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Abstract. We consider two-stage games in which a leader seeks to di-
rect the activities of independent agents by offering incentives. A good
leader’s strategy requires an understanding of the agents’ utilities and the
ability to predict agent behavior. Moreover, the optimization of outcomes
requires an agent behavior model that can be efficiently incorporated into
the leader’s model. Here we address the agent behavior modeling prob-
lem and show how it can be used to reduce bias in a challenging citizen
science application. Adapting ideas from Discrete Choice Modeling in
behavioral economics, we develop a probabilistic behavioral model that
takes into account variable patterns of human behavior and suboptimal
actions. By modeling deviations from baseline behavior we are able to
accurately predict future behavior based on limited, sparse data. We
provide a novel scheme to fold the agent model into a bi-level optimiza-
tion as a single Mixed Integer Program, and scale up our approach by
adding redundant constraints, based on novel insights of an easy-hard-
easy phase transition phenomenon. We apply our methodology to a game
called Avicaching, in collaboration with eBird, a well-established citizen
science program that collects bird observations for conservation. Field
results show that our behavioral model performs well and that the in-
centives are remarkably effective at steering citizen scientists’ efforts to
reduce bias by exploring under-sampled areas. Moreover, the data col-
lected from Avicaching improves the performance of species distribution
models.

1 Introduction

Many game applications involve a leader, who commits to a strategy before
her followers. Thus in order to come up with an optimal strategy, the leader
must factor in the reasoning process of her followers. This leads naturally to the
following bi-level optimization:

Leader: maximize
a1

UL(a1,a2),

subject to Followers: a2 ← argmax
a2

UF (a2,a1).
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Fig. 1: Number of observations submitted to eBird in 2012 in the Continental
US. Submissions are biased towards population centers.

Here the leader’s utility function UL is known a priori, but the utilities of the
individual followers UF are unknown by the leader. a1 and a2 are the actions of
the leader and the followers, respectively.

At the heart of solving this problem lies the challenge of identifying the utility
functions that govern the followers’ behavior. On one hand, the behavioral model
has to be capable of capturing complex, highly variable human behavior and it
should be robust to make predictions with limited, sparse data. On the other
hand, the behavioral model has to be efficiently incorporated into the overall
bi-level optimization problem.

In this paper, we address the behavioral identification problem in two-stage
games to reduce data bias in citizen science projects, such as Zooniverse, Coral-
watch, and eBird [20,7,29]. These projects use crowdsourcing techniques to en-
gage the public as agents in the data collection process to address scientific ques-
tions determined by project leaders. Despite their tremendous success, the data
collected often suffer from biases, which arises from fundamental mismatches
between the personal motivations that determine how individual agents collect
data and the data needs for scientific inquiry. For example, projects that allow
participants to choose where and when to make observations tend to collect the
most data near areas of human activity, see (see Figure 1). Uneven geographic
(and temporal) data density presents a challenge for scientific studies.

Previous work has shown that games are effective in steering citizen scientists
towards crucial scientific tasks [31]. Under a two-stage game scenario, individual
participants are offered incentives to spend more effort collecting data at sites
identified as important by project leaders. In this gamified setting, a key problem
is the optimal reward allocation problem: how to design a reward scheme which
maximizes citizen scientists’ overall contribution to science.

The reward allocation problem is closely related to the Principal-Agent Prob-
lem, first raised in behavioral economics [26]. More recently, it has also been
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studied in computer science [1,14,10,3,15]. It is also related to the Stackelberg
pricing games [9,8,22,11], in which the leader commits to a strategy before her
followers. In crowdsourcing, related work includes mechanisms to improve the
crowd performance [23,19,17,28,30,4,27,6,2]. The reward allocation problem is
a bi-level optimization that includes as a crucial component the modeling of
citizen scientists’ behavior.

Here we propose a novel probabilistic model to capture agents’ be-
havior in two-stage games, adapting ideas from Discrete Choice Modeling in
behavior economics [21], as well as a novel Mixed Integer Programming
encoding to solve the reward allocation problem, in which the proposed
probabilistic behavioral model is folded as linear constraints. We also apply
our novel behavioral model into a real citizen science domain. Our
contributions are multi-dimensional:

– On machine learning side, our proposed behavioral model is (1) structural,
meaning that its parameters provide intuitive insights into agents’ decision-
making process, as well as (2) generative, meaning that it can generalize to
new circumstances with different environmental features and reward treat-
ments. Unlike the knapsack model in previous work [31], our model is (3)
probabilistic. Therefore it is able to account for complex human behavior, as
well as suboptimal actions. Instead of directly modeling agents’ preferences,
which would be difficult to capture, we break the model into (4) a con-
ditional form, and focus on modeling agents’ deviation from their baseline
behavior under zero reward treatments, alleviating the data sparsity prob-
lem by effectively taking advantage of the relatively abundant historical data
before the introduction of the reward game.

– On the inference side, despite the fact that the reward allocation problem is
a bi-level optimization, we are able to (5) fold the behavioral model into
the global problem as a set of linear constraints, therefore the entire
reward allocation problem is solved with a single Mixed Integer Program
(MIP). In addition, we add redundant constraints to trigger pruning, there-
fore scaling up the MIP encoding to large instances, based on observations
of a novel (6) easy-hard-easy phase transition phenomenon [13] in
the empirical complexity.

– On the application side, we (7) apply our behavioral model into a re-
cently launched gamification application called Avicaching [31], in the well-
established eBird citizen science program. Our behavioral model is able to
better capture the decision process of the participants than previously pro-
posed models with real field data. Furthermore, the reward designed by the
optimal reward allocation algorithm proves to be effective in minimizing the
bias in eBird data collection process.

– Finally, in terms of addressing the core scientific goal of ebird, we show the
benefit of having data collected from the Avicaching game by demonstrating
(8) a clear boost in the performance of species distribution modeling when
adding data from Avicaching locations.
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2 Two Stage Game for Bias Reduction

In our two-stage game setting, citizen scientists visit a set of locations and report
their observations of events of interest in those locations. Our model can be gen-
eralized to other scientific exploration activities as well [31]. The incentive game
involves two self-interested parties: the organizer and the agents. On one side,
rational agents (e.g., citizen scientists) select a set of locations to visit that max-
imizes their own utilities under budgets. On the other side, the organizer (e.g., a
citizen science program) uses rewards to encourage agents to visit locations with
large scientific value. For example, in eBird, bird watchers choose their sites to
visit based on a combination of environmental values, personal preference and
convenience. The organizer in turn sets external rewards at different locations
to promote uniform exploration activities. At a high level, this leads to a bi-level
optimization problem:

Organizer: maximize
r

Uo(v, r),

subject to Agents: v← Va(f , r).
(1)

In this formulation, r is the external reward that the organizer uses to steer the
agents, and v are the response from the agents, affected by internal utilities,
which is determined by feature vector f , and external rewards r set by the
organizer. Uo(v, r) is the utility function of the organizer, which depends on
agents’ response v.

Addressing the Organizer-Agent Problem requires a good behavioral model
for agents Va(f , r), which involves challenges from two associated problems: one
is the Identification Problem and the other one is the Pricing Problem. For
the Identification Problem, we need to learn an agent model to predict noisy
human behavior under different reward treatments. For the Pricing Problem,
we need to incorporate the identified agent model into the bi-level optimization
(shown in Equation 1) to solve the overall reward allocation problem.

The organizer’s goal is to promote a balanced exploration activity. Let L =
{l1, l2, . . . , ln} be the set of locations, and yi be the amount of effort agents
devote to location li. We normalize yi so that

∑n
i=1 yi = 1. In other words, yi is

proportional to the number of observations submitted at location li. Denote by y
the column vector (y1, . . . , yn)T and by y the constant column vector (y, . . . , y)T

where y = 1
n

∑n
i=1 yi = 1

n . To promote a uniform sampling activity, we model the
organizer’s objective as to minimize the bias in agents’ sampling effort: minimize
Dp = 1

n ||y − y||pp. Given this definition, D1 corresponds to the mean absolute
deviation, while D2 corresponds to the sample variance. Other objectives could
be used, e.g., maximizing the entropy of y in order to minimize its distance to
a uniform distribution.1

1 Uncertainty measures, often used in active learning [25], are typically tied to one par-
ticular predictive model. We did not use them because of the need to meet multiple
scientific goals in our application.
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3 Probabilistic Behavior Model

A key to solving the reward allocation problem is to identify a good behavioral
model, which captures agents’ preferences to environmental features as well as
external rewards. It is challenging, given (1) the complex and highly variable hu-
man behavior, which cannot be fully captured by environmental variables. More-
over, (2) the data collected with an incentive game in the field is limited, since
we cannot afford to alienate the community by changing the rewards dramati-
cally. On the other hand, there is much historical data for participants collected
without the reward game. How to make full use of this piece of data becomes an
interesting question. (3) To efficiently support decision making, our behavioral
model needs to be able to fit nicely into the bi-level optimization framework of
the pricing problem. In this paper, we introduce a novel probabilistic model to
capture the agents’ behavior.

– It takes a structural approach, which jointly learns how agents distribute
their effort among all locations, rather than predicting the amount of effort
spent in each location independently.

– We adopt the idea of the Discrete Choice Model in behavioral economics
[21], which captures agents’ noisy behavior as well as suboptimal actions.

– We alleviate the data sparsity problem by focusing on modeling the con-
ditional probabilities characterizing people’s deviation from their normal
behaviors under no reward treatments, thus effectively taking advantage of
relatively abundant historical data without rewards.

– Finally, this structural and generative model allows us to fold the agents’
model as a set of linear constraints into the reward allocation problem, there-
fore the entire problem can be solved by a single MIP.

During one round of reward treatment, suppose we offer an agent an extra
reward ri for one observation made at location i. Let r = (r1, . . . , rn)T be the
reward vector. Let yj,i be the amount of effort that agent j devote to location
i. We normalize the effort such that

∑n
i=1 yj,i = 1. Let yj = (yj,1, . . . , yj,n)T be

vector characterizing the distribution of effort.
Behavioral modeling is to fit a function yj = Va(f , r) which predicts how

agent j distributes his effort yj based on environmental features f and the cur-
rent reward vector r. One option is to fit Va as a joint distribution. Unfortunately,
this is challenging given the multitude of subtle factors affecting human behav-
ior. Luckily, most participants in our reward game participate heavily in eBird.
We have much historical data on them before the reward game, so we hope to
use this data to capture their subtle preferences. We therefore break down the
agents’ behavior into a conditional form, comprising each participant’s historical
preferences xj without external rewards, and the deviation of new behavior yj

under reward treatment from the baseline behavior xj . xj is summarized based
on agents’ past behavior during the same time of the year, across previous years.
For recently joined participants, we use the population mean as their baseline
distribution.
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We focus on modeling the conditional part, which predicts the deviation of
people’s behavior from xj to yj . Notice that it is a simpler problem than fitting
Va as a joint distribution directly, because the only main effect that is in the
field during the reward treatment period of yj, but not in the baseline treatment
period of xj, is the introduction of reward r. Therefore, the effects of rewards
are much stronger in the conditional distribution. We model the transformation
matrix P connecting yj and xj , which depends on internal utility features f ,
and external rewards r:

yj = P (f , r) xj . (2)

Many machine learning applications share similar ideas as ours in terms of mod-
eling the conditional part in the joint data distribution [18,12]. Let pu,v be the
entry of matrix P at the u-th row and the v-th column. Intuitively, pu,v denotes
the proportion of effort that originally was spent in location v, but has been
shifted to location u. Motivated by the Discrete Choice Model in behavioral
economics [21], we further parameterize the matrix P as:

pu,v =
exp(w · φ(fu,v, ru))∑
u′ exp(w · φ(fu′,v, ru′))

. (3)

In this formulation, fu,v is the environmental feature vector for the transition
from location v to location u, which includes features for location u and v in-
dividually, such as underlying landscapes, interesting species to see, historical
popularities, as well as features that depend on both the two locations, such as
the traveling distance, etc. φ is a function that maps features to a high dimen-
sional space, which includes singular effect terms as well as cross effect terms. w
is a vector that gives relative weights to different features in the output space of
φ. The dimensionality of w is the same as the output of function φ.

In previous work [31], agents’ behavior are modeled as solving knapsack prob-
lems: agents select the best set of locations to visit, which jointly maximizes the
reward w ·φ(fu,v, ru), subject to a cost constraint. Since Equation 3 is a softmax
function, our proposed model can be viewed as an extension of the knapsack
model to the probabilistic case. Indeed, suppose agents always take the optimal
action (as in the knapsack case), their behavior will demonstrate a logit form as
shown in Equation 3, if apart from the features in φ(fu,v, ru), their actions are
further affected by a set of factors that are only known to agents themselves and
with an extreme value distribution [24].

Nevertheless, compared to the knapsack model, our behavioral model is con-
siderably more realistic. Our model is probabilistic, thus it is able to represent
variability in agent behavior, as well as uncertainty on the part of the organizer.
Suppose one agent chooses to visit either location A or B, but with 70% chance
for A, and 30% chance for B. The deterministic knapsack model has to learn
a utility function that either predicts that A is a better option than B or vice
versa. Our model can come up with an optimal reward scheme in this probabilis-
tic setting. Besides, in the knapsack model, agents’ behavior is subject to a strict
budget limit. In reality, people occasionally venture beyond their normal travel
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distance. Our model is able to capture this aspect, by learning a soft penalty on
the traveling distance.

3.1 Identification Problem

The identification problem learns the parameters of the agents’ behavior model
by examining agents’ responses to various reward treatments. Specifically, we
are given a dataset D composed of quadruples (xj,t,yj,t, rt, ft), in which xj,t

and yj,t are the visit densities of one citizen scientist without and with the
reward treatment rt. ft is the environmental feature vector during the period
of the treatment. We need to identify weights w that best matches yj,t with
P (ft, rt; w) xj,t. Using the L2 loss, we minimize the following empirical risk
function:

R(w) =
∑
j,t

(uj,t(yj,t − P (ft, rt; w) xj,t))
2
. (4)

Here, instances are weighted by uj,t, which is the total number of submissions
of the corresponding citizen scientist during one reward treatment rt. We fit a
common w for all citizen scientists, due to limited amount of data.

We specify regularizers to prevent overfitting. It is a common practice to
penalize the norm of w in regularizers. However, when the data is uninformative,
a baseline model should always make predictions based on baseline density, i.e.,
predict y = x. This suggests that matrix P should be close to the identity matrix
in such uninformative case. However, setting w = 0 will make all pu,v = 1

n
according to Equation 3, which renders P away from the identity matrix. In this
case, we add an indicator variable 1u,v as a special feature. 1u,v = 1 if and only
if u = v, and the entries in matrix P becomes:

pu,v =
exp(w · φ(fu,v, ru) + η · 1u,v)∑

u′ exp(w · φ(fu′,v, ru′) + η · 1u′,v)
. (5)

P now becomes close to an identity matrix if w is close to 0 and η is positive.
We minimize the following augmented risk function:

R(w) =
∑
j,t

(uj,t(yj,t − P (ft, rt; w) xj,t))
2

+ λ · |w|1. (6)

Here, the classical L1 regularizer λ·|w|1 helps identify important factors by learn-
ing a sparse w vector. Apart from tuning λ, we also tune η to control how closely
the predicted y should match historical densities x. The minimization problem
in Equation 6 can be solved by gradient descent. We use BFGS algorithm [5],
which further accelerates descent using second order information.
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3.2 Pricing Problem

Given a learned behavioral model, the pricing problem is to minimize the spatial
bias Dp, subject to the behavioral model:

minimize
r

Dp =
1

n
||y − y||pp,

subject to y = P (f , r; w) x,

ri ∈ R.

(7)

In this formulation, x = (x1, . . . , xn)T is the normalized distribution of effort
among all agents. Matrix P is learned from the approach given in the previous
section. In practice, because people are more accustomed to only a few distinct
reward levels, we further restrict ri to take a set of discrete values in set R.

The main challenge to solve the pricing problem is the sum-exponential form
of the entires of matrix P (Equation 5). Nevertheless, in this paper we are
able to show that the sum-exponential form can be captured by a set of linear
constraints. Therefore the pricing problem can be formalized as a single Mixed
Integer Program (MIP).

Suppose R has K different reward levels: R = {R1, . . . , RK}. Introduce indi-
cator variables dri,k for i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}. dri,k = 1 if and only
if ri, the reward for location i, is Rk. ri can take only one value in R, so dri,k
should satisfy:

K∑
k=1

dri,k = 1, ∀i ∈ {1, . . . , n}. (8)

The challenge is the sum-exponential operator in Equation 5. To overcome
this difficulty, we introduce extra variables αv (αv ≥ 0) for v ∈ {1, . . . , n}, and
we use linear constraints to enforce

αv =
1

Zv
=

1∑
u′ exp(w · φ(fu′,v, ru′) + η · 1u′,v)

. (9)

Here Zv is the partition function in Equation 5. We first substitute αv into
Equation 5, and get:

pu,v = exp(w · φ(fu,v, ru) + η · 1u,v) · αv. (10)

However, in this case both ru and αv are variables, so Equation 10 is not
linear. To linearize it, we rewrite this equation in the following conditional form:

dru,k = 1 ⇒ pu,v = αv exp(w · φ(fu,v, Rk) + η · 1u,v), (11)

∀k ∈ {1 . . .K},∀u, v ∈ {1 . . . n}.

Here, w is learned from the identification problem, so it is a constant in the
pricing problem. When ru is fixed to Rk (dru,k = 1), exp(w ·φ(fu,v, ru)+η ·1u,v)
becomes a constant, so the right-hand side of Equation 11 is indeed a linear
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equation over αv. We can enforce the conditional constraints using the big-M
formulation. Next, we require the columns of P sum to 1:

n∑
u=1

pu,v = 1, ∀v ∈ {1, . . . , n}. (12)

It can be shown in the following Theorem that Equations 11 and 12 guarantee
that αv = 1/Zv. Further because of Equation 10, we must have the fact that
pu,v satisfies the sum-exponential form in Equation 5.

Theorem 1. Equation 11 and Equation 12 guarantee that αv = 1/Zv, ∀v ∈
{1, . . . , n}.

Proof. Equation 11 forces αv to be proportional to 1/Zv and Equation 12 con-
strains the sum of pu,v to be 1.

Next we model the objective function Dp. Here we provide a formulation for
D1.2 The key is to model the absolute difference |yi−y|. Introduce variable ti for
|yi − y|, i ∈ {1, . . . , n}, and constraints ti ≥ yi − y and ti ≥ y − yi to guarantee
that ti ≥ |yi − y|. Then we can modify the objective so as to minimize

∑n
i=1 ti.

In practice, we find the MIP encoding with the constraints in Equations 8-12
does not scale well with small external rewards (see section 4.3). In this case,
we add redundant constraints to facilitate constraint propagation and pruning.
When ru = Rk, we add these redundant constraints:

pu,v ≤
exp(gu,v(Rk))

exp(gu,v(Rk)) +
∑

u′ 6=u exp(minr∈R gu′,v(r))
, (13)

and

pu,v ≥
exp(gu,v(Rk))

exp(gu,v(Rk)) +
∑

u′ 6=u exp(maxr∈R gu′,v(r))
. (14)

Here, gu,v(r) is an abbreviation for w · φ(fu,v, r) + η · 1u,v. The right hand side
of these two inequalities are clearly the upper and lower bound of pu,v, because
all free variables are fixed to their most extreme values.

4 Experiments

4.1 Applying the Behavioral Model to Avicaching

We apply our behavioral model into Avicaching [31], a recently launched gam-
ified application to reduce the data bias problem within eBird, a well-established
citizen science program. Avicaching is created in the spirit of promoting “friendly
competition and cooperation” among eBird participants. Avicaching started in
March 2015 as a pilot study in Tompkins and Cortland counties, New York. A
set of publicly accessible locations with no prior eBird observations were defined

2 One needs solve a Mixed Quadratic Program if he uses objective function D2.
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Fig. 2: The comparison of the locations of submissions in eBird in Tompkins and
Cortland County in New York State. The size of the circles represent the number
of submissions. (Left) from Mar 28 to Aug 31, 2014, before Avicaching. (Right)
from Mar 28 to Aug 31, 2015, after Avicaching is introduced. Effort is shifted
towards under-sampled locations significantly. Study area is shaded.

as Avicaching locations: bird watchers received extra avicaching points for every
checklist they submitted in those locations. These locations were selected around
under-covered regions from the current eBird dataset, emphasizing important
yet under-sampled land types, such as agricultural land and forest. Avicaching
points have intrinsic value to bird watchers, because they mark their scientific
contribution to eBird. In addition, other rewards, such as binoculars, were also
provided in the form of a lottery, which is based on the total avicaching points
earned by each participant. The Avicaching points were updated every week.
The probabilistic behavioral model was used in the bi-level optimization prob-
lem, which allocates optimal rewards to locations to minimize the spatial bias.
We used the participants’ response in the first few weeks to train our behavioral
model.

Encouraged by Avicaching, bird watchers shifted their effort towards under-
sampled locations. As visually demonstrated in Figure 2, 482 eBird observations
were submitted from Avicaching locations, out of the 2,522 observations in total
for Tompkins and Cortland County during summer months from June 15 to
Sep 15, 2015. 19.1% of birding effort has shifted from oversampled locations
to under-sampled Avicaching locations, which received zero submissions before.
Cortland, as an under-sampled county, received 202 observations during these
three summer months in 2015, when Avicaching is in the field, which is 2.3 times
the number of visits of the previous two years combined (there are in total 87
submissions from Cortland during the same period of time in 2013 and 2014).
In terms of uniformity, the normalized D2 score ( 1

n ||Y−Y||22/Y ), dropped from
0.017 in 2013, 0.017 in 2014 to 0.013 in 2015 during the period of time.

4.2 Evaluation of the Probabilistic Behavioral Model for the
Identification Problem

The behavioral model used in the reward allocation problem of one week is fit
using the data since the beginning of Avicaching and up to that week. The data
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Fig. 3: The comparison of probabilities of visiting each location predicted by
various behavioral model on one test set. The range was selected to highlight
locations with small probabilities. The proposed model matches closest to the
ground truth (note the color scale).

Method Normalized MSE

Proposed 0.26
Historical 0.36

Structural SVM 0.93
Random Forest 0.37

Table 1: Comparison of predicted performance on the test set. The table shows
the normalized mean squared error (MSE). Our proposed model outperforms
the other 3 baseline models.

are composed of (xj,t,yj,t, rt, ft) tuples, each of which represents the density of
locations a bird watcher visited during one week’s reward treatment. There are
in total 116 locations in total in this two counties (the length of xj,t and yj,t), out
of which 50 are Avicaching locations. We split the dataset into 75% for training,
5% for validation, and the remaining 20% for testing. The data for validation is
used to select the values of regularizers. We found the model is not sensitive to
the values of regularizers, as long as they are in a proper range. The reported
performance is averaged over 3 random splits. The location features we consider
for the behavioral model are: the number of visits in each month (popularity),
the expected number of species to see (interestingness), the NLCD covariates
for the landscape [16], housing density (population center), elevation, distances
to rivers, roads, etc, latitude and longitude (geographical regions), convenience
factor (distance to reach), and Avicaching points (rewards). We also include
non-linear transformation of these features and cross terms.
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We compare our proposed model with three baseline models. The first model
always uses historical density to make predictions, i.e., always predict yj,t = xj,t.
The second model is the structural SVM model from [31], a powerful nonpara-
metric machine learning model optimized for solving knapsack problems. The
third benchmark is a continuous-response random forest, which predicts the den-
sity yj,t at each location independently with 1,000 trees of depth 10. Random
forests are expected to set the benchmark for very good predictive performance.
However, the lack of interpretable structures precludes them from being folded
into the MIP formulation of the pricing problem. Both the Structural SVM and
the random forest model share the same environmental features as our proposed
model. We include the baseline density xj,t in the two models as a separate
feature.

Table 1 shows the comparison on normalized mean squared error (MSE),

which is
∑

j,t

∑n
i=1(uj,t(y

truth
j,t,i −y

pred
j,t,i ))

2∑
j,t

∑n
i=1(uj,t(ytruth

j,t,i −ytruth
j,t,i ))2

. Here ytruthj,t,i is the true density for agent

j in time t, and ypredj,t,i is the predicted value at location i. The squared error is
further weighted by uj,t – the number of submissions during the reward period.
Our proposed model clearly outperforms the other 3 models. To fur-
ther visualize the difference, the predicted probabilities to visit each location,
averaged over all test cases in one test set, are compared with the ground truth
in Figure 3. The locations with high probabilities (shown with dark red cells)
are historically popular sites. The model based on historical density predicted
very well on these sites, because we have rich data on people’s birding history,
and bird watchers’ behavior is relatively stable across different years. Those sites
with relative low probabilities (light orange cells) are often under-sampled sites
with Avicaching rewards. In this case, the historical model missed completely.
Structural SVM performed the worst. While random forest performed well qual-
itatively, it was out-performed by our proposed model (Table 1). Even if the
random forest model had comparable performance, it cannot be folded into the
MIP to solve the bi-level optimization problem.

4.3 Phase Transition on the Pricing Problem

The scalability of the Mixed Integer Programming encoding proposed for the
pricing problem is also important. To evaluate the solver, we generated 5 sets
of synthetic instances, with numbers of locations n ranging from 15 to 35. Each
set had 30 instances with the same n, generated in a way to best mimic people’s
behavior. To make it easy for plotting, reward set R contains 2 levels of rewards
for these instances: one was 0, and the other was a non-zero reward shown in
the horizontal axis of Figure 4 (all 30 instances in one test set shared a common
non-zero reward). We kept all other parameters the same, and only varied the
non-zero rewards. The curves in Figure 4 report the median time to solve these
instances with MIP encoded in CPLEX 12.6, with a single Intel x5690 core and
8GB of memory. Each dot in one curve represents the median time of solving 30
instances in one test set. Two points on a given curve only differ in the reward
level.
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Fig. 4: The easy-hard-easy phase transition for the pricing problem; n is the
number of locations. (Upper) The median time to solve instances with various
non-zero rewards without the redundant constraints in Eq. 13 and Eq. 14. The
time is long for instances with small rewards. (Lower) The median time when
redundant constraints are introduced. The easy-hard-easy pattern emerges.

Intuitively, there should be an easy-hard-easy pattern in the empirical com-
plexity of the pricing problem. If the external rewards are too small, then it
makes little difference in terms of changing agents’ behavior whether one reward
is assigned to one location or not. On the other hand, if the rewards are too
large, then agents’ behavior is completely dominated by these external rewards.
It is when the external rewards match agents’ internal utilities that the problem
becomes hard, and the algorithm needs to plan wisely in allocating rewards.
Nevertheless, when the redundant constraints in Equations 13 and 14 were not
introduced (Upper Panel of Figure 4), we did not see the easy-hard-easy pat-
tern. Problem instances with small non-zero external rewards were significantly
harder than other ones.

The unexpected long runtimes for instances with small rewards were due
to the difficulty in propagating constraints. The solver could not automatically
discover the fact that the reward was too small to have any substantial impact,
so it spends much time on many meaningless branches. This prevented the solver
from early pruning, which was often the key to efficient problem solving. Noticing
this aspect, we added redundant constraints (Equation 13 and Equation 14) into
the MIP formulation. These two equations were obvious necessary conditions for
pu,v. Adding these two equations helped the solver find bounds on pu,v, so it
could prove tighter bounds for the objective function, and trigger early pruning
more often. After adding these two constraints, the easy-hard-easy phenomenon
emerged. We were also able to scale up to larger instances due to better constraint
propagation (It takes too long for the solver to run for n = 30 and n = 35 without
additional constraints, so they are not plotted in the upper panel of Figure 4).
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Fig. 5: The benefit of having observations from avicaching sites. (1st Row) Model
for House Finch; (2nd Row) Ovenbird; (3rd Row) Wood Thrush; (4th Row)
White-throated Sparrow. Predictive model fit with 2015 data including that
from Avicaching sites in Cortland (2rd column) better matches a model close to
the ground truth (1st column, fit with all available data, best effort and validated
by experts), compared with the model fit without Avicaching data (3rd column).

4.4 Benefit of Avicaching on Species Modeling

We are able to see the benefit of having data collected from avicaching locations
on species distribution modeling – the main scientific application of eBird data.
To fit the species distribution models, we use the data from April to June (the
spring migration period), in both Tompkins and Cortland counties, including
avicaching and non-avicaching locations. We predict the occupancy of a species
based on environmental variables. For each species, we fit random forest models
with 1,000 trees, with each tree at the depth of 10.

Figure 5 shows the predicted probabilities of occurrence in heatmaps for ran-
dom forest models fit with different datasets, for four species in the two counties.
The first column shows the distribution models fit with the most comprehensive
dataset, which consists of data from both counties, during April to June across
several years. Because Tompkins county is the best covered area in eBird, the
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learned model is close to the ground truth, according to bird experts at the Cor-
nell Lab of Ornithology. In the second column, we fit the models using the data
only from Cortland County in 2015, including that from avicaching locations.
We use Cortland County as an example to represent a large number of counties
in the United States, where there are few eBird submissions. Then in the third
column, we further exclude the data collected from Avicaching locations.

As we can see from Figure 5, the species distribution models in the second
column match pretty well in terms of the predicted probabilities with the mod-
els in the first column, although they are fitted using much less data. On the
contrary, the models in the third column are much worse. Indeed, the log losses
improve from 0.44 to 0.30 for Ovenbird, from 0.47 to 0.46 for House Finch, from
0.51 to 0.38 for Wood Thrush and from 0.48 to 0.41 for White-throated sparrow
when Avicaching observations are added.

Since the only difference between the models in the second and the third
columns is whether the models are learned using the dataset containing obser-
vations from Avicaching locations, the clear difference in the predictive perfor-
mance demonstrates the benefit of having data from Avicaching locations. From
this experiment, we see that Avicaching game really helps eBird in addressing
its ultimate scientific goal.

5 Conclusion

We address the behavior identification problem in two-stage games to reduce
the data bias problem in citizen science. We introduce a novel probabilistic
behavioral model and show that it is better at capturing noisy human behav-
ior compared to the knapsack model previously used in Avicaching, a recently
launched gamified application in eBird. In addition, the behavioral model can
be folded as a set of linear constraints into the bi-level optimization problem
for bias reduction, so the whole two-stage game can be solved with a single
Mixed Integer Program. We further scale up the encoding to large instances by
adding redundant constraints, based on a novel easy-hard-easy phase transition
phenomenon. Finally, we also show that the data collected from the Avicaching
game improves species distribution modeling, therefore it better serves the core
scientific goal of citizen science.
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