominated solutions in S.

1 Sort solutions in S by their first element, in descending order if we aim to
maximize the element, in ascending order otherwise;

2 P ← {S[1]};
3 foreach s ∈ S[2 :] do
4 if s is not dominated by the last element of P then
5 Append s to P ;
6 end

7 end
8 return P ;

In [18] we also proposed a rounding scheme applied to the exact DP algo-
rithm, which provides a fully polynomial-time approximation scheme (FPTAS)
that finds a polynomially succinct policy set, which approximates the Pareto
frontier within an arbitrary small ε factor and runs in time polynomial in the
size of the instance and 1/ε. The key idea is to project objective values that are
ε-close into one, which decreases the number of Pareto solutions.

3.1 Divide-and-Conquer for Identifying Dominated Solutions

The major runtime bottleneck of Algorithm 1 is pruning the dominated solu-
tions (line 9). Let d be the number of objectives. Assume we generate n partial
solutions and get m non-dominated partial solutions, then the naive pruning
step takes O(mnd) time. Here we describe a strategy that significantly boost
the efficiency of the overall DP algorithms for computing the Pareto frontier,
which leverages the dimensionality of solutions to efficiently identify the subset
of non-dominated solutions from a set of candidate solutions. The new divide-
and-conquer based algorithm for finding the non-dominated solutions runs in
O(n(log n)d−1) if we use comparison-based sort or O(n(log n)d−2) if the data is
stored in the Lattice Latin Hypercube (LLH) form [19]. Here d is the number of
criteria we are considering. This algorithm is inspired by an approach proposed
in [19].

To simplify the description of our algorithms, we assume that the values
of each criterion never repeat. In practice, it is fairly trivial to consider the
corner case. Specifically, when splitting the set S based on the dth criterion, we
implemented a modified sorting routine that sorts the solutions in lexicographic
order, based on the dthcriterion. If two solutions have the same dth criterion, we
sort them based on the (d − 1)th criterion, etc. Note that if two solutions are
equal for all criteria then their ordering does not matter.

When the number of objectives is two, we use the method as shown in Algo-
rithm 2. The idea is to sort the solutions based on the first criterion (good ones
first). The first solution must be Pareto optimal. Then, we go through the list of
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Algorithm 3: Non Dominated(S): given a set S of d-dimensional partial
solutions (d ≥ 2), find the set of non-dominated solutions in S.

1 d← dimensionality of solutions in S;
2 n← number of solutions in S;
3 if n = 1 then
4 return S
5 else if d = 2 then
6 return Non Dominated 2D(S)
7 else
8 A,B ← Split(S, d);
9 A′ ← Non Dominated(A); // solutions in A’ are non-dominated in S.

10 B′ ← Non Dominated(B);
11 return A′ ∪ Marry(A′, B′, d− 1);

12 end

Algorithm 4: Split(S, d): given a set S of partial solutions, split S into
two disjoint sets of roughly the same size based on the dth criterion of each
solution.
1 Sort solutions in S by their dth criterion, in descending order if we aim to

maximize the criterion, in ascending order otherwise;
2 A← S[1 : bn/2c];
3 B ← S −A ;
4 return A,B; // A and B are disjoint and solutions in A have better

dth criterion.

solutions sequentially and look for solutions with better second objective than
the last non-dominated solution.

When the number of objectives d ≥ 3, we use our divide-and-conquer based
recursive algorithm shown in Algorithm 3. The first step is to split the set of
solutions S into two sets A and B of approximately the same size based on the
last criterion, so that solutions in A have better last criterion than solutions in B
(line 8). The splitting procedure is shown in Algorithm 4. Then, we recursively
identify the non-dominated solutions from A and B (line 9 and 10). We know
that the non-dominated solutions from set A′ are also non-dominated in S,
but the same statement may not be true for non-dominated solutions from B′.
Thus, the last step is to find the solutions from set B′ that are not dominated
by solutions from A′ (line 11). Note that we already know that the dth objective
of solutions in A′ are better than the dth criterion of solutions in B′, so we
only need to consider the first d − 1 criteria. To find non-dominated solutions
in B′, we introduce a slightly modified divide-and-conquer procedure shown in
Algorithm 5.

The algorithm Marry(A,B, d′) shown in Algorithm 5 returns the set of all
solutions in B that are not dominated by any solution in A considering only the
first d′ criteria. The inputs A and B must be disjoint and no two solutions from



Computing the Pareto Frontier on Trees 9

Algorithm 5: Marry(A,B, d′): consider only the first d′ elements in each
solution, return the set of all solutions in B that are not dominated by any
solutions in A. A and B must be disjoint and no two solutions from the
same set dominate one another.
1 n← number of solutions in A ∪B;
2 if d′ = 2 then
3 return B ∩ Non Dominated 2D(A ∪ B); // a base case of recursion

4 else if A = ∅ or B = ∅ then
5 return B ; // also a base case of recursion

6 else
7 X,Y ← Split(A ∪B, d′);
8 Bx ← Marry(X ∩A,X ∩B, d′) ; // n reduce in half

9 By ← Marry(Y ∩A, Y ∩B, d′) ; // n reduce in half

10 B′y ← Marry(X ∩A,By, d
′ − 1) ; // d’ reduce by 1

11 return Bx ∪B′y
12 end

the same set dominate one another. Let n be the total number of solutions in
A∪B. We split the set of solutions A∪B into two sets X and Y of approximately
the same size based the d′th criterion, so that solutions in X have better d′th
criterion than solutions in Y (line 7). Next, we consider the four disjoint subsets
X ∩ A, X ∩ B, Y ∩ A, Y ∩ B. Note that they cover all solutions in A ∪ B, and
|(X∩A)∪(X∩B)| ≈ n/2 ≈ |(Y ∩A)∪(Y ∩B)|. In line 8 and 9, we recursively call
Marry on half-sized problems. Similarly as before, we know that the solutions
in Bx are non-dominated in A ∪ B, but we need to figure out which solutions
in By are non-dominated in A ∪ B. Solutions in By can only be dominated by
solutions in X ∩ A since solutions inside B cannot dominate each other, so we
only need to recursive call Marry on X ∩A and By. Note that solutions in X ∩A
have better d′th criterion than solutions in By, so we only need to consider the
first d′ − 1 objectives. Finally, we return Bx ∪B′y.

3.2 Runtime Analysis

For the runtime analysis, we assume that we use a sorting algorithm based on
comparison, so the time complexity of Non Dominated(S) is O(n(log n)d−1).

Proposition 1 Given a set S of n 2-dimensional solutions, Non Dominated 2D(S)
runs in O(n log n) time.

This is because the sorting step takes O(n log n) time and the for-loop takes
O(n) time.

Proposition 2 Given a set S containing n solutions, Split(S, d) runs in O(n log n)
time.
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This is also because the sorting step takes O(n log n) time.

Proposition 3 Given two disjoint sets A and B such that no two solutions
from the same set dominate one another and that A ∪ B contains n solutions,
Marry(A,B, d′) runs in O(n(log n)d

′−1) time.

Proof: We denote the runtime of Marry(A,B, d′) as t(n, d′). For the base case
d′ = 2, the proposition obviously holds. For d′0 ≥ 3, assume the proposition holds
for d′ < d′0, which means that t(n, d′0−1) = O(n(log n)d

′
0−1−1) = O(n(log n)d

′
0−2)

for any positive integer n. Now we consider cases where n = 2k for some posi-
tive integer k and d′ = d′0. The major components of Marry are: a Split step
(O(n log n) time), two half sized Marry steps (2 t(n/2, d′0) time), and a Marry

step with dimension reduced by one (t(n, d′0−1) time). With induction, we know
that t(n, d′0 − 1) = O(n(log n)d

′
0−2). For any positive integer k and n = 2k, we

have

t(2k, d′0) = O(2k log(2k)) + 2 · t((2k)/2, d′0) + t(2k, d′0 − 1)

= 2 · t(2k−1, d′0) +O(2k · kd
′
0−2).

Then, by induction on k, we can prove the following statement

t(2k, d′0) = O(n(log n)d
′
0−1).

Since the runtime of Marry increases monotonically with n, the proposition also
holds when n is not a power of 2. Hence, Marry(A,B, d′) runs in O(n(log n)d

′−1)
time.

Proposition 4 Given a set S containing n d-dimensional solutions (d ≥ 3),
Non Dominated(S) runs in O(n(log n)d−1) time.

Proof: When d ≤ 2, the proposition clearly holds. For d ≥ 3, we denote the
runtime as T (n, d). Similarly as in the proof of Proposition 3, we have

T (2k, d) = 2 · T (2k−1, d) +O(2k · kd−2).

Then, by induction on k, we get

T (2k, d) = O(n(log n)d−1).

Since the runtime of Non Dominated(S) increases monotonically with n, the
proposition also holds when n is not a power of 2. Hence, Non Dominated(S)
runs in O(n(log n)d−1) time.

3.3 Implementation Notes

Split: The split procedure shown in Algorithm 4 can also be implemented using
an O(n) find median algorithm. However, the numerous steps of copying arrays
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and creating new arrays in theO(n) find median algorithm are hard to implement
and perform poorly in practice. Hence, we chose to use sorting to work ”in-place”
on the sets of solutions. Each time we drop a dimension we must create a new
array sorted based on that dimension and then in the recursive process we simply
keep track of the location within the array that we are working on. We found
that in practice sorting and working in place give us much better performance.
Batching: Our new divide-and-conquer algorithm for pruning dominated so-
lutions considerably speeds up the DP algorithm and allow us to solve problems
on much larger networks, with higher precision, and with more objectives. How-
ever, the number of solutions to evaluate grows exponentially with the number
of objectives and memory soon becomes a problem. For example, for the entire
Amazon basin, for four criteria, with a precision of ε = 0.01, the algorithm has
to evaluate 144, 823, 974, 336 partial solutions at a single node of the tree, which
is way beyond the memory available. To circumvent this problem, we introduced
a batching process: at each tree node, instead of evaluating all possible solutions
at once, we feed them to Non Dominated in smaller batches of size K = 107.
Then, we run Non Dominated on the set of all non-dominated solutions from
each batch. In practice, this batching routine actually also speeds up the DP
algorithm. In the future we plan to consider different batching strategies and
also parallel batching, which can be done in a straightforward way.

4 MIP-Based Pareto Frontier

We also proposed a MIP formulation (see Fig. 3 ) and a scheme for ε-approximating
the Pareto-frontier of a multi-objective optimization problem in [18]. The key
idea is to divide the space of objectives into small hyper-rectangles and query
whether there exists a feasible solution in each hyper-rectangle. Then, from
each feasible hyper-rectangle, we find one solution and form a set S of all the
solutions we find. Under the condition that for each dimension, the upper bound
of each hyper-rectangle is (1 + ε) of the lower bound, the set of non-dominated
solutions from S forms an ε-approximate Pareto-frontier [9].

In this paper we exploit restart strategy and introduce a new scheme to
reduce the number of MIPs to solve. We first optimize for one of the objectives.
We divide the space of the remaining objectives into small hyper-rectangles.
Specifically, the hyper-rectangles are designed to satisfy the condition that, for
each dimension, the upper bound is (1 + ε) of the lower bound (assuming the
objectives are always positive values). For each cell, we formulate a MIP to find
the solution in that cell that optimizes the target objective if a feasible solution
exists. We form a set S of all the solutions found by MIP. Under the assumption
that we solve the MIPs optimally, the set of non-dominated solutions from S
forms an ε-approximate Pareto-frontier. In practice, we repeat the above scheme
as many times as the number of criteria, cycling through every objective as target
objective to get better coverage and a more accurate approximation. See details
of the MIP formulation in [18]. A key difference in this new scheme is that we
always optimize for the target objective, instead of solving decision problems.
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Fig. 3: MIP formulation of the dam placement problem for four criteria.
Ĉ, Ê, Ŝd, Ŝs: bounds on the objectives. V : the set of all nodes; E: the set of all
edges (dams); s: the root of the tree; e = (u, v): u is downstream of v; cv, sv, re,
and he: connectivity value, sediment production, seismic risk, and hydropower
associated with each hypernode or dam, respectively; pe: percentage of sediment
trapped by dam e; πe: indicator variable of whether the dam will be built; nv:
indicator variable of whether node v can be reached from the river mouth with-
out passing a dam; yv: continuous variable representing the percentage of the
sediment produced at the node v not trapped by dams.

Theorem: Let P be the set of all solutions on the Pareto frontier. Let P̄ be
the set of non-dominated solutions from S. Then, P̄ ε-approximates P .

Proof: Assume that we are optimizing for k objectives O1, O2, O3, · · · , and
Ok where k is greater or equal to 2. Without loss of generality, assume we aim
to maximize O1. For any π ∈ P , assume (O2(π), O3(π), · · · , Ok(π)) lies in the
rectangular cell [Ô2, (1 + ε)Ô2] × [Ô3, (1 + ε)Ô3] × · · · × [Ôk, (1 + ε)Ôk]. Since
there is already a solution π in the rectangular cell, MIP can find a solution π′

in the same cell that optimizes O1, which means that O1(π′) ≥ O1(π) and π′

ε-dominates π. If π′ 6∈ P̄ , then there exists a π′′ ∈ P̄ that dominates π′ and
consequently ε-dominates π. Hence, P̄ ε-approximates P .

We observed fat and heavy-tailed behavior in the MIP runtime distributions
[7]. To improve performance, we run the MIP solver with a cutoff, using a ge-
ometric restart strategy that doubles the cutoff time in every run [15, 7]. Our
experiments show that the restart strategy significantly boosts performance.
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B Criteria ε DP Orig
(secs)

DP New
(secs)

MIP
Orig
(secs)

MIP
New
(secs)

DP #Sols MIP
#Sols

A E,C exact 18291 254 N/A N/A 39841 N/A
A E,C 0.001 72 14 6432 48 3020 894
M E,Sd exact 2077 64 N/A N/A 25732 N/A
M E,Sd 0.001 4 2 1day+ 1day+ 318 —
WA E,Sd exact 46291 924 N/A N/A 58808 N/A
WA E,Sd 0.001 30 13 1day+ 2187 2668 1671
A E,Sd exact mem 15153 N/A N/A 177490 N/A
A E,Sd 0.001 2368 226 1day+ 1day+ 7973 —
A E,Sd 0.1 0.1 0.1 297 3359 83 24
A E,Se exact 54581 335 N/A N/A 72591 N/A
A E,Se 0.001 2471 83 35050 31 8737 1558
M E,C, Sd exact 2day+ 526 N/A N/A 283898 N/A
M E,C, Sd 0.001 630 32 1day+ 1day+ 5563 —
WA E,C, Sd exact mem 90251 N/A N/A 3267859 N/A
WA E,C, Sd 0.001 mem 1120 1day+ 1day+ 88710 —
WA E,C, Sd 0.00251667 269 1day+ 1day+ 28804 —
WA E,C, Sd 0.005 254 69 1day+ 65638 12655 4129
A E,C, Sd 0.005 mem 32175 1day+ 1day+ 758462 —
A E,C, Sd 0.025 70348 607 1day+ 1day+ 48381 —
A E,C, Sd 0.05 1680 58 1day+ 1day+ 12866 —
A E,C, Sd 0.1 40 6 1day+ 4503 4724 62
A E,C, Sd 0.15 11 2 1day+ 6025 2493 43
A E,C, Se 0.005 mem 88246 1day+ 4809 2274168 40981
A E,C, Se 0.05 109910 2121 238 51 47978 581
M E,C, Sd, Se exact mem 763150 N/A N/A 23364120 N/A
M E,C, Sd, Se 0.001 mem 53620 1day+ 1day+ 1479660 —
M E,C, Sd, Se 0.02 278310 649 1day+ 1day+ 15961 —
M E,C, Sd, Se 0.1 886 28 1day+ 15484 1406 773
WA E,C, Sd, Se 0.01 mem 695153 1day+ 1day+ 3540829 —
WA E,C, Sd, Se 0.1 47704 1154 1day+ 1day+ 107087 —
WA E,C, Sd, Se 0.15 11712 424 1day+ 13692 69422 296
A E,C, Sd, Se 0.05 mem 437271 1day+ 1day+ 2193314 —
A E,C, Sd, Se 0.1 mem 19510 1day+ 1day+ 491578 —
A E,C, Sd, Se 0.15 mem 7471 1day+ 1day+ 198772 —
A E,C, Sd, Se 0.2 74940 1333 1day+ 1day+ 47059 —
A E,C, Sd, Se 0.25 11358 410 1day+ 1505 23019 95

Table 1: Sample of runtimes and number of solutions for the different methods. A
(Amazon); WA (Western Amazon); and M (Marañon); (E energy; C connectiv-
ity; Sd sediment; Se seismic risk). mem denotes memory limit. N/A denotes MIP
cannot produce the exact Pareto frontier. We bolded several entries to highlight
performance improvements.
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5 Experimental Results

Fig. 4: Top: The visualization of the 4-dimensional Amazon Pareto frontier (ε =
0.4). X axis: energy; Y axis: connectivity; Marker size: sediment; Color: seismic
risk. Middle: The dam placement of a particular Pareto solution. Bottom:
Parallel coordinate plot for the Amazon Pareto frontier (ε = 0.4). The four
axes are hydropower, connectivity, sediment and seismic risk. The color of each
solution is based on its hydropower output. The plot displays only 1440 solutions
due to the bounding of the objectives (pink lines on the axes).

To test the performance of the new methods at different scales, we used
three datasets: the Marañon, Western Amazon, and Amazon basins, with 107,
219, and 467 hypernodes, respectively (corresponding to 128801, 455156 and
4083059 river segments, respectively). We compare the performance of the new
DP and MIP methods with the methods in [18] and see significant improvements
in both speed and accuracy. See Fig. 1 and Table 1 for a summary of results.
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Specifically, in terms of accuracy, the new MIP approach is substantially
better than the previous MIP approach. As shown in Fig. 1, in the 2-dimensional
case, the solutions produced by the new MIP approach are on the exact Pareto
frontier, slightly better than the DP approximation for the same ε = 0.1.

The new DP approach has the same high level of accuracy as the previous
DP approach and still produces more solutions than the MIP approaches.

In terms of speed, our experiments show that the new DP approach is up to
three orders of magnitude faster than the original DP and scales to significantly
larger instances and more criteria. The batching technique also solves the issue
of hitting the memory limit when computing for three or more objectives. The
new MIP approach is faster and can now solve larger problems.

The DP and MIP methods are complementary since in practice our new
MIP scheme provides solutions closer to the exact Pareto frontier (for a given ε)
and it provides more flexibility for considering additional constraints for what-if
analyses, which is important to decision makers.

We are developing a web-based visualization tool for policy makers to explore
the Pareto frontier interactively. For example, Fig. 4 displays: (1) the Pareto
frontier for four criteria for the entire Amazon (ε = 0.4); (2) the placement of
the selected dams for a particular Pareto solution; and (3) a parallel coordinate
plots to visualize the solutions, in which each axis represents an objective, and
each line across the different axes represents a solution. We can bound each
objective (pink lines on the axes) and only show solutions that satisfy the bounds.
By bounding each objective appropriately, we notably decrease the number of
solutions to consider.

6 Conclusions

We introduced new DP and MIP approaches that significantly boost the effi-
ciency and accuracy of computing the exact Pareto frontier and its approxima-
tion with guarantees on tree-structured networks. Our DP and MIP approaches
show complementary strengths and are now able to scale up to much larger
real-world problems. We are developing interactive tools for what-if analyses
and visualizations for policy makers. The overall goal of this project is to assist
policy makers in making informed decisions when planning hydropower dams
in the Amazon Basin. Our methods are general and can be adapted to other
multi-objective optimization problems on tree-structured networks.
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