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ABSTRACT
Leader-follower games involve a leader committing strategies be-

fore her followers. We consider quantal response leader-follower

games, where the followers’ response is probabilistic due to their

bounded rationality. Moreover, both the leader’s and followers’

action spaces are exponentially large with respect to the problem

size, hence rendering the overall complexity to solve these games

beyond NP-complete. We propose the XOR-Game algorithm, which

converges in linear speed towards the equilibrium of convex quan-

tal response leader-follower games (#P-hard to find the equilibrium

even though convex). XOR-Game combines stochastic gradient de-

scent with XOR-sampling, a provable sampling approach which

transforms highly intractable probabilistic inference into queries

to NP oracles. We tested XOR-Game on zero-sum and distribution

matching leader-follower games. Experiments show XOR-Game

converges faster to a good leader’s strategy compared to several

baselines. In particular, XOR-Game helps to find the optimal reward

allocations for the Avicaching game in the citizen science domain,

which harnesses rewards to motivate bird watchers towards tasks

of high scientific value.
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1 INTRODUCTION
Leader-follower games, also known as the Stackelberg games [13],

involve leaders committing strategies before her followers. Over the

years, leader-follower games have been studied extensively with

their wide applications in security [47, 56], crowdsourcing [57, 58],

AI for social good [19, 41], etc. Recent studies have focused on the

participants’ bounded rationality [46]. In other words, players do
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not always play the best moves due to imperfect information or

limited computational capacity.

In quantal response leader-follower games, the followers take

probabilistic actions due to their bounded rationality. In a Logistic

quantal response game, a follower maximizes her utility, albeit

together with extreme value distributed latent factors. In the eyes

of an observer who does not know the latent factors, the follower’s

behavior is in an exponential family distribution. Quantal response

games have been studied in security games [11] , and in games for

social good [38]. The authors of [32] proposes an iterative approach

to compute a near-optimal strategy for the leader in response to

quantal responding adversaries.

In this paper, we consider solving quantal response leader-follower

games, in which the sizes of the action spaces of both the leader and

the followers grow exponentially quickly w.r.t. the problem size.

Exponentially large action spaces are prevalent in real-world games,

e.g., in real-time strategy (RTS) games [6] or security games [11].

They pose significant challenges in finding the equilibrium of the

game because they prevents the leader from enumerating the entire

action space, letting along reasoning about the followers’ responses.

Although several algorithms have been proposed in computing the

equilibrium for normal form games [34, 43] and extensive form

games [8, 51, 54], their mathematical programs involve summing

over all the followers’ actions. This becomes intractable as the

number of actions grows exponentially in the size of the game.

We propose XOR-Game, the first algorithm which converges
in linear speed towards the equilibrium of a convex quantal
response leader-follower game with exponentially large action
spaces. Despite the game is convex with respect to the leader’s

strategy, the problem is still at least #P-hard due to the inference

of the followers’ actions from exponentially many probabilistic

choices. Overall XOR-Game optimizes for the leader’s objective

following a Stochastic Gradient Descent (SGD) process. Our inno-

vation is to harness XOR-sampling in the estimation of the gradient

direction of each SGD step towards the optimal leader’s strategy.

XOR-sampling transforms the highly intractable (#P complete) prob-

abilistic inference and sampling problems into queries to NP oracles

using randomly generated XOR constraints. In another view, our

XOR-Game algorithm transforms the highly intractable problem of

reasoning about the followers’ probabilistic actions into problems

within the NP complexity class while obtaining provable guaran-

tees on the linear convergence speed and the distances towards



the optimum. Notice other sampling approaches, e.g., MCMC sam-

pling, provide unbiased samples only after an exponential number

of burn-in steps. This is impossible in practice, and hence using

these sampling approaches cannot result in similar convergence

bounds as ours. Our guarantee is also significantly stronger than

those offered by e.g., variational approaches [4, 24, 27–29, 45, 55],

which are typically lower bounded only and can be arbitrarily

loose. Even though the idea of incorporating XOR-sampling ap-

pears straightforward, all the theoretic derivation towards linear

convergence guarantees cannot borrow from existing theoretic re-

sults of SGD. The key difficulty is due to that XOR-sampling only

provides constant approximation guarantees for the probability of

drawing samples but cannot guarantee unbiased sample estimation,

which unfortunately was needed by most prior analysis.

Among many real-world applications, we consider two special

cases of convex quantal response leader-follower games. The first

is a zero-sum game, where the leader is to minimize the expected

utility of the followers. The second is a distribution-matching leader-

follower game, which the leader harnesses rewards to move the

distribution of the followers’ actions towards a given distribution.

Our games have applications in the citizen science domain, where

the organizer harnesses rewards to motivate citizen scientists to-

wards tasks with high scientific value. In particular, we apply our

game in the recently deployed Avicaching game [57, 58] in the eBird
citizen science framework, where the organizer encourages bird

enthusiasts towards bird watching activities in remote and under-

sampled locations. The experiment evaluations on both synthetic

games as well as on real-world Avicaching games show that our

XOR-Game is able to produce better leader’s strategies in fewer

SGD iterations compared to competing approaches.

2 PRELIMINARIES
2.1 Quantal Response Model
Classic decision theory takes the rational agent assumption, in

which agents make perfect choices to maximize their utilities. How-

ever, this assumption falls short in the explanation of probabilistic

decision-making and occasional deviation from optimal choices.

Random utility models were developed to capture the bounded

rationality of human decisions [5, 53]. Since its inception, ran-

dom utility models have been used extensively in modeling human

decision-making, ranging from demand prediction [3, 5, 53], behav-

ior modeling [23, 26] to crowd-sourcing [17, 48].

Quantal response games, originated fromQuantal choicemodel [33],

were developed from random utility behavior models, and have

achieved promising results modeling the bounded rationality of

human beings [12, 39]. When faced with 𝑁 = 2
𝑛
choices, where

the 𝑖-th choice has an observable utility value 𝑉𝑖 , quantal response

model assumes that the agent’s choice 𝑎 is to maximize the sum of

the utility 𝑉𝑖 and a latent factor 𝜖𝑖 :

𝑎 = arg max𝑖∈{1,...,𝑁=2
𝑛 }𝑉𝑖 + 𝜖𝑖 . (1)

𝜖𝑖 is i.i.d. distributed in the standard Gumbel extreme value distri-

bution Gumbel(0, 1). In other words, the probabilistic nature of the

agent’s decision-making is due to the joint optimization of 𝑉𝑖 + 𝜖𝑖
rather than 𝑉𝑖 only. Noted that 𝜖𝑖 is only available to the agent

but hidden from the observer. Gumbel noise is well accepted in

literature to account for the stochasticity and/or irrationality of

human decision-making [35, 48, 49]. Other types of noises, such

as Gaussian noise, lead to other interesting models, such as the

probit model. We leave as future work to consider those models.

Finally, Gumbel(0,1) is used to simplify the theoretic derivation of

our algorithm. Gumbel distributions with other parameters can be

considered in a similar way.

Under the random utility model, it can be proven that in the eyes

of an observer who do not have access to 𝜖𝑖 , the probability that the

agent chooses the 𝑖-th option is given by the following exponential

family distribution:

𝑃 (𝑖) = exp(𝑉𝑖 )
𝑍

=
exp(𝑉𝑖 )∑𝑁=2

𝑛

𝑗=1
exp(𝑉𝑗 )

. (2)

Here, 𝑍 =
∑𝑁=2

𝑛

𝑗=1
exp(𝑉𝑗 ) is known as the partition function. Var-

ious quantities have been calculated for random utility behavior

models, including the following expected utility:

Theorem 2.1. [30] Under the random utility model, an agent’s ex-
pected utility when following the decisions made based on Equation 1
is log(∑𝑁=2

𝑛

𝑖=1
𝑒𝑉𝑖 ) + 𝛾 . 𝛾 is the Euler-Mascheroni constant.

Exponential Action Spaces. In this paper, we consider games

with exponential many choices. In other words, 𝑁 = 𝑂 (2𝑛) and
𝑛 denotes the input problem size. For example, in the Avicaching

game in the citizen science domain where rewards are used to

motivate crowdsourcing agents to explore sites with high scientific

values, each agent’s choice is represented as a set of locations that

the agent explores. Suppose there are 𝑛 locations, the set of choices

are all the sets of locations, the size of which is 2
𝑛
.

2.2 Quantal Response Leader-Follower Games
Leader-follower games, also known as Stackelberg games, have

attracted much research attention. In a game, the leader commits a

strategy before her followers, often resulting in different equilib-

rium solutions from the Nash equilibrium where both sides commit

strategies at the same time.

The random utility behavior model discussed in the previous sec-

tion leads to quantal response leader-follower games. In a quantal

response leader-follower game, the follower’s decision-making fol-

lows a random utility model. The equilibrium of a quantal response

leader-follower game can be computed through:

min

𝑟
𝐿({𝑉𝑖 , 𝑃 (𝑖)}, 𝑟 ),

s. t. 𝑎 = arg max𝑖∈{1,...,𝑁=2
𝑛 } 𝑉𝑖 (𝑟 ) + 𝜖𝑖 , (3)

𝜖𝑖
i.i.d.∼ Gumbel(0, 1), ∀𝑖 ∈ {1, . . . , 𝑁 = 2

𝑛}.

Here, the leader’s objective is to minimize 𝐿. The follower’s

utility function for choice 𝑖 has part𝑉𝑖 , observable by the leader and

depends on the leader’s strategy 𝑟 . It also contains an extreme value

distributed latent part 𝜖𝑖 , which is only available to the follower

but hidden to the leader.

Compared with the standard leader-follower game, the the quan-

tal response game brings in the probabilistic responses of the follow-

ers into consideration, which fits better to reality in many occasions.

Due to the latent factor 𝜖𝑖 , the follower’s action is probabilistic in

the eye of the leader; namely, the follower takes the 𝑖-th action



with probability 𝑃 (𝑖), which has the exponential family form in

Equation 2. The objective is written as 𝐿({𝑉𝑖 , 𝑃 (𝑖)}, 𝑟 ) showing that
the leader’s objective function can be dependent on his strategy

𝑟 , the follower’s observable utility 𝑉𝑖 and/or the probabilities of

making each decision 𝑃 (𝑖). The formulation in Equation 3 can be

used to model both cases where the leader takes pure or mixed

strategies. In the pure strategy case, the leader’s action 𝑟 can be an

indicator variable of which action to take. In the mixed strategy

case, 𝑟 becomes a vector listing the probability of taking each action.

Since we assume the follower acts according to a quantal response

model, she always plays probabilistic (hence mixed) strategies in

the eyes of the leader.

2.2.1 Zero-sum Games. While the XOR-Game algorithm can prov-

ably optimize many quantal response leader-follower games, we

mainly consider two variants for this paper. The first variant we

consider is the zero sum case, where the leader is to minimize the ex-

pected utility of the follower. In other words, the leader’s objective

is (according to Theorem 2.1):

𝐿0 ({𝑉𝑖 , 𝑃 (𝑖)}, 𝑟 ) = log

(
𝑁=2

𝑛∑︁
𝑖=1

𝑒𝑉𝑖 (𝑟 )
)
+ 𝛾 . (4)

We consider a special case where 𝑉𝑖 is linear in 𝑟 , namely, 𝑉𝑖 (𝑟 ) =
\𝑇
𝑖
𝑟 + 𝜙𝑖 . Here \𝑖 measures the influence of rewards on the leader’s

action. 𝜙𝑖 represents the intrinsic utility in choosing action 𝑖 and

can vary across actions (even though it does not depend on 𝑟 ).

We show that the game in this case is convex in 𝑟 (proof is in the

supplementary materials):

Theorem 2.2. When 𝑉𝑖 (𝑟 ) = \𝑇
𝑖
𝑟 + 𝜙𝑖 , the zero-sum quantal

response leader-follower game is convex in 𝑟 . Moreover, the gradient
∇𝐿0 (𝑟 ) has the following form of an expectation:

∇𝐿0 (𝑟 ) = E𝑃 (𝑖 ) [\𝑖 ] =
𝑁=2

𝑛∑︁
𝑖=1

𝑃 (𝑖)\𝑖 . (5)

It is known in a zero-sum matrix game, the Stackelberg equilib-

riummatches exactly to the Nash equilibrium [52, 61]. Nevertheless,

we would like to point out that in our definition of a quantal re-

sponse game, the follower’s action is designed to maximize her

utility function 𝑉𝑖 in addition to an unobserved 𝜖𝑖 (Equation 1),

where𝑉𝑖 depends on the complete information of the leader’s strat-

egy 𝑟 . This definition implicitly assumes the leader commits her

strategy before the follower. The Nash equilibrium, in this setting,

can be difficult to be properly defined.

2.2.2 Distribution Matching Games. Another variant we consider
in this paper is the game where the leader would like to stimulate

certain behaviors from the follower. In particular, the leader would

like to match the probability distribution of the follower’s actions 𝑃

to a desired distribution𝑄 . The difference between two distributions

is measured by Kullback–Leibler (KL) divergence. In other words,

the leader’s objective is:

𝐿𝐷𝑀 ({𝑉𝑖 , 𝑃 (𝑖)}, 𝑟 ) = 𝐾𝐿(𝑄 | |𝑃) =
𝑁=2

𝑛∑︁
𝑖=1

𝑄 (𝑖) log

(
𝑄 (𝑖)
𝑃 (𝑖)

)
. (6)

This formulation is specially useful for mechanism design problems,

e.g. in [20, 40, 44]. In cases where certain follower’s actions increase

the social welfare, the leader would set high 𝑄 values to promote

these actions. Again, we focus on the special case where𝑉𝑖 is linear

in 𝑟 in this paper:

Theorem 2.3. When 𝑉𝑖 (𝑟 ) = \𝑇𝑖 𝑟 + 𝜙𝑖 is linear in 𝑟 , the distribu-
tion matching leader-follower game is convex in 𝑟 and the gradient
∇𝐿𝐷𝑀 (𝑟 ) can be represented as:

∇𝐿𝐷𝑀 = E𝑃 (𝑖 ) [\𝑖 ] − E𝑄 (𝑖 ) [\𝑖 ] =
𝑁=2

𝑛∑︁
𝑖=1

𝑃 (𝑖)\𝑖 −
𝑁=2

𝑛∑︁
𝑖=1

𝑄 (𝑖)\𝑖 . (7)

This theorem’s proof is in the supplementary materials.

Avicaching Game in Citizen Science. As a specific example, we

consider a leader-follower game in the citizen science domain,

where the leader (citizen science game organizer) harnesses lim-

ited rewards to encourage citizen scientists (followers) to conduct

observations in remote and undersampled locations. We look into

the Avicaching game hosted in the eBird citizen science program

[57], where rewards are used to encourage bird watchers (citizen

scientists, or followers) to visit undersampled Avicaching sites,

which have large scientific values but are inconvenient and/or less

interesting to visit than traditional hotspots. Each bird watcher’s

choice is characterized by a set of locations 𝐿 ⊆ {𝑙1, . . . , 𝑙𝑛}, which
represents the set of spots one plan to visit during a bird watching

trip. The organizer, in this case, harnesses reward 𝑟 = (𝑟1, . . . , 𝑟𝑛)
to stimulate visits to under-sampled locations. Here, 𝑟𝑖 is the re-

ward that a bird watcher receives when he visits location 𝑙𝑖 . The

bird watchers’ (followers’) utility 𝑉𝐿 (𝑟 ) models both the intrinsic

utilities to visit the location set 𝐿 as well as the reward received.

2.3 XOR Sampling
Sampling from a combinatorial space has a formal complexity of

#P-complete, the difficulty of which is beyond NP-completeness.

Luckily, the recently proposed XOR-Sampling algorithm, as the

result of a rich line of works using streamlining randomized con-

straints [1, 2, 9, 15, 16, 21, 22], provides a constant approxima-

tion guarantee on the probabilities of the samples generated. XOR-

sampling transforms the highly intractable sampling problem into

queries to NP-oracles while obtaining provable guarantees.

The high-level idea of XOR-sampling is to harness randomized

constraints to guarantee the randomness of the samples generated.

Consider a simple case where 𝑤 (𝑥) : {0, 1}𝑛 → {0, 1} is a binary
function and one would like to obtain a sample from the solution

space {𝑥 : 𝑤 (𝑥) = 1} uniformly at random. Querying a NP oracle

returns one 𝑥 satisfying 𝑤 (𝑥) = 1 albeit not at random. XOR-

sampling works by querying NP oracles to find 𝑥 which satisfies

𝑤 (𝑥) = 1 and subject to a few randomized XOR constraints. It can be

proven that each additional XOR constraint removes approximately

half of the solutions to𝑤 (𝑥) = 1 at random. Hence, once a desirable

number of XOR constraints are added and the resulting space has

only one solution, it can be proven that the only solution remaining

is a random one from the original space {𝑥 : 𝑤 (𝑥) = 1}. In this

way, XOR-sampling is able to bound the probability of obtaining

each sample within a constant multiplicative factor of its ground-

truth probability. For general weighted functions XOR-sampling

has similar guarantees, although the sampling process becomes



more complex. Our proposed XOR-Game algorithm depends on the

following approximation bounds:

Theorem 2.4. (Ermon et al., 2013)1 Let 1 < 𝛿 <
√

2, 0 < 𝛾 < 1,
𝑤 : {0, 1}𝑛 → R+ be an unnormalized weight function. 𝑃 (𝑥) ∝
𝑤 (𝑥) is the normalized distribution. Then, with probability at least
1 − 𝛾 , 𝑋𝑂𝑅-𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑤, 𝛿,𝛾) succeeds and outputs a sample 𝑥0 us-
ing𝑂 (−𝑛 log(1−1/

√
𝛿) log(−𝑛/𝛾 log(1 − 1/

√
𝛿))) NP-oracle queries.

Upon success, each 𝑥0 is produced with probability 𝑃 ′ (𝑥0). We have
1

𝛿
𝑃 (𝑥0) ≤ 𝑃 ′ (𝑥0) ≤ 𝛿𝑃 (𝑥0) .

Moreover, let 𝜙 : {0, 1}𝑛 → R be a function mapping binary vectors
to R. Denote 𝜙 (𝑥)+ = max{𝜙 (𝑥), 0} and 𝜙 (𝑥)− = min{𝜙 (𝑥), 0} as
the positive and negative part of 𝜙 (𝑥). Then the expectation of one
sampled 𝜙 (𝑥) satisfies,

1

𝛿
E𝑃 (𝑥 ) [𝜙 (𝑥)+] ≤ E𝑃 ′ (𝑥 ) [𝜙 (𝑥)+] ≤ 𝛿E𝑃 (𝑥 ) [𝜙 (𝑥)+],

𝛿E𝑃 (𝑥 ) [𝜙 (𝑥)−] ≤ E𝑃 ′ (𝑥 ) [𝜙 (𝑥)−] ≤
1

𝛿
E𝑃 (𝑥 ) [𝜙 (𝑥)−] .

Algorithm 1: XOR-Game0

Input :𝑟0, {\𝑖 }𝑁𝑖=1
, {𝜙𝑖 }𝑁𝑖=1

Params :𝑇 , 𝐾 , [, 𝛿 , 𝛾

for 𝑡 = 0 to 𝑇 do
𝑘 ← 1;

while 𝑘 ≤ 𝐾 do
𝑃 (𝑖) ∝ exp(\𝑇

𝑖
𝑟𝑡 + 𝜙𝑖 );

𝑙 ′ ← XOR-Sampling(𝑃 (𝑖), 𝛿, 𝛾);
if 𝑙 ′ ≠ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then

𝑙 ′
𝑘
← 𝑙 ′;

𝑘 ← 𝑘 + 1;

end
end
𝑔𝑡 ← 1

𝐾

∑𝐾
𝑘=1

\𝑙 ′
𝑘
;

𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 ;
end
return 𝑟𝑇 = 1

𝑇

∑𝑇
𝑡=1

𝑟𝑡

3 XOR-GAME
The challenge in solving quantal response leader follower games is

the intractable probabilistic inference over the follower’s strategies.

In this paper, we consider games in which the follower’s action

space is exponentially large. In other words, the number of actions

𝑁 is of size 𝑂 (2𝑛), where 𝑛 is the problem size. These games are

prevalent in real world. See the Avicaching game presented in the

experiment section for an example. Notice we assume there are an

compact representation for all \𝑖 ’s and 𝜙𝑖 ’s. Even though there are

2𝑁 vectors of these, we assume the availability of efficient functions

\ (𝑖) and 𝜙 (𝑖). When given 𝑖 , they return \𝑖 and 𝜙𝑖 , respectively. The

length of encoding both functions \ (𝑖) and 𝜙 (𝑖) are within 𝑂 (𝑛),
i.e., the length of the problem description. In this setup, the quantal

1
The details of the discretization scheme and the choices of parameters of the original

algorithm which yield the bound of this form is discussed in [14].

Algorithm 2: XOR-Game𝐷𝑀

Input :𝑟0, {𝑄 (𝑖)}𝑁𝑖=1
, {\𝑖 }𝑁𝑖=1

, {𝜙𝑖 }𝑁𝑖=1

Params :𝑇, 𝐾, 𝑆, [, 𝛿,𝛾

𝑗 ← 1;

while 𝑗 ≤ 𝑆 do
𝑙 ′′ ← XOR-Sampling(𝑄, 𝛿,𝛾);
if 𝑙 ′′ ≠ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then

𝑙 ′′
𝑗
← 𝑙 ′′; 𝑗 ← 𝑗 + 1;

end
end
for 𝑡 = 0 to 𝑇 do

𝑘 ← 1;

while 𝑘 ≤ 𝐾 do
𝑃 (𝑖) ∝ exp(\𝑇

𝑖
𝑟𝑡 + 𝜙𝑖 );

𝑙 ′ ← XOR-Sampling(𝑃 (𝑖), 𝛿, 𝛾);
if 𝑙 ′ ≠ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then

𝑙 ′
𝑘
← 𝑙 ′; 𝑘 ← 𝑘 + 1;

end
end
𝑔𝑡 ← 1

𝐾

∑𝐾
𝑘=1

\𝑙 ′
𝑘
− 1

𝑆

∑𝑆
𝑗=1

\𝑙 ′′
𝑗
;

𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 ;
end
return 𝑟𝑇 = 1

𝑇

∑𝑇
𝑡=1

𝑟𝑡

response leader-follower game is at least #P-hard, even limiting

to the convex games considered in Theorem 2.2 and 2.3. This is

because it is already #P-hard to compute the partition function in

𝑃 (𝑖) in Equation 2. In other words, it is already #P-complete to

evaluate the leader’s objective function even for a fixed strategy.

We propose XOR-Game, which converges towards the equi-
librium of convex quantal response leader-follower games in
linear number of stochastic gradient descent iterations. The
XOR-Game algorithm should enjoy the convergence bound for a

wide variety of quantal response games. However, the actual algo-

rithms and the convergence bounds slightly differ across different

game setups, due to differences in estimating the derivatives and

their correspondingly different approximation bounds given by

XOR-sampling. In this paper, we demonstrate such convergence

bounds on the aforementioned zero-sum and distribution matching

quantal response leader-follower games. However, we are confident

that similar guarantees generalize to many other games.

The algorithm variants for solving zero sum game and distribu-

tion matching game are shown in Algorithm 1 and Algorithm 2.

The procedures of XOR-Game0 and XOR-Game𝐷𝑀 have minimal

differences. Both algorithms apply SGD to find the optimal reward

𝑟 that minimizes the leader’s objective. 𝑟0 is the initialization of the

reward vector. The follower’s observable utility is 𝑉𝑖 (𝑟 ) = \𝑇𝑖 𝑟 + 𝜙𝑖 .
Samples generated from XOR-sampling are used to estimate the

expectations in the gradient calculation (according to Equation 5

and 7). Because XOR-Sampling has a failure rate, repeated sam-

pling is used until a desired number of samples are obtained. 𝐾

samples are drawn from the behavior model of followers, and 𝑆



samples are from the targeting model. XOR-Sampling takes pa-

rameters (𝛿,𝛾). After the gradient estimation, 𝑟𝑡+1 from the next

iteration moves from 𝑟𝑡 following the negative gradient direction.

[ is the step size of SGD. Finally after 𝑇 SGD steps, the average

of 𝑟1, . . . , 𝑟𝑇 is returned as the output. Denote the total variance

𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) = E𝑃 (𝑖 ) ( | |\𝑖 | |22) − ||E𝑃 (𝑖 ) (\𝑖 ) | |
2

2
. We can show that the

convergence bound for XOR-Game0 to solve the zero sum game is:

Theorem 3.1. (Convergence for zero-sum game) In a zero sum
quantal response leader follower game with objective in Equation 4
and𝑉𝑖 (𝑟 ) = \𝑇𝑖 𝑟 +𝜙𝑖 , 𝑟

∗ attains the minimum of the leader’s objective.
𝑟𝑇 is the output of XOR-Game0 starting from 𝑟0 and running 𝑇 SGD
iterations. In iteration 𝑡 of SGD, 𝑔𝑡 is the estimated gradient, i.e.,
𝑟𝑡+1 = 𝑟𝑡 −[𝑔𝑡 . If max𝑃 𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) ≤ 𝜎2, | |𝑟𝑡 − 𝑟∗ | |2 ≤ 𝑅, [ ≤ (2−
𝛿2)/(𝜎2𝛿), max𝑃 | |E𝑃 (𝑖 ) (\+𝑖 ) | |2 ≤ 𝐺 , and max𝑃 | |E𝑃 (𝑖 ) (\−𝑖 ) | |2 ≤ 𝐺 ,
where \+ = max{\, 0} and \− = min{\, 0}, we have

E[𝐿0 (𝑟𝑇 )] − 𝐿0 (𝑟∗) ≤
𝛿 | |𝑟0 − 𝑟∗ | |2

2

2[𝑇
+ [
𝐾
(𝜎2 + 2𝐺2) + 2[𝛿 (𝛿2 − 1)𝐺2 + 2(𝛿2 − 1)𝐺𝑅.

Theorem 3.1 proves that XOR-Game0 converges to the equi-

librium of the zero-sum game in a linear number of SGD steps

in addition to a few vanishing terms. Here, the first term on the

right-hand side scales inversely proportional to the number of SGD

iterations 𝑇 , suggesting a linear convergence speed towards the

equilibrium. The second term can be reduced by increasing 𝐾 , the

number of XOR samples in estimating E𝑃 (𝑖 ) [\𝑖 ]. The third and the

fourth terms are the products of constants with (𝛿2 − 1), which can

be minimized with a more accurate, yet more time-consuming XOR-

sampling (bringing 𝛿 closer to 1). The proof of Theorem 3.1 shares

the same high-level idea with Theorem 3.4. The detailed proof is left

to the supplementary materials. The convergence bound for XOR-

Game𝐷𝑀 , the algorithm variant to solve the distribution matching

game depends on a stronger condition:

Definition 3.2. (Match signs at every dimension) A group of vec-

tors Θ = {\1, . . . , \𝑁 } matches signs at every dimension, if for any

two vectors \𝑖 , \ 𝑗 ∈ Θ, \𝑖 = (\𝑖1, . . . , \𝑖𝐿)𝑇 , \ 𝑗 = (\ 𝑗1, . . . , \ 𝑗𝐿)𝑇 ,
for any dimension 𝑘 ∈ {1, . . . , 𝐿}, we have \𝑖𝑘\ 𝑗𝑘 ≥ 0.

The provable guarantee for XOR-Game𝐷𝑀 requires all \𝑖 in the

distribution matching game to match signs at every dimension.

This requirement is not too stringent. As we have pointed out,

distribution matching leader follower games are usually seen in

mechanism design problems, where the leader searches for a strat-

egy to maximize certain behaviors from the followers. Here, the

leader’s strategy 𝑟 typically represents the incentives offered to

the follower. \𝑖 in this case becomes indicator variables whether

certain incentives are earned if the follower takes action 𝑖 . Due to

this reason, all \𝑖 are non-negative, satisfying the matching signs

condition. With these definitions, the convergence bound for the

distribution matching leader follower game is as follows:

Theorem 3.3. (Convergence for distribution matching game) Sup-
pose a distribution matching leader-follower game has the objec-
tive in Equation 6. 𝑉𝑖 (𝑟 ) = \𝑇

𝑖
𝑟 + 𝜙𝑖 . Denote 𝑟∗ as the optimal

leader’s strategy. 𝑟𝑇 is the output of the XOR-Game𝐷𝑀 . Suppose
{\1, . . . , \𝑁 } match signs at every dimension, max𝑃 𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) ≤

𝜎2, max𝑃 | |E𝑃 (𝑖 ) (\𝑖 ) | |2 ≤ 𝐺 ,𝑉𝑎𝑟𝑄 (𝑖 ) (\𝑖 ) ≤ 𝜎2, | |E𝑄 (𝑖 ) (\𝑖 ) | |2 ≤ 𝐺 ,
when 1 < 𝛿 <

√
2 is used in XOR-sampling and the SGD step size

[ ≤ (2 − 𝛿2)/(𝜎2𝛿), | |𝑟𝑖 − 𝑟∗ | |2 ≤ 𝑅 for all 𝑟1, . . . , 𝑟𝑇 , we have:

E[𝐿𝐷𝑀 (𝑟𝑇 )] − 𝐿𝐷𝑀 (𝑟∗) ≤
𝛿 | |𝑟0 − 𝑟∗ | |2

2

2[𝑇
+ (8)

(𝛿2 − 1)
[√

2𝐺𝑅 + 2[

(
𝜎2 +𝐺2

min{𝐾, 𝑆} + 𝛿𝐺
2

)]
+ 2[ (𝛿2 + 1) 𝜎

2 +𝐺2

min{𝐾, 𝑆} .

To interpret this inequality, the first term on the right-hand

side of inequality 8 scales inversely proportional to 𝑇 , showing

a linear convergence speed towards the optimal leader’s strategy

𝑟∗. The second term is the product of (𝛿2 − 1) and a constant (all

terms in the square bracket). This term can be minimized with

more accurate (yet more expensive) XOR-sampling, bringing in 𝛿

closer to 1. The term in the second line scales inversely proportional

to min{𝐾, 𝑆}, which can be minimized by increasing 𝐾 and 𝑆 ; e.g.,

drawingmore samples. In summary, this theorem still shows a linear

convergence bound and two tails terms which can be minimized

via better sampling. The proof of Theorem 3.3 depends on the

following Theorem 3.4, which was motivated by Theorem 3 in

[14]. Nevertheless, Theorem 3 in [14] does not apply to the case

where the difference of two XOR sampling processes are used to

estimate the gradient. We therefore need to come up with novel

proof techniques for distribution matching games, which yields the

following Theorem 3.4:

Theorem 3.4. Suppose function 𝑓 : R𝑑 → R is 𝐿-smooth con-
vex. 𝑟∗ = arg min𝑟 𝑓 (𝑟 ). At any point 𝑟 , the gradient ∇𝑓 (𝑟 ) can be
decomposed into ∇𝑓 (𝑟 ) = ∇𝑝 (𝑟 ) − ∇𝑞(𝑟 ). At the 𝑡-th iteration of
SGD, 𝑔𝑡 = 𝑘𝑡 − 𝑙𝑡 is the estimated gradient, i.e., 𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 . 𝑘𝑡
(or 𝑙𝑡 ) is the estimation of ∇𝑝 (𝑟𝑡 ) (or ∇𝑞(𝑟𝑡 )). {𝑘𝑡 , 𝑙𝑡 ,∇𝑝 (𝑟𝑡 ),∇𝑞(𝑟𝑡 )}
match signs at every dimension. If 𝑉𝑎𝑟 (𝑘𝑡 ) ≤ 𝜎2, 𝑉𝑎𝑟 (𝑙𝑡 ) ≤ 𝜎2,
| |E[𝑘𝑡 ] | |2

2
≤ 𝐺2, | |E[𝑙𝑡 ] | |2

2
≤ 𝐺2, and there exists 1 < 𝑐 <

√
2, s.t.

1

𝑐
[∇𝑝 (𝑟𝑡 )]+ ≤ E[𝑘+𝑡 ] ≤ 𝑐 [∇𝑝 (𝑟𝑡 )]+

𝑐 [∇𝑝 (𝑟𝑡 )]− ≤ E[𝑘−𝑡 ] ≤
1

𝑐
[∇𝑝 (𝑟𝑡 )]−

1

𝑐
[∇𝑞(𝑟𝑡 )]+ ≤ E[𝑙+𝑡 ] ≤ 𝑐 [∇𝑞(𝑟𝑡 )]+

𝑐 [∇𝑞(𝑟𝑡 )]− ≤ E[𝑙−𝑡 ] ≤
1

𝑐
[∇𝑞(𝑟𝑡 )]− .

Let 𝑅 = max𝑡 | |𝑟𝑡 − 𝑟∗ | |, with [ ≤ 2−𝑐2

𝐿𝑐
, 𝑟𝑇 = 1

𝑇

∑𝑇
𝑡=1

𝑟𝑡 , we have:

E[𝑓 (𝑟𝑇 )] − 𝑓 (𝑟∗) ≤ (9)

𝑐

2[𝑇
∥𝑟0 − 𝑟∗∥22+

(
𝑐 − 1

𝑐

) (√
2𝐺𝑅 + 2[ (𝜎2 +𝐺2)

)
+ 2[

(
𝑐 + 1

𝑐

)
𝜎2 .

The proof of Theorem 3.3 is to apply Theorem 3.4 to the objective

function of XOR-Game𝐷𝑀 . Notice that 𝐿𝐷𝑀 is L-smooth when the

total variation max𝑃 𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) is bounded (proved in a lemma).

Those 4 constraints on the expectation of estimated gradients can

be achieved by tuning parameters of XOR-Sampling.

To prove Theorem 3.4, we need the following lemmas. The proofs

of these lemmas are left in the supplementary materials:

Lemma 3.5. Suppose 𝑓 is convex. 𝑟∗ = arg min𝑟 𝑓 (𝑟 ). At the 𝑡-th
iteration of SGD, 𝑔𝑡 = 𝑘𝑡 −𝑙𝑡 is the estimated gradient. {𝑘𝑡 , 𝑙𝑡 ,∇𝑝 (𝑟𝑡 ),



∇𝑞(𝑟𝑡 )} match signs at every dimension, and there exists 1 < 𝑐 <
√

2,
s.t. 1

𝑐 [∇𝑝 (𝑟𝑡 )]
+ ≤ E[𝑘+𝑡 ] ≤ 𝑐 [∇𝑝 (𝑟𝑡 )]+, 𝑐 [∇𝑝 (𝑟𝑡 )]− ≤ E[𝑘−𝑡 ] ≤

1

𝑐 [∇𝑝 (𝑟𝑡 )]
− , 1

𝑐 [∇𝑞(𝑟𝑡 )]
+ ≤ E[𝑙+𝑡 ] ≤ 𝑐 [∇𝑞(𝑟𝑡 )]+, 𝑐 [∇𝑞(𝑟𝑡 )]− ≤

E[𝑙−𝑡 ] ≤ 1

𝑐 [∇𝑞(𝑟𝑡 )]
− , we have:

⟨∇𝑝 (𝑟𝑡 ),E[𝑘𝑡 ]⟩ ≥
1

𝑐
| |E[𝑘𝑡 ] | |22, (10)

⟨∇𝑞(𝑟𝑡 ),E[𝑙𝑡 ]⟩ ≥
1

𝑐
| |E[𝑙𝑡 ] | |22, (11)

⟨∇𝑝 (𝑟𝑡 ),E[𝑙𝑡 ]⟩ ≤ 𝑐 ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩, (12)

⟨∇𝑞(𝑟𝑡 ),E[𝑘𝑡 ]⟩ ≤ 𝑐 ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩. (13)

Lemma 3.6. Suppose all variables and pre-conditions are defined
as in Theorem 3.4. In particular, 𝑉𝑎𝑟 (𝑘𝑡 ) ≤ 𝜎2, 𝑉𝑎𝑟 (𝑙𝑡 ) ≤ 𝜎2,
| |E[𝑘𝑡 ] | |2

2
≤ 𝐺2, | |E[𝑙𝑡 ] | |2

2
≤ 𝐺2, we have

| |𝑇𝑟 [𝐶𝑜𝑣 (𝑘𝑡 , 𝑙𝑡 )] | | = |E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] − ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩| ≤ 𝜎2, (14)

E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] ≤ 𝜎2 +𝐺2 . (15)

Lemma 3.7. Suppose all variables and conditions are defined as in
Theorem 3.4. We have:

⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ ≤ 𝑐 ⟨E[𝑘𝑡 ] − E[𝑙𝑡 ], 𝑟𝑡 − 𝑟∗⟩+
√

2

(
𝑐 − 1

𝑐

)
𝐺𝑅. (16)

Proof. (Formal proof of Theorem 3.4) By L-smoothness of 𝑓 ,

for the 𝑡-th iteration,

𝑓 (𝑟𝑡+1) ≤ 𝑓 (𝑟𝑡 ) + ⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡+1 − 𝑟𝑡 ⟩ +
𝐿

2

| |𝑟𝑡+1 − 𝑟𝑡 | |22

= 𝑓 (𝑟𝑡 ) − [⟨∇𝑝 (𝑟𝑡 ) − ∇𝑞(𝑟𝑡 ), 𝑘𝑡 − 𝑙𝑡 ⟩ +
𝐿[2

2

| |𝑘𝑡 − 𝑙𝑡 | |2

= 𝑓 (𝑟𝑡 ) +
𝐿[2

2

| |𝑘𝑡 − 𝑙𝑡 | |2−

[ (⟨∇𝑝 (𝑟𝑡 ), 𝑘𝑡 ⟩ − ⟨∇𝑞(𝑟𝑡 ), 𝑘𝑡 ⟩ − ⟨∇𝑝 (𝑟𝑡 ), 𝑙𝑡 ⟩ + ⟨∇𝑞(𝑟𝑡 ), 𝑙𝑡 ⟩) .
Take the expectation w.r.t. 𝑘𝑡 and 𝑙𝑡 on both sides, and notice Equa-

tions 10, 11, 12, 13 in Lemma 3.5, we have:

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟𝑡 ) −
[

𝑐
[| |E[𝑘𝑡 ] | |22 + ||E[𝑙𝑡 ] | |

2

2
]+

2[𝑐 ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩ +
𝐿[2

2

E[| |𝑘𝑡 − 𝑙𝑡 | |2] .

Notice 𝑉𝑎𝑟 (𝑘𝑡 ) = E[| |𝑘𝑡 | |2
2
] − ||E[𝑘𝑡 ] | |2

2
, 𝑉𝑎𝑟 (𝑙𝑡 ) = E[| |𝑙𝑡 | |2

2
] −

||E[𝑙𝑡 ] | |2
2
, and𝑇𝑟 [𝐶𝑜𝑣 (𝑘𝑡 , 𝑙𝑡 )] = E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] − ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩, we fur-

ther rewrite the right-hand side as:

E[𝑓 (𝑟𝑡+1)]

≤ 𝑓 (𝑟𝑡 ) −
[

𝑐

[
E[| |𝑘𝑡 | |22] −𝑉𝑎𝑟 (𝑘𝑡 ) + E[| |𝑙𝑡 | |

2

2
] −𝑉𝑎𝑟 (𝑙𝑡 )

]
+

2[𝑐 [E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] −𝑇𝑟 [𝐶𝑜𝑣 (𝑘𝑡 , 𝑙𝑡 )]] +
𝐿[2

2

E[| |𝑘𝑡 − 𝑙𝑡 | |2] .

After re-arranging terms, the right-hand side again becomes:

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟𝑡 ) −
[ (2 − 𝐿[𝑐)

2𝑐
E[| |𝑘𝑡 − 𝑙𝑡 | |2] + tail. (17)

tail =
[

𝑐
(𝑉𝑎𝑟 (𝑘𝑡 ) +𝑉𝑎𝑟 (𝑙𝑡 )) − 2[𝑐𝑇𝑟 [𝐶𝑜𝑣 (𝑘𝑡 , 𝑙𝑡 )]+

2[ (𝑐 − 1

𝑐
)E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] .

Using 𝑉𝑎𝑟 (𝑘𝑡 ) ≤ 𝜎2
, 𝑉𝑎𝑟 (𝑙𝑡 ) ≤ 𝜎2

and Lemma 3.6, we have:

tail ≤ 2[

(
𝑐 − 1

𝑐

)
(𝜎2 +𝐺2) + 2[

(
𝑐 + 1

𝑐

)
𝜎2 . (18)

For simplicity, denote the right-hand side of the previous inequality

as a constant 𝐶1. Hence, Equation 17 becomes:

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟𝑡 ) −
[ (2 − 𝐿[𝑐)

2𝑐
E[| |𝑘𝑡 − 𝑙𝑡 | |2] +𝐶1 .

Using [ ≤ 2−𝑐2

𝐿𝑐
, we can further simplify this inequality to:

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟𝑡 ) −
[𝑐

2

E[| |𝑘𝑡 − 𝑙𝑡 | |2] +𝐶1 .

Because 𝑓 is convex, 𝑓 (𝑟𝑡 ) ≤ 𝑓 (𝑟∗) + ⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩. Follow the

previous inequality we get:

E[𝑓 (𝑟𝑡+1)] ≤𝑓 (𝑟∗) + ⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ −
[𝑐

2

E[| |𝑘𝑡 − 𝑙𝑡 | |2] +𝐶1 .

Because of Lemma 3.7, we can further rewrite the previous inequal-

ity as

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟∗) + 𝑐 ⟨E[𝑘𝑡 ] − E[𝑙𝑡 ], 𝑟𝑡 − 𝑟∗⟩+
√

2

(
𝑐 − 1

𝑐

)
𝐺𝑅 − [𝑐

2

E[| |𝑘𝑡 − 𝑙𝑡 | |2] +𝐶1 .

Define 𝐶2 = 𝐶1 +
√

2

(
𝑐 − 1

𝑐

)
𝐺𝑅, and notice 𝑘𝑡 − 𝑙𝑡 = 𝑔𝑡 , we can

write

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟∗) + 𝑐 ⟨E[𝑔𝑡 ], 𝑟𝑡 − 𝑟∗⟩ −
[𝑐

2

E[| |𝑔𝑡 | |2] +𝐶2

= 𝑓 (𝑟∗) + 𝑐

2[

(
2[⟨E[𝑔𝑡 ], 𝑟𝑡 − 𝑟∗⟩ − [2E[| |𝑔𝑡 | |22]

)
+𝐶2

= 𝑓 (𝑟∗) + 𝑐

2[
E

[
2[⟨𝑔𝑡 , 𝑟𝑡 − 𝑟∗⟩ − [2 | |𝑔𝑡 | |22

]
+𝐶2 .

From the second last to the last equation, we also take expectation

w.r.t. 𝑟𝑡 on both sides. The equality holds because the randomness

of 𝑔𝑡 come from the sampling step at the 𝑡-th iteration, which is

independent of 𝑟𝑡 (whose randomness come from the first 𝑡 − 1

iterations). Because 𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 , we have | |𝑟𝑡 − 𝑟∗ | |2
2
− ||𝑟𝑡+1 −

𝑟∗ | |2
2
= 2[⟨𝑔𝑡 , 𝑟𝑡 − 𝑟∗⟩ − [2 | |𝑔𝑡 | |2

2
. Hence we have:

E[𝑓 (𝑟𝑡+1)] ≤ 𝑓 (𝑟∗) +
𝑐

2[
E[| |𝑟𝑡 − 𝑟∗ | |22 − ||𝑟𝑡+1 − 𝑟

∗ | |2
2
] +𝐶2 . (19)

By summing up Equation 19 for 𝑡 = 0, . . . ,𝑇 − 1, we get

𝑇−1∑︁
𝑡=0

E[𝑓 (𝑟𝑡+1) − 𝑓 (𝑟∗)] ≤
𝑐 | |𝑟0 − 𝑟∗ | |2

2

2[
+𝑇𝐶2 . (20)

Finally, by Jensen’s inequality, 𝑇 𝑓 (𝑟𝑇 ) ≤
∑𝑇
𝑡=1

𝑓 (𝑟𝑡 ),
𝑇−1∑︁
𝑡=0

E[𝑓 (𝑟𝑡+1) − 𝑓 (𝑟∗)] = E[
𝑇∑︁
𝑡=1

𝑓 (𝑟𝑡 )] −𝑇 𝑓 (𝑟∗)

≥ 𝑇E[𝑓 (𝑟𝑇 )] −𝑇 𝑓 (𝑟∗) . (21)

Combining equations 20, 21, we have

E[𝑓 (𝑟𝑇 )] ≤ 𝑓 (𝑟∗) +
𝑐 | |𝑟0 − 𝑟∗ | |2

2

2[𝑇
+𝐶2, (22)

which is exactly the equation in Theorem 3.4. □



To quantify the computational complexity of XOR-Game, we

prove the following theorem in the supplementary materials detail-

ing the number of queries to NP oracles needed for XOR-Game𝐷𝑀

and XOR-Game0. The proof of this Theorem is again left in the

supplementary materials.

Theorem 3.8. XOR-Game0 in Algorithm 1 uses 𝑂 (−𝑇𝑛 log(1 −
1/
√
𝛿) log(−𝑛/𝛾 log(1 − 1/

√
𝛿)) + 𝑇𝐾) queries to NP oracles. XOR-

Game𝐷𝑀 in Algorithm 2 uses𝑂 (−𝑇𝑛 log(1− 1/
√
𝛿) log(𝑛/𝛾 log(1−

1/
√
𝛿)) +𝑇𝐾 + 𝑆) queries to NP oracles.

4 EXPERIMENTS
We demonstrate empirical evidence that XOR-Game outperforms a

few competing approaches in the speed and the quality of the solu-

tions found for both the quantal response zero-sum leader-follower

games and distribution-matching games. Our evaluation is con-

ducted on a synthetic benchmark set and a behavior model learned

from real-world data obtained from the Avicaching game, which

promotes bird watchers to collect data in remote and undersampled

locations using the so-called Avicaching points [57, 58]. The base-

line approaches we consider are: (1) BRQR algorithm [59], which

minimizes the leader’s objective in quantal response stackelberg

games. Their approach is based on a full gradient descend (GD)

optimizer, hence needs to go over all the follower’s actions in each

iteration and is only applicable on games with small action spaces.

(2) gibbs_game, which uses SGD to minimize the leader’s objective

but utilizes Gibbs sampling in the estimation of the gradient direc-

tion. (3) bp_game, which uses samples generated from the marginal

probabilities computed via loopy belief propagation during SGD,

[31, 37, 60] and (4) cbp_game, which harnesses the recently pro-

posed BP chain method in generating samples in SGD [18]. For the

fairness of comparisons, the leader’s objective 𝐿0 for the zero-sum

game is computed using an exact model counter Ace [10]. The

leader’s objective 𝐿𝐷𝑀 for the distribution matching game is the

KL-divergence, which is computed using Ace and XOR-sampling.

The estimated KL-divergence is close to the groundtruth due to the

constant approximation guarantee of XOR-sampling and the exact-

ness of Ace. Additional details are in the supplementary materials.

In synthetic and real-world experiments, we use the Avicaching

game as the background. In the Avicaching game, the leader (Avi-

caching game organizer) harnesses rewards to motivate the follow-

ers (bird watchers) to visit remote and under-sampled locations.

The rewards are in the form of virtual Avicaching points, which

marks the participants’ contributions to science. At the end of each

season of the Avicaching game, a lottery is drawn from which Avi-

caching participants have opportunities to win birding gears based

on how many Avicaching points they have contributed. In both

the synthetic and the real-world experiments, one action that one

Avicaching participant can take is to visit a set of locations 𝐿. In

practice, we assume bird watchers only choose between locations

historically documented in the eBird dataset [50] hence we have

information for all the locations. We assume the probability that

one Avicaching participant visit a set of locations 𝐿 is given by:

𝑃 (𝐿) ∝ exp(𝑤𝑟\𝑇𝐿 𝑟 +𝑤 𝑓 𝐹𝐿 + 𝐿
𝑇𝑊𝐿). (23)

Here, we use 𝑃 (𝐿) instead of 𝑃 (𝑖) because each action is character-

ized by a set of locations. We assume 𝐿 is represented as a vector

Table 1: Comparison between XOR-Game0 and BRQR
Size Loss𝑋𝑂𝑅 Loss𝐵𝑅𝑄𝑅 Time𝑋𝑂𝑅 Time𝐵𝑅𝑄𝑅

2
2

0.0425 0.0071 147.59s 4.10s

2
4

0.0677 0.0149 154.96s 28.11s

2
8

0.0346 0.0139 196.48s 46.16s

2
16

0.0338 0.0178 302.24s 499.57s

2
32

0.0814 N/A 699.36s >3h

2
64

0.0799 N/A 8476.04s >3h

of indicator variables of visited locations.𝑤 𝑓 𝐹𝐿 + 𝐿𝑇𝑊𝐿 is repre-

sented using symbol 𝜙 during theoretic derivation. Each column

of 𝐹 includes features associated with each location, such as its

landscape composition, proximity to water, etc, which affects bird

watchers’ intrinsic utilities in visiting these locations.𝑊 is a matrix

characterizing the changing of utilities when visiting multiple loca-

tions (e.g., bird watchers typically do not prefer visiting multiple

locations of the same type). \𝐿 is a vector of indicator variables of

whether visiting location set 𝐿 receives each reward. 𝑤𝑟 and 𝑤 𝑓
are the relative importance of rewards and location features. For

distribution matching game, we assume 𝑄 (𝐿) has the same form

as 𝑃 (𝐿) although with different parameters to promote visits to

remote and under-sampled locations.

Validation on Small Games. We first validate that XOR-Game

finds close-to-optimal leader’s strategies on small sized games.

Specifically, we focus on the zero-sum quantal response game.

BRQR is used as the baseline for comparison. The difference in

leader’s utility values between the equilibrium and the ones found

by the algorithms are shown as Loss𝑋𝑂𝑅 and Loss𝐵𝑅𝑄𝑅 in Table 1.

Here “Size” represents the number of different location sets a fol-

lower can visit, Time𝑋𝑂𝑅 and Time𝐵𝑅𝑄𝑅 are the running times of

different algorithms respectively. We can see from the table that

both XOR-Game and BRQR find close-to-optimal leader’s strategies.

Initially XOR-Game takes longer to converge, but BRQR cannot

scale to modest sized games as it runs out of a 3-hour time limit

for a game with action space of ≥ 2
32
. XOR-Game still produces

near optimal solutions in this size. Further details of this experi-

ment (in particular, the speed the two algorithms converge to these

solutions) are left to the supplementary materials.

Evaluation on Large Synthetic Benchmarks. We further evaluate

the performance of XOR-Game on both the zero-sum game and

the distribution matching game on large synthetic benchmarks. In

these experiments, we intentionally increase the dimensionality

of the reward vector 𝑟 to be quadratic in the number of locations

to increase the difficulty of benchmarks. To be specific, we let

\𝐿 = vector(𝐿𝐿𝑇 ) = (𝑙1𝑙1, 𝑙1𝑙2, . . . , 𝑙1𝑙𝑛, . . . , 𝑙𝑛𝑙𝑛)𝑇 where 𝐿 is the lo-

cation set vector 𝐿 = (𝑙1, . . . , 𝑙𝑛)𝑇 . This is to assume one participant

can receive a unique reward 𝑟𝑖 𝑗 by visiting location pair (𝑖, 𝑗). We

enforce each 𝑟𝑖 𝑗 to be non-negative and no greater than 1. During

SGD, when 𝑟𝑖 𝑗 becomes negative (or bigger than 1), we reset it to

be 0 (or 1). Additional details are in the supplementary materials.

Figure 1 (left and middle) shows the performance of various algo-

rithms as the optimization progresses. Here, each curve shows the

leader’s objective averaged over 20 benchmarks. For each bench-

mark, we let all algorithms start from the same initial solution.

When computing the average, we normalize the objective function
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Figure 1: (Left and Middle) XOR-Game converges faster and to better solutions compared with competing approaches on
synthetic datasets. (Left) Experiment on the zero sum game. (Middle) Experiment on the distribution matching game. (Right)
XOR-Game converges faster than competing approaches on a behavior model learned from data collected from a real-world
Avicaching game. X-axis shows the number of SGD iterations. Y-axis shows the leader’s objective function 𝐿 (𝐿0 or 𝐿𝐷𝑀 ). AVG
depicts 𝐿(𝑟𝑇 ).

values against that of the initial solution so each algorithm always

starts from an objective function value of 1.

Notably, XOR-Game descends to the best solutions within the

least number of SGD iterations for both the zero-sum games and

the distribution matching games. We would like to point out that

XOR-sampling in this case is efficient in obtaining the samples,

even though XOR-sampling has to answer NP-complete queries. In

particular, it roughly takes 1 second for XOR-sampling to obtain 100

samples during SGD, but in general it takes 50 seconds for Gibbs

sampling (300 MCMC steps), 2.8 seconds for belief propagation,

and 4700 seconds for chained belief propagation (cbp). Because cbp

is so slow, we use 100 samples in the gradient estimation for all

other approaches but only 10 samples for cbp.

Evaluation on the Avicaching Game. We then evaluate all ap-

proaches on a behavior model learned from real-world data col-

lected from the Avicaching Game. The data comes from an actual

field deployment of the Avicaching game in the eBird crowdsourc-

ing platform between March 27 and October 29, 2015 (30 weeks)

in Tompkins and Cortland counties of the New York State. A set

of 50 Avicaching locations were selected, which were all publicly

accessible but received no visits prior to the game. The goal of

the Avicaching game was to shift the bird watchers’ efforts from

traditional bird watching hot spots to these Avicaching locations,

harnessing Avicaching points. The numbers of Avicaching points

offered for each visit to these Avicaching locations were updated

every Monday. The Avicaching game was remarkably effective dur-

ing this field deployment. It was reported in [57] that 19% of the

bird watching effort in these two counties were shifted to these

under-sampled Avicaching locations.

Before evaluating algorithms, we first learn a behavior model in

the form of Equation 23 for all eBird participants. Because the field

study gives an independent reward to each Avicaching location, we

set \𝐿 to be 𝐿. \𝑇
𝐿
𝑟 = 𝐿𝑇 𝑟 represents the total reward from visiting

the location set 𝐿. 𝐹 includes landscape features obtained from the

2011 National Land Cover Database (NLCD). 𝐿𝑇𝑊𝐿 represents the

change in utility functions for visiting multiple locations. Overall,

𝑤 𝑓 𝐹𝐿 +𝐿𝑇𝑊𝐿 represents the intrinsic utility of visiting locations 𝐿.

Each data point consists of the set of locations 𝐿 one bird watcher

visits and the corresponding reward 𝑟 of the week. Parameters𝑤𝑟 ,

𝑤 𝑓 , and𝑊 are learned using Contrastive Divergence [7].

We run various algorithms for the distribution matching game

to minimize the KL-divergence between the learned probability

density 𝑃 (𝐿) with a manually designed 𝑄 (𝐿), which promotes the

visiting of under-sampled Avicaching locations and suppresses the

visiting to others. The rewards were set to be greater than 0 but less

than 100 for each location (same order of magnitude as the actual

field deployment). Additional details in terms of learning 𝑃 (𝐿) and
𝑄 (𝐿) can be found in the supplementary materials.

Figure 1(right) demonstrates that XOR-Game descends to an

optimal reward allocation faster than competing approaches. All

benchmarks start with identically initialized rewards. We manually

inspected the solutions. The final solutions of all approaches reach

almost zero for the KL-divergence, suggesting a possibility to match

the learned probability density 𝑃 (𝐿) to 𝑄 (𝐿) using available re-

wards. Nevertheless, we cannot conclude that the Avicaching game

participants will act according to 𝑄 if we had the opportunities to

deploy the rewards into the field. This is because all calculations

are based on a learned behavior model from historical data. We

cannot guarantee how much the learned model captures the subtle

aspects of human decision-making and new visiting patterns may

emerge as the human behavior changes with the introduction of

the Avicaching game. On average, the wall-clock time for each

method is: XOR_game(24h), bp_game(21h), and gibbs_game(10h).

The cbp_game is exlcuded for comparison because it takes >8h per

SGD iteration. In summary, XOR-Game requires the least number

of SGD iterations to descend to the best leader’s strategies among

all benchmark algorithms. XOR-game completes in a reasonable

time, has good empirical performance and provable guarantees.

5 CONCLUSION
We proposed XOR-Game to solve the convex quantal response

leader-follower games with exponentially large action spaces. XOR-

Game has a linear convergence speed towards the equilibrium of

the leader-follower games. Our approach is based on an integration

of XOR-Sampling and stochastic gradient descent, transforming the

otherwise #P-hard problem into queries within the NP complexity

class, while obtaining guarantees for the convergence speed. The

experiments on both synthetic and real-world Avicaching games

show that XOR-Game outperforms other baseline methods and

hence prove its great potential for real-world applications.
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A ALGORITHM AND PROOFS
A.1 Proofs for Theorems in Section 2

Proof. (Theorem 2.2) First, consider the derivative of the leader’s

objective function of 𝐿0 (𝑟 ) in Equation 4 w.r.t. 𝑟 ,

∇𝐿0 (𝑟 ) = ∇𝑟 log

(
𝑁∑︁
𝑖=1

𝑒\
𝑇
𝑖
𝑟+𝜙𝑖

)
=

1∑𝑁
𝑗=1

𝑒
\𝑇
𝑗
𝑟+𝜙 𝑗

𝑁∑︁
𝑖=1

𝑒\
𝑇
𝑖
𝑟+𝜙𝑖\𝑖

=

𝑛∑︁
𝑖=1

𝑃 (𝑖)\𝑖 = E𝑃 (𝑖 ) [\𝑖 ]

Then compute the Hessian matrix 𝐻 (𝐿0),
𝐻 (𝐿0) = ∇(∇𝐿0 (𝑟 ))

=

𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖\𝑇𝑖 −
(
𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖

) ©«
𝑁∑︁
𝑗=1

𝑃 ( 𝑗)\ 𝑗 ª®¬
𝑇

= 𝐶𝑜𝑣 (\𝑖 , \ 𝑗 ) .
Apparently, the Hessian matrix of the leader’s objective function

𝐿0 (𝑟 ) is in the form of a co-variance matrix which is positive semi-

definite. Thus the convexity of 𝐿0 (𝑟 ) is proved. □

Proof. (Theorem 2.3) Taking derivative of the objective function

𝐿𝐷𝑀 (𝑟 ) w.r.t. 𝑟 ,

∇𝐿𝐷𝑀 =∇𝑟

(
𝑁∑︁
𝑖=1

𝑄 (𝑖) log

𝑄 (𝑖)
𝑃 (𝑖)

)
= − ∇𝑟

(
𝑁∑︁
𝑖=1

𝑄 (𝑖) log 𝑃 (𝑖)
)

=

𝑁∑︁
𝑖=1

𝑄 (𝑖)
𝑃 (𝑖)

(∑𝑁
𝑗=1

𝑒
\𝑇
𝑗
𝑟+𝜙 𝑗 \ 𝑗

)
𝑒\

𝑇
𝑖
𝑟+𝜙𝑖(∑𝑁

𝑗=1
𝑒
\𝑇
𝑗
𝑟+𝜙 𝑗

)
2

−
𝑁∑︁
𝑖=1

𝑄 (𝑖)
𝑃 (𝑖)

𝑒\
𝑇
𝑖
𝑟+𝜙𝑖\𝑖∑𝑁

𝑗=1
𝑒
\𝑇
𝑗
𝑟+𝜙 𝑗

=

𝑁∑︁
𝑖=1

𝑄 (𝑖)
𝑁∑︁
𝑗=1

𝑃 ( 𝑗)\ 𝑗 −
𝑁∑︁
𝑖=1

𝑄 (𝑖)\𝑖

=E𝑃 (𝑖 ) [\𝑖 ] − E𝑄 (𝑖 ) [\𝑖 ]
The Hessian matrix 𝐻 (𝐿𝐷𝑀 ) is

𝐻 (𝐿𝐷𝑀 ) = ∇(∇𝐿𝐷𝑀 ) = ∇(E𝑃 (𝑖 ) [\𝑖 ])

=

𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖\𝑇𝑖 −
(
𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖

) ©«
𝑁∑︁
𝑗=1

𝑃 ( 𝑗)\ 𝑗 ª®¬
𝑇

= 𝐶𝑜𝑣 (\𝑖 , \ 𝑗 ).
The Hessian matrix 𝐻 (𝐿𝐷𝑀 ) is in the form of a co-variance matrix

which is positive semi-definite. So 𝐿𝐷𝑀 is convex w.r.t. 𝑟 . □

A.2 Proofs for Zero-sum Quantal Response
Leader Follower Games

The XOR-Game algorithm for solving zero-sum quantal response

leader follower game is shown in Algorithm 1. The performance

of this algorithm is guaranteed by Theorem 3.1. Our definition for

[∇𝐿0 (𝑟 )]+ (or [∇𝐿0 (𝑟 )]−) in the proofs to the zero-sum game are

as follows:

[∇𝐿0 (𝑟 )]+ = E𝑃 (𝑖 ) [\+𝑖 ] =
𝑁∑︁
𝑖=1

𝑃 (𝑖) [\+𝑖 ],

[∇𝐿0 (𝑟 )]− = E𝑃 (𝑖 ) [\−𝑖 ] =
𝑁∑︁
𝑖=1

𝑃 (𝑖) [\−𝑖 ] .

Here, [𝑓 ]+ = max{𝑓 , 0} extracts the positive part of 𝑓 , and [𝑓 ]− =

min{𝑓 , 0} extracts the negative part of 𝑓 . Notice in the previous

definition, we first extract the positive (negative) part of each \𝑖
then take the expectation, the result of which can be different from

first taking the expectation then extracting the positive (negative)

part. It is straightforward to see that

∇𝐿0 (𝑟 ) = [∇𝐿0 (𝑟 )]+ + [∇𝐿0 (𝑟 )]− .
In the lemmas below we sometimes use 𝑓 to represent 𝐿0, in which

case [∇𝑓 (𝑟𝑡 )]+ ([∇𝑓 (𝑟𝑡 )]− ) assume that we first extract the positive

(negative) part then take the expectation as well. This definition

carries over to the distribution matching leader follower games,

although there we impose the condition that all {\1, . . . , \𝑁 } match

signs at every dimension. Under that condition, the order of taking

the expectation and extracting the positive (negative) parts do not

affect the final result.

Lemma A.1. Suppose 𝑓 : R𝑑 → R is convex. 𝑟∗ = arg min𝑟 𝑓 (𝑟 ).
At the 𝑡-th iteration of SGD, 𝑔𝑡 is the estimated gradient in Algo-
rithm 1: 𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 . Suppose | |E[𝑔+𝑡 ] | |2 ≤ 𝐺 , | |E[𝑔−𝑡 ] | |2 ≤ 𝐺 ,
| |𝑟𝑡 − 𝑟∗ | |2 ≤ 𝑅, we have:

|⟨E[𝑔+𝑡 ],E[𝑔−𝑡 ]⟩| ≤ 𝐺2, (24)

|⟨E[𝑔+𝑡 ], [𝑟 − 𝑟∗]−⟩| ≤ 𝐺𝑅, (25)

|⟨E[𝑔−𝑡 ], [𝑟 − 𝑟∗]+⟩| ≤ 𝐺𝑅. (26)

Proof. (Lemma A.1) Use Cauchy-Schwarz Inequality, we have,

|⟨E[𝑔+𝑡 ],E[𝑔−𝑡 ]⟩| ≤ | |E[𝑔+𝑡 ] | |2 | |E[𝑔−𝑡 ] | |2 ≤ 𝐺2,

|⟨E[𝑔+𝑡 ], [𝑟 − 𝑟∗]−⟩| ≤ | |E[𝑔+𝑡 ] | |2 | | [𝑟 − 𝑟∗]− | |2
= | |E[𝑔+𝑡 ] | |2 | |min{𝑟 − 𝑟∗, 0}| |2
≤ ||E[𝑔+𝑡 ] | |2 | |𝑟 − 𝑟∗ | |2
≤ 𝐺𝑅

|⟨E[𝑔−𝑡 ], [𝑟 − 𝑟∗]+⟩| ≤ | |E[𝑔−𝑡 ] | |2 | | [𝑟 − 𝑟∗]+ | |2
= | |E[𝑔−𝑡 ] | |2 | |max{𝑟 − 𝑟∗, 0}| |2
≤ ||E[𝑔−𝑡 ] | |2 | |𝑟 − 𝑟∗ | |2
≤ 𝐺𝑅

This completes the proof. □

Lemma A.2. Suppose 𝑓 : R𝑑 → R is convex. 𝑟∗ = arg min𝑟 𝑓 (𝑟 ).
At the 𝑡-th iteration of SGD, 𝑔𝑡 is the estimated gradient in Algo-
rithm 1: 𝑟𝑡+1 = 𝑟𝑡 − [𝑔𝑡 . Suppose | |E[𝑔+𝑡 ] | |2 ≤ 𝐺 , | |E[𝑔−𝑡 ] | |2 ≤ 𝐺 ,
| |𝑟𝑡 − 𝑟∗ | |2 ≤ 𝑅. If there exists 1 < 𝑐 <

√
2, s.t. 1

𝑐 [∇𝑓 (𝑟𝑡 )]
+ ≤



E[𝑔+𝑡 ] ≤ 𝑐 [∇𝑓 (𝑟𝑡 )]+, 𝑐 [∇𝑓 (𝑟𝑡 )]− ≤ E[𝑔−𝑡 ] ≤ 1

𝑐 [∇𝑓 (𝑟𝑡 )]
− , then we

have:
1

𝑐
| |E[𝑔𝑡 ] | |22 ≤⟨∇𝑓 (𝑟𝑡 ),E[𝑔𝑡 ]⟩ + 2(𝑐 − 1

𝑐
)𝐺2, (27)

⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ ≤𝑐 ⟨E[𝑔𝑡 ], 𝑟𝑡 − 𝑟∗⟩ + 2(𝑐 − 1

𝑐
)𝐺𝑅. (28)

Proof. (Lemma A.2) Because

1

𝑐
[∇𝑓 (𝑟𝑡 )]+ ≤ E[𝑔+𝑡 ] ≤ 𝑐 [∇𝑓 (𝑟𝑡 )]+,

𝑐 [∇𝑓 (𝑟𝑡 )]− ≤ E[𝑔−𝑡 ] ≤
1

𝑐
[∇𝑓 (𝑟𝑡 )]−,

We have:

1

𝑐
| |E[𝑔+𝑡 ] | |22 =

1

𝑐
⟨E[𝑔+𝑡 ],E[𝑔+𝑡 ]⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔+𝑡 ]⟩

≤ 𝑐 ⟨E[𝑔+𝑡 ],E[𝑔+𝑡 ]⟩ = 𝑐 | |E[𝑔+𝑡 ] | |22 . (29)

Similarly,

1

𝑐
| |E[𝑔−𝑡 ] | |22 =

1

𝑐
⟨E[𝑔−𝑡 ],E[𝑔−𝑡 ]⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔−𝑡 ]⟩

≤ 𝑐 ⟨E[𝑔−𝑡 ],E[𝑔−𝑡 ]⟩ = 𝑐 | |E[𝑔−𝑡 ] | |22 . (30)

For cross terms, we have:

⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔−𝑡 ]⟩ ≥𝑐 ⟨[E[𝑔+𝑡 ],E[𝑔−𝑡 ]⟩, (31)

⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔+𝑡 ]⟩ ≥𝑐 ⟨[E[𝑔−𝑡 ],E[𝑔+𝑡 ]⟩. (32)

Notice that

1

𝑐
| |E[𝑔𝑡 ] | |22 =

1

𝑐
| |E[𝑔+𝑡 ] + E[𝑔−𝑡 ] | |22

=
1

𝑐

(
| |E[𝑔+𝑡 ] | |22 + ||E[𝑔

−
𝑡 ] | |22 + 2⟨E[𝑔+𝑡 ],E[𝑔−𝑡 ]⟩

)
Use the results in Equation 29, 30, 31, 32, we can further derive:

1

𝑐
| |E[𝑔𝑡 ] | |22 ≤⟨[∇𝑓 (𝑟𝑡 )]

+,E[𝑔+𝑡 ]⟩ + ⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔−𝑡 ]⟩+
1

𝑐2
⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔−𝑡 ]⟩ +

1

𝑐2
⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔+𝑡 ]⟩

=⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔+𝑡 ]⟩ + ⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔−𝑡 ]⟩+
⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔−𝑡 ]⟩ + ⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔+𝑡 ]⟩+

( 1

𝑐2
− 1)

(
⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔−𝑡 ]⟩ + ⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔+𝑡 ]⟩

)
=⟨∇𝑓 (𝑟𝑡 ),E[𝑔𝑡 ]⟩ + (

1

𝑐2
− 1)⟨[∇𝑓 (𝑟𝑡 )]+,E[𝑔−𝑡 ]⟩+

( 1

𝑐2
− 1)⟨[∇𝑓 (𝑟𝑡 )]−,E[𝑔+𝑡 ]⟩

≤⟨∇𝑓 (𝑟𝑡 ),E[𝑔𝑡 ]⟩ + (
1

𝑐
− 𝑐)⟨E[𝑔+𝑡 ],E[𝑔−𝑡 ]⟩+

( 1
𝑐
− 𝑐)⟨E[𝑔−𝑡 ],E[𝑔+𝑡 ]⟩.

Applying Equation 24 from Lemma A.1 to the last equation, we get

Equation 27.

To prove Equation 28, first notice:

1

𝑐
⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]+, [𝑟𝑡 − 𝑟∗]+⟩

≤ 𝑐 ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩,
1

𝑐
⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]−, [𝑟𝑡 − 𝑟∗]−⟩

≤ 𝑐 ⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩,
𝑐 ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]+, [𝑟𝑡 − 𝑟∗]−⟩

≤ 1

𝑐
⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩,

𝑐 ⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ ≤ ⟨[∇𝑓 (𝑟𝑡 )]−, [𝑟𝑡 − 𝑟∗]+⟩

≤ 1

𝑐
⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩.

Then we have:

⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩
= ⟨[∇𝑓 (𝑟𝑡 )]+ + [∇𝑓 (𝑟𝑡 )]−, [𝑟𝑡 − 𝑟∗]+ + [𝑟𝑡 − 𝑟∗]−⟩
= ⟨[∇𝑓 (𝑟𝑡 )]+, [𝑟𝑡 − 𝑟∗]+⟩ + ⟨[∇𝑓 (𝑟𝑡 )]+, [𝑟𝑡 − 𝑟∗]−⟩+
⟨[∇𝑓 (𝑟𝑡 )]−, [𝑟𝑡 − 𝑟∗]+⟩ + ⟨[∇𝑓 (𝑟𝑡 )]−, [𝑟𝑡 − 𝑟∗]−⟩
≤ 𝑐 ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ + 𝑐 ⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩+

1

𝑐
⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ +

1

𝑐
⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩

= 𝑐 ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ + 𝑐 ⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩+
𝑐 ⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ + 𝑐 ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩+

( 1
𝑐
− 𝑐) (⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ + ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩)

= ( 1
𝑐
− 𝑐) (⟨E[𝑔−𝑡 ], [𝑟𝑡 − 𝑟∗]+⟩ + ⟨E[𝑔+𝑡 ], [𝑟𝑡 − 𝑟∗]−⟩)+

𝑐 ⟨E[𝑔𝑡 ], [𝑟𝑡 − 𝑟∗]⟩
Using Equation 25, 26, we have the previous line of equation can-

not be greater than 𝑐 ⟨E[𝑔𝑡 ], [𝑟𝑡 − 𝑟∗]⟩ + 2(𝑐 − 1

𝑐 )𝐺𝑅. The proof is
completed. □

Lemma A.3. If the total variation max𝑃 𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) ≤ 𝜎2, then
both the objective function for the zero-sum game 𝐿0 and for the
distribution matching game 𝐿𝐷𝑀 are 𝜎2-smooth with respect to 𝑟 .

Proof. (Lemma A.3) Because the Hessian Matrix for the ob-

jective functions of both the zero-sum game and the distribution

matching game are the same, we use 𝐿 to represent the objective

functions for both games. In other words, the following proof works

when we replace 𝐿 with either 𝐿0 or 𝐿𝐷𝑀 . To prove 𝜎2
-smoothness,

we need to prove

| |∇𝐿(𝑟1) − ∇𝐿(𝑟2) | |2 ≤ 𝜎2 | |𝑟1 − 𝑟2 | |2,∀𝑟1, 𝑟2 ∈ 𝑑𝑜𝑚 𝐿.

Because of the mean value theorem, there exists a point 𝑟 ∈ (𝑟1, 𝑟2)
such that

∇𝐿(𝑟1) − ∇𝐿(𝑟2) = ∇(∇𝐿(𝑟 )) (𝑟1 − 𝑟2) .
Taking the 𝐿2 norm for both sides, we have

| |∇𝐿(𝑟1) − ∇𝐿(𝑟2) | |2 =| |∇(∇𝐿(𝑟 )) (𝑟1 − 𝑟2) | |2
≤||∇(∇𝐿(𝑟 )) | |2 | |𝑟1 − 𝑟2 | |2 (33)

Then, the problem is to bound the matrix 2-norm | |∇(∇𝐿(𝑟 )) | |2. We

know in both cases of zero-sum game and distribution matching

game:

∇(∇𝐿(𝑟 )) =
𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖\𝑇𝑖 −
(
𝑁∑︁
𝑖=1

𝑃 (𝑖)\𝑖

) ©«
𝑁∑︁
𝑗=1

𝑃 ( 𝑗)\ 𝑗 ª®¬
𝑇

= 𝐶𝑜𝑣 (\𝑖 , \ 𝑗 ). (34)



We see ∇(∇𝐿(𝑟 )) is in the form of a co-variance matrix, which is

both symmetric and positive semi-definite. Notice here the proba-

bility 𝑃 (𝑖) depends on 𝑟 . According to matrix theory, the 2-norm

of the matrix is its largest eigenvalue _𝑚𝑎𝑥 . Further because the

covariance matrix is positive semi-definite, all its eigenvalues are

non-negative. Hence:

_𝑚𝑎𝑥 ≤
∑︁
𝑖

_𝑖 = 𝑇𝑟 (𝐶𝑜𝑣 (\𝑖 , \ 𝑗 )) .

where 𝑇𝑟 (𝐶𝑜𝑣 (\𝑖 , \ 𝑗 )) means the trace of the covariance matrix

(i.e., the sum of all its diagonal entries). Write out the trace, we

found it is exactly the total variation. Hence, we have:

| |∇(∇𝐿(𝑟 )) | |2 = _𝑚𝑎𝑥 ≤ 𝑇𝑟 (𝐶𝑜𝑣 (\𝑖 , \ 𝑗 ))
= E𝑃 (𝑖 ) [| |\𝑖 | |22] − ||E𝑃 (𝑖 ) [\𝑖 ] | |

2

2

= 𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) ≤ 𝜎2 .

Combining this with Equation 33, we know

| |∇𝐿(𝑟1) − ∇𝐿(𝑟2) | |2 ≤ 𝜎2 | |𝑟1 − 𝑟2 | |2 .
This completes the proof. □

Proof. (Theorem 3.1) In Algorithm 2, the gradient 𝑔𝑡 is esti-

mated using the mean of 𝐾 samples
1

𝐾

∑𝐾
𝑖=1

\𝑙 ′
𝑖
according to the

gradient in Theorem 2.2. For every sample 𝑙 ′
𝑖
sampled from the

approximated distribution 𝑃 ′ (𝑙 ′
𝑖
), the following inequalities hold

because of XOR sampling (Theorem 2.4),

1

𝛿
E𝑃 (𝑖 ) [\+𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 ) [\

+
𝑙 ′
𝑖
] ≤ 𝛿E𝑃 (𝑖 ) [\+𝑖 ],

𝛿E𝑃 (𝑖 ) [\−𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 ) [\
−
𝑙 ′
𝑖
] ≤ 1

𝛿
E𝑃 (𝑖 ) [\−𝑖 ] .

To complete the proof, we need to bound the variance of gradient

estimation: 𝑉𝑎𝑟 (𝑔𝑡 ) = 𝑉𝑎𝑟 ( 1

𝐾

∑𝐾
𝑖=1

\𝑙 ′
𝑖
).

| |E𝑃 (𝑖 ) [\𝑖 ] | |22 = | |E𝑃 (𝑖 ) [\+𝑖 + \
−
𝑖 ] | |

2

2

= | |E𝑃 (𝑖 ) [\+𝑖 ] | |
2

2
+ ||E𝑃 (𝑖 ) [\−𝑖 ] | |

2

2
+

2⟨E𝑃 (𝑖 ) [\+𝑖 ],E𝑃 (𝑖 ) [\
−
𝑖 ]⟩

≤ ||E𝑃 (𝑖 ) [\+𝑖 ] | |
2

2
+ ||E𝑃 (𝑖 ) [\−𝑖 ] | |

2

2

≤ 2𝐺2

𝑉𝑎𝑟 (\𝑙 ′
𝑖
) = E𝑃 ′ (𝑙 ′

𝑖
) [| |\𝑙 ′

𝑖
| |2

2
] − ||E𝑃 ′ (𝑙 ′

𝑖
) [\𝑙 ′

𝑖
] | |2

2

≤ E𝑃 ′ (𝑙 ′
𝑖
) [| |\𝑙 ′

𝑖
| |2

2
]

≤ 𝛿E𝑃 (𝑖 ) [| |\𝑖 | |22]
= 𝛿 (𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) + | |E𝑃 (𝑖 ) [\𝑖 ] | |22)
≤ 𝛿 (𝜎2 + 2𝐺2)

𝑉𝑎𝑟 (𝑔𝑡 ) = 𝑉𝑎𝑟 (
1

𝐾

𝐾∑︁
𝑖=1

\𝑙 ′
𝑖
) = 1

𝐾
𝑉𝑎𝑟 (\𝑙 ′

𝑖
) ≤ 𝛿

𝐾
(𝜎2 + 2𝐺2)

By 𝜎2
-smooth of 𝐿0, for the 𝑡-th SGD iteration,

𝐿0 (𝑟𝑡+1) ≤ 𝐿0 (𝑟𝑡 ) + ⟨∇𝐿0 (𝑟𝑡 ), 𝑟𝑡+1 − 𝑟𝑡 ⟩ +
𝜎2

2

| |𝑟𝑡+1 − 𝑟𝑡 | |22

= 𝐿0 (𝑟𝑡 ) − [⟨∇𝐿0 (𝑟𝑡 ), 𝑔𝑡 ⟩ +
𝜎2[2

2

| |𝑔𝑡 | |22
Take the expectation w.r.t. 𝑔𝑡 on both sides,

E[𝐿0 (𝑟𝑡+1)] ≤ 𝐿0 (𝑟𝑡 ) − [⟨∇𝐿0 (𝑟𝑡 ),E[𝑔𝑡 ]⟩ +
𝜎2[2

2

E[| |𝑔𝑡 | |22]

Before getting the bound of | |E[𝑔𝑡 ] | |2
2
, we need to bound | |E[𝑔+𝑡 ] | |2

and | |E[𝑔−𝑡 ] | |2 as required in Lemma A.2. Notice that E[𝑔𝑡 ] =

E[ 1

𝐾

∑𝐾
𝑖=1

\𝑙 ′
𝑖
] = E𝑃 ′ (𝑖 ) [\𝑖 ]. According to Theorem 2.4,

E[𝑔+𝑡 ] = E𝑃 ′ (𝑖 ) [\+𝑖 ] =
𝑁∑︁
𝑖

𝑃 ′ (𝑖)\+𝑖 ≤ 𝛿
𝑁∑︁
𝑖

𝑃 (𝑖)\+𝑖 = 𝛿E𝑃 (𝑖 ) [\+𝑖 ]

E[𝑔−𝑡 ] = E𝑃 ′ (𝑖 ) [\−𝑖 ] =
𝑁∑︁
𝑖

𝑃 ′ (𝑖)\−𝑖 ≥ 𝛿
𝑁∑︁
𝑖

𝑃 (𝑖)\−𝑖 = 𝛿E𝑃 (𝑖 ) [\−𝑖 ]

Since all entries of E[𝑔+𝑡 ] are larger or equal to zero, and all en-

tries of E[𝑔−𝑡 ] are less or equal to zero, calculate the 𝑙2-norm

on both sides of the inequalities above. We have | |E[𝑔+𝑡 ] | |2 ≤
𝛿 | |E𝑃 (𝑖 ) [\+𝑖 ] | |2 = 𝛿𝐺 and | |E[𝑔−𝑡 ] | |2 ≤ 𝛿 | |E𝑃 (𝑖 ) [\−𝑖 ] | |2 = 𝛿𝐺 . No-

tice that in Lemma A.2, it was proved that

⟨∇𝐿0 (𝑟𝑡 ),E[𝑔𝑡 ]⟩ ≥
1

𝛿
| |E[𝑔𝑡 ] | |22 − 2(𝛿3 − 𝛿)𝐺2

Thus we have,

E[𝐿0 (𝑟𝑡+1)]

≤ 𝐿0 (𝑟𝑡 ) −
[

𝛿
| |E[𝑔𝑡 ] | |22 +

𝜎2[2

2

E[| |𝑔𝑡 | |22] + 2[ (𝛿3 − 𝛿)𝐺2

= 𝐿0 (𝑟𝑡 ) −
[

𝛿
(E[| |𝑔𝑡 | |22] −𝑉𝑎𝑟 (𝑔𝑡 )) +

𝜎2[2

2

E[| |𝑔𝑡 | |22] + 2[ (𝛿3 − 𝛿)𝐺2

≤ 𝐿0 (𝑟𝑡 ) −
2[ − 𝛿𝜎2[2

2𝛿
E[| |𝑔𝑡 | |22] +

[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2

≤ 𝐿0 (𝑟𝑡 ) −
[𝛿

2

E[| |𝑔𝑡 | |22] +
[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2

Since 𝐿0 is convex w.r.t. 𝑟 , i.e. 𝐿0 (𝑟∗) ≥ 𝐿0 (𝑟𝑡 ) + ⟨∇𝐿0 (𝑟𝑡 ), 𝑟∗ − 𝑟𝑡 ⟩,
and Lemma A.2 shows ⟨∇𝐿0 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ ≤ 𝛿 ⟨∇E[𝑔𝑡 ], 𝑟𝑡 − 𝑟∗⟩ +
2(𝛿2 − 1)𝐺𝑅, we have,

E[𝐿0 (𝑟𝑡+1)] ≤ 𝐿0 (𝑟∗) + ⟨∇𝐿0 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ −
[𝛿

2

E[| |𝑔𝑡 | |22]+
[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2

≤ 𝐿0 (𝑟∗) + 𝛿 ⟨E[𝑔𝑡 ], 𝑟𝑡 − 𝑟∗⟩ −
[𝛿

2

E[| |𝑔𝑡 | |22]+
[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2 + 2(𝛿2 − 1)𝐺𝑅

= 𝐿0 (𝑟∗) + 𝛿E[⟨𝑔𝑡 , 𝑟𝑡 − 𝑟∗⟩ −
[

2

| |𝑔𝑡 | |22]+
[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2 + 2(𝛿2 − 1)𝐺𝑅

Then rewrite the term 𝛿E[⟨𝑔𝑡 , 𝑟𝑡 − 𝑟∗⟩ − [
2
| |𝑔𝑡 | |2

2
] by completing

the square. Let

Λ =
[

𝐾
(𝜎2 + 2𝐺2) + 2[ (𝛿3 − 𝛿)𝐺2 + 2(𝛿2 − 1)𝐺𝑅



Then we have,

E[𝐿0 (𝑟𝑡+1)] ≤ 𝐿0 (𝑟∗) +
𝛿

2[
E[2[⟨𝑔𝑡 , 𝑟𝑡 − 𝑟∗⟩ − [2 | |𝑔𝑡 | |22] + Λ

≤ 𝐿0 (𝑟∗) +
𝛿

2[
E[| |𝑟𝑡 − 𝑟∗ | |22 − ||𝑟𝑡 − 𝑟

∗ − [𝑔𝑡 | |22] + Λ

= 𝐿0 (𝑟∗) +
𝛿

2[
E[| |𝑟𝑡 − 𝑟∗ | |22 − ||𝑟𝑡+1 − 𝑟

∗ | |2
2
] + Λ

Summing the equations above for 𝑡 = 0, . . . ,𝑇 − 1,

𝑇−1∑︁
𝑡=0

E[𝐿0 (𝑟𝑡+1) − 𝐿0 (𝑟∗)] ≤
𝛿

2[
E[| |𝑟0 − 𝑟∗ | |22 − ||𝑟𝑇 − 𝑟

∗ | |2
2
] +𝑇Λ

≤
𝛿 | |𝑟0 − 𝑟∗ | |2

2

2[
+𝑇Λ.

According to Jensen’s inequality 𝑇𝐿0 (𝑟𝑇 ) ≤
∑𝑇
𝑡=1

𝐿0 (𝑟𝑡 ), we
have

𝑇−1∑︁
𝑡=0

E[𝐿0 (𝑟𝑡+1) − 𝐿0 (𝑟∗)] = E[
𝑇∑︁
𝑡=1

𝐿0 (𝑟𝑡 )] −𝑇𝐿0 (𝑟∗)

≥ 𝑇E[𝐿0 (𝑟𝑇 )] −𝑇𝐿0 (𝑟∗)
Combining the equations above, we have

E[𝐿0 (𝑟𝑇 )] ≤𝐿0 (𝑟∗) +
𝛿 | |𝑟0 − 𝑟∗ | |2

2

2[𝑇
+ [
𝐾
(𝜎2 + 2𝐺2)+

2[ (𝛿3 − 𝛿)𝐺2 + 2(𝛿2 − 1)𝐺𝑅.
The proof is completed. □

A.3 Proofs for Distribution Matching Leader
Follower Games

The XOR-Game algorithm for solving distribution matching leader

follower game is shown in Algorithm 2. The performance of this

algorithm is guaranteed by Theorem 3.3 and Theorem 3.4. To prove

Theorem 3.4, we need the following lemmas:

Proof. (Lemma 3.5) To prove inequality 10, without losing gen-

erality, suppose the 𝑖-dimension of ∇𝑝 (𝑟𝑡 ), namely [∇𝑝 (𝑟𝑡 )]𝑖 is
positive. Because 𝑘𝑡 and ∇𝑝 (𝑟𝑡 ) match signs at every dimension,

we must have the 𝑖-th dimension of 𝑘𝑡 , namely [𝑘𝑡 ]𝑖 also posi-

tive. Thus E[𝑘𝑡 ]𝑖 is also positive. Further because
1

𝑐 [∇𝑝 (𝑟𝑡 )]
+ ≤

E[𝑘+𝑡 ] ≤ 𝑐 [∇𝑝 (𝑟𝑡 )]+, we have inequality 10 holds for dimension 𝑖 .

Suppose the 𝑗-dimension of ∇𝑝 (𝑟𝑡 ), namely [∇𝑝 (𝑟𝑡 )] 𝑗 is negative.
Using similar argument we have E[𝑘𝑡 ] 𝑗 is also negative. Now using

𝑐 [∇𝑝 (𝑟𝑡 )]− ≤ E[𝑘−𝑡 ] ≤ 1

𝑐 [∇𝑝 (𝑟𝑡 )]
−
, we have inequality 10 holds

for dimension 𝑗 as well. Following similar proofs, one can prove

inequalities 11, 12, 13. □

Proof. (Lemma 3.6) To prove Equation 14, notice

E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] − ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩ =
∑︁
𝑖

E[[𝑘𝑡 ]𝑖 [𝑙𝑡 ]𝑖 ] − E[[𝑘𝑡 ]𝑖 ]E[[𝑙𝑡 ]𝑖 )

Here, [𝑘𝑡 ]𝑖 ([𝑙𝑡 ]𝑖 ) means the 𝑖-th dimension of 𝑘𝑡 (𝑙𝑡 ). Hence, in-

side the summation of the previous equation is the covariance of

[𝑘𝑡 ]𝑖 and [𝑙𝑡 ]𝑖 , namely 𝑐𝑜𝑣 ( [𝑘𝑡 ]𝑖 , [𝑙𝑡 ]𝑖 ). We know that the Pearson

correlation coefficient 𝜌𝑖 satisfies:

−1 ≤ 𝜌𝑖 =
𝑐𝑜𝑣 ( [𝑘𝑡 ]𝑖 , [𝑙𝑡 ]𝑖 )√︁

𝑉𝑎𝑟 ( [𝑘𝑡 ]𝑖 )
√︁
𝑉𝑎𝑟 ( [𝑙𝑡 ]𝑖 )

≤ 1. (35)

Hence:

|E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] − ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩|

= |
∑︁
𝑖

𝑐𝑜𝑣 ( [𝑘𝑡 ]𝑖 , [𝑙𝑡 ]𝑖 ) |

≤
∑︁
𝑖

|𝑐𝑜𝑣 ( [𝑘𝑡 ]𝑖 , [𝑙𝑡 ]𝑖 ) |

≤
∑︁
𝑖

√︁
𝑉𝑎𝑟 ( [𝑘𝑡 ]𝑖 )

√︁
𝑉𝑎𝑟 ( [𝑙𝑡 ]𝑖 )

=
∑︁
𝑖

√︃
E[[𝑘𝑡 ]2𝑖 ] − (E[[𝑘𝑡 ]𝑖 ])2

√︃
E[[𝑙𝑡 ]2𝑖 ] − (E[[𝑙𝑡 ]𝑖 ])2

Apply the Cauchy-Schwarz Inequality to the last line,

|E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] − ⟨E[𝑘𝑡 ],E[𝑙𝑡 ]⟩|

≤

√√√(∑︁
𝑖

E[[𝑘𝑡 ]2𝑖 ] − (E[[𝑘𝑡 ]𝑖 ])2
)
·

√√√(∑︁
𝑖

E[[𝑙𝑡 ]2𝑖 ] − (E[[𝑙𝑡 ]𝑖 )]2
)

=
√︁
𝑉𝑎𝑟 (𝑘𝑡 )𝑉𝑎𝑟 (𝑙𝑡 )

≤ 𝜎2 .

To prove inequality 15, notice that

E[⟨𝑘𝑡 , 𝑙𝑡 ⟩] = E[
∑︁
𝑖

[𝑘𝑡 ]𝑖 [𝑙𝑡 ]𝑖 ]

≤ 1

2

E[
∑︁
𝑖

[𝑘𝑡 ]2𝑖 + [𝑙𝑡 ]
2

𝑖 ]

=
1

2

(E[| |𝑘𝑡 | |22] + E[| |𝑙𝑡 | |
2

2
])

=
1

2

(𝑉𝑎𝑟 (𝑘𝑡 ) + | |E[𝑘𝑡 ] | |22 +𝑉𝑎𝑟 (𝑙𝑡 ) + | |E[𝑙𝑡 ] | |
2

2
)

≤ 1

2

(𝜎2 +𝐺2 + 𝜎2 +𝐺2) = 𝜎2 +𝐺2 .

The first inequality in the chain above is due to the inequality of

arithmetic and geometric means. □

Proof. (Lemma 3.7) Notice that

⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩ = ⟨∇𝑝 (𝑟𝑡 ) − ∇𝑞(𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩
We split our discussions on multiple conditions concerning the

signs of ∇𝑝 (𝑟𝑡 ), ∇𝑞(𝑟𝑡 ) and 𝑟𝑡 − 𝑟∗ at each dimension. Notice that

∇𝑝 (𝑟𝑡 ), ∇𝑞(𝑟𝑡 ) match signs at each dimension. Hence they are

either both positive or negative. In addition, the signs of 𝑟𝑡 − 𝑟∗ at
each dimension match that of ∇𝑓 (𝑟𝑡 ) = ∇𝑝 (𝑟𝑡 ) − ∇𝑞(𝑟𝑡 ) because
of the convexity of 𝑓 (𝑟𝑡 ).

First case, suppose at dimension 𝑖1, [∇𝑝 (𝑟𝑡 )]𝑖1 , [∇𝑞(𝑟𝑡 )]𝑖1 and
[𝑟𝑡 − 𝑟∗]𝑖1 are all positive. In this dimension, under the condition

of Theorem 3.4, [∇𝑝 (𝑟𝑡 )]𝑖1 ≤ 𝑐E[𝑘𝑡 ]𝑖1 and [∇𝑞(𝑟𝑡 )]𝑖1 ≥ 1

𝑐 E[𝑙𝑡 ]𝑖1 .



Multiply with the positive [𝑟𝑡 − 𝑟∗]𝑖1 , we have
⟨[∇𝑝 (𝑟𝑡 ) − ∇𝑞(𝑟𝑡 )]𝑖1 , [𝑟𝑡 − 𝑟∗]𝑖1 ⟩

≤ ⟨𝑐E[𝑘𝑡 ]𝑖1 −
1

𝑐
E[𝑙𝑡 ]𝑖1 , [𝑟𝑡 − 𝑟∗]𝑖1 ⟩

= 𝑐 ⟨E[𝑘𝑡 ]𝑖1 − E[𝑙𝑡 ]𝑖1 , [𝑟𝑡 − 𝑟∗]𝑖1 ⟩ +
(
𝑐 − 1

𝑐

)
⟨E[𝑙𝑡 ]𝑖1 , [𝑟𝑡 − 𝑟∗]𝑖1 ⟩

≤ 𝑐 ⟨E[𝑘𝑡 ]𝑖1 − E[𝑙𝑡 ]𝑖1 , [𝑟𝑡 − 𝑟∗]𝑖1 ⟩+(
𝑐 − 1

𝑐

)
⟨max{|E[𝑘𝑡 ]𝑖1 |, |E[𝑙𝑡 ]𝑖1 |}, |𝑟𝑡 − 𝑟∗ |𝑖1 ⟩ (36)

Our second case is when [∇𝑝 (𝑟𝑡 )]𝑖2 , [∇𝑞(𝑟𝑡 )]𝑖2 and [𝑟𝑡 − 𝑟∗]𝑖2
are all negative. In this case we use [∇𝑝 (𝑟𝑡 )]𝑖2 ≥ 𝑐E[𝑘𝑡 ]𝑖2 and

[∇𝑞(𝑟𝑡 )]𝑖2 ≤ 1

𝑐 E[𝑙𝑡 ]𝑖2 and multiply with the negative term [𝑟𝑡 −
𝑟∗]𝑖2 , and follow the same derivation as in the first case (except

for switching the directions of inequalities when multiplying with

negative numbers). We arrive at the same bound as in Equation 36.

The bound still holds because we take the absolute values of the

last few terms.

The third and the fourth cases arewhen [∇𝑝 (𝑟𝑡 )]𝑖3 (𝑖4 ), [∇𝑞(𝑟𝑡 )]𝑖3 (𝑖4 )
are positive (negative) but [𝑟𝑡 − 𝑟∗]𝑖3 (𝑖4 ) are negative (positive). Fol-
lowing a similar derivation as previous cases,

⟨[∇𝑝 (𝑟𝑡 ) − ∇𝑞(𝑟𝑡 )]𝑖3 (𝑖4 ) , [𝑟𝑡 − 𝑟
∗]𝑖3 (𝑖4 ) ⟩

≤ ⟨1
𝑐
E[𝑘𝑡 ]𝑖3 (𝑖4 ) − 𝑐E[𝑙𝑡 ]𝑖3 (𝑖4 ) , [𝑟𝑡 − 𝑟

∗]𝑖3 (𝑖4 ) ⟩

= 𝑐 ⟨E[𝑘𝑡 ]𝑖3 (𝑖4 ) − E[𝑙𝑡 ]𝑖3 (𝑖4 ) , [𝑟𝑡 − 𝑟
∗]𝑖3 (𝑖4 ) ⟩−(

𝑐 − 1

𝑐

)
⟨E[𝑘𝑡 ]𝑖3 (𝑖4 ) , [𝑟𝑡 − 𝑟

∗]𝑖3 (𝑖4 ) ⟩

≤ 𝑐 ⟨E[𝑘𝑡 ]𝑖3 (𝑖4 ) − E[𝑙𝑡 ]𝑖3 (𝑖4 ) , [𝑟𝑡 − 𝑟
∗]𝑖3 (𝑖4 ) ⟩+(

𝑐 − 1

𝑐

)
⟨max{|E[𝑘𝑡 ]𝑖3 (𝑖4 ) |, |E[𝑙𝑡 ]𝑖3 (𝑖4 ) |}, |𝑟𝑡 − 𝑟

∗ |𝑖3 (𝑖4 ) ⟩ (37)

We see that the same bound as the previous two cases can be ob-

tained in the last line. Summing up bounds in Equations 36 and 37

over all dimensions, the left-hand side becomes ⟨∇𝑓 (𝑟𝑡 ), 𝑟𝑡 − 𝑟∗⟩,
the first term in the right-hand side becomes 𝑐 ⟨E[𝑘𝑡 ]−E[𝑙𝑡 ], 𝑟𝑡 −𝑟∗⟩.
The second term in the right-hand side becomes(
𝑐 − 1

𝑐

) ∑
𝑖 ⟨max{|E[𝑘𝑡 ]𝑖 |, |E[𝑙𝑡 ]𝑖 |}, |𝑟𝑡−𝑟∗ |𝑖 ⟩. Using Cauchy-Schwarz

Inequality for the second term, we get:(
𝑐 − 1

𝑐

) ∑︁
𝑖

⟨max{|E[𝑘𝑡 ]𝑖 |, |E[𝑙𝑡 ]𝑖 |}, |𝑟𝑡 − 𝑟∗ |𝑖 ⟩

≤
(
𝑐 − 1

𝑐

) √︄∑︁
𝑖

max{(E[𝑘𝑡 ]𝑖 )2, (E[𝑙𝑡 ]𝑖 )2}
√︄∑︁

𝑖

[𝑟𝑡 − 𝑟∗]2𝑖

≤
(
𝑐 − 1

𝑐

) √︄∑︁
𝑖

(E[𝑘𝑡 ]𝑖 )2 + (E[𝑙𝑡 ]𝑖 )2
√︄∑︁

𝑖

[𝑟𝑡 − 𝑟∗]2𝑖

=

(
𝑐 − 1

𝑐

) √︃
| |E[𝑘𝑡 ] | |2

2
+ ||E[𝑙𝑡 ] | |2

2

√︄∑︁
𝑖

[𝑟𝑡 − 𝑟∗]2𝑖

≤
√

2

(
𝑐 − 1

𝑐

)
𝐺𝑅.

Hence, inequality 16 in Lemma 3.7 holds. □

Proof. (Theorem 3.3) In AlgorithmXOR-Game, we use themean

of 𝐾 samples 1/𝐾 ∑𝐾
𝑖=1

\𝑙 ′
𝑖
to approximate the first part of the gradi-

ent in Equation 7: E𝑃 (𝑖 ) [\𝑖 ] =
∑𝑁
𝑖=1

𝑃 (𝑖)\𝑖 . Here, each 𝑙 ′𝑖 is sampled

using XOR sampling, from an approximate probability distribution

𝑃 ′ (𝑙 ′
𝑖
). The true distribution is 𝑃 . According to Theorem 2.4, for

any sample 𝑙 ′
𝑖
,

1

𝛿
𝑃 (𝑙 ′𝑖 ) ≤ 𝑃

′ (𝑙 ′𝑖 ) ≤ 𝛿𝑃 (𝑙
′
𝑖 ) . (38)

Also according to Theorem 2.4, we have:

1

𝛿
E𝑃 (𝑖 ) [\+𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 ) [\

+
𝑙 ′
𝑖
] ≤ 𝛿E𝑃 (𝑖 ) [\+𝑖 ],

𝛿E𝑃 (𝑖 ) [\−𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 ) [\
−
𝑙 ′
𝑖
] ≤ 1

𝛿
E𝑃 (𝑖 ) [\−𝑖 ] .

This implies:

1

𝛿
E𝑃 (𝑖 ) [\+𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 )

[
1

𝐾

𝐾∑︁
𝑖=1

\+
𝑙 ′
𝑖

]
≤ 𝛿E𝑃 (𝑖 ) [\+𝑖 ],

𝛿E𝑃 (𝑖 ) [\−𝑖 ] ≤ E𝑃 ′ (𝑙 ′𝑖 )

[
1

𝐾

𝐾∑︁
𝑖=1

\−
𝑙 ′
𝑖

]
≤ 1

𝛿
E𝑃 (𝑖 ) [\−𝑖 ] .

Similar bounds can be established for 1/𝑆 ∑𝑆
𝑗=1

\𝑙 ′′
𝑗
, which is used

to approximate the second part of the gradient in Equation 7:

E𝑄 ( 𝑗 ) [\ 𝑗 ] =
∑𝑁
𝑗=1

𝑄 ( 𝑗)\ 𝑗 .
Because {\1, . . . , \𝑁 }match signs at every dimension, 1/𝐾 ∑𝐾

𝑖=1
\𝑙 ′

𝑖
,

E𝑃 (𝑖 ) [\𝑖 ], 1/𝑆 ∑𝑆
𝑗=1

\𝑙 ′′
𝑗
, and E𝑄 ( 𝑗 ) [\ 𝑗 ] all match signs at every di-

mension. In order to apply Theorem 3.4, we need to bound

𝑉𝑎𝑟 (1/𝐾 ∑𝐾
𝑖=1

\𝑙 ′
𝑖
) and 𝑉𝑎𝑟 (1/𝑆 ∑𝑆

𝑗=1
\𝑙 ′′

𝑗
). We have:

𝑉𝑎𝑟 (𝑙 ′𝑖 ) = E𝑃 ′ (𝑙 ′𝑖 ) [| |\𝑙 ′𝑖 | |
2

2
] − ||E𝑃 ′ (𝑙 ′

𝑖
) [\𝑙 ′

𝑖
] | |2

2

≤ E𝑃 ′ (𝑙 ′
𝑖
) [| |\𝑙 ′

𝑖
| |2

2
]

≤ 𝛿E𝑃 (𝑖 ) [| |\𝑖 | |22]
= 𝛿 (𝑉𝑎𝑟𝑃 (𝑖 ) (\𝑖 ) + | |E𝑃 (𝑖 ) [\𝑖 ] | |22)
≤ 𝛿 (𝜎2 +𝐺2).

The derivation from the second to the third equation is due to

Equation 38. Because 𝑉𝑎𝑟 (1/𝐾 ∑𝐾
𝑖=1

\𝑙 ′
𝑖
) = 1/𝐾𝑉𝑎𝑟 (𝑙 ′

𝑖
), we have

𝑉𝑎𝑟 (1/𝐾 ∑𝐾
𝑖=1

\𝑙 ′
𝑖
) ≤ 𝛿 (𝜎2+𝐺2)/𝐾 . Similarly,𝑉𝑎𝑟 (1/𝑆 ∑𝑆

𝑗=1
\𝑙 ′′

𝑗
) ≤

𝛿 (𝜎2+𝐺2)/𝑆 . Because Equation 38 and all {\1, . . . , \𝑁 }match signs

at every dimension, we have

| |E𝑃 ′ (𝑙 ′
𝑖
) [\𝑙 ′

𝑖
] | |2

2
≤ 𝛿2 | |E𝑃 (𝑖 ) [\𝑖 ] | |22 = 𝛿2𝐺2 .

Because 𝑙 ′
1
, . . . , 𝑙 ′

𝐾
are i.i.d. sampled, 1/𝐾 ∑𝐾

𝑖=1
\𝑙 ′

𝑖
has the same ex-

pectation as 𝑙 ′
1
. Hence:E𝑃 ′ (𝑙 ′𝑖 )

[
1

𝐾

𝐾∑︁
𝑖=1

\𝑙 ′
𝑖

]2

2

≤ 𝛿2𝐺2 .

Similarly, | |E𝑄 ′ (𝑙 ′′
𝑗
) ( 1

𝑆

∑𝑆
𝑗=1

\𝑙 ′′
𝑗
) | |2

2
≤ 𝛿2𝐺2

. Apply all the bounds

computed above into Equation 9 in Theorem 3.4, also notice 𝐿 is

𝜎2
-smooth due to Lemma A.3, we get the following bound:

E[𝐿(𝑟𝑇 )] − 𝐿(𝑟∗) ≤
𝛿 | |𝑟0 − 𝑟∗ | |2

2

2[𝑇
+

(𝛿2 − 1)
[√

2𝐺𝑅 + 2[

(
𝜎2 +𝐺2

min{𝐾, 𝑆} + 𝛿𝐺
2

)]
+ 2[ (𝛿2 + 1) 𝜎

2 +𝐺2

min{𝐾, 𝑆} .



Proof complete. □

A.4 Proofs for Number of NP Oracles Needed
The proof for the number of NP oracles needed is developed from

[16]. We encourage the readers to read the original papers for better

understanding.

Proof. (Theorem 3.8) FromTheorem 2.4, it requires𝑂 (−𝑛 log(1−
1/
√
𝛿) log

−𝑛 log(1−1/
√
𝛿 )

𝛾 ) queries of NP oracles to generate one

sample. However, as specified in [16], once we have the first sam-

ple, the following samples will not need as many queries. Therefore,

generating 𝐾 samples can be seen as generating one sample first,

then generating following samples inside the same SGD iteration

next. We fix the number of XOR constraints needed to be added

starting the generation of the second sample (in other words, the

ComputeK procedure in [16] can be avoided for the rest 𝐾 − 1 sam-

ples). As a result, we need𝑂 (𝐾 − 1) NP oracle queries in generating

each of the following 𝐾 − 1 samples. Thus the total queries for

𝐾 samples will be 𝑂 (−𝑛 log(1 − 1/
√
𝛿) log

−𝑛 log(1−1/
√
𝛿 )

𝛾 + 𝐾). To
complete 𝑇 SGD iterations, XOR-Game0 requires 𝑂 (−𝑇𝑛 log(1 −
1/
√
𝛿) log

−𝑛 log(1−1/
√
𝛿 )

𝛾 +𝑇𝐾) queries to NP oracles. XOR-Game𝐷𝑀

needs additional samples from𝑄 , hence overall it needs𝑂 (−𝑛 log(1−
1/
√
𝛿) log

−𝑛 log(1−1/
√
𝛿 )

𝛾 +𝑇𝐾 + 𝑆) queries to NP oracles. □

B EXPERIMENTAL DETAILS
Here we show additional details for the experiments in the main

text. In all experiments, XOR-Game is implemented with CPLEX

12.6. All experiments are run on computational nodes with dual 64-

core AMD Epyc 7662 “Rome” processors@2.0GHz with a maximum

256 GB of memory.

Evaluation The zero-sum objective 𝐿0 is evaluated by the exact

model counter Ace [10]. For distribution matching games, the per-

formance is evaluated by the utility function of the leader, which is

the KL-Divergence between 𝑄 (𝐿) and 𝑃 (𝐿). Notice
𝐾𝐿(𝑄 | |𝑃)

=
∑︁
𝐿∈L

𝑄 (𝐿) log

(
𝑄 (𝐿)
𝑃 (𝐿)

)
=

∑︁
𝐿∈L

𝑄 (𝐿) (𝐿𝑇𝑊𝑞𝐿 −𝑤𝑟 𝑟𝑇 𝐿 −𝑤 𝑓 𝐹𝐿 − 𝐿𝑇𝑊𝐿) + log𝑍𝑝 − log𝑍𝑞

= E𝑄 [𝐿𝑇𝑊𝑞𝐿 −𝑤𝑟 𝑟𝑇 𝐿 −𝑤 𝑓 𝐹𝐿 − 𝐿𝑇𝑊𝐿] + log𝑍𝑝 − log𝑍𝑞

where𝑍𝑝 and𝑍𝑞 are partition functions of 𝑃 (𝐿) and𝑄 (𝐿).E𝑄 [𝐿𝑇𝑊𝑞𝐿−
𝑤𝑟 𝑟

𝑇 𝐿 −𝑤 𝑓 𝐹𝐿 − 𝐿𝑇𝑊𝐿] are approximated with the average of 200

samples using XOR-Sampling. Considering XOR-Sampling has a

constant approximation bound, we believe the estimation to the ex-

pectation is accurate. For synthetic experiment, we used again exact

counter Ace to calculate log partition functions log𝑍𝑝 and log𝑍𝑞 .

For Avicaching game evaluation, the scale of the problem is beyond

exact approaches. We used the a winning solver HAK [25] solver

implemented in libDAI [36] to compute the partition functions.

B.1 Synthetic Benchmarks
Our synthetic dataset consists of 30 locations. To generate 𝑃 (𝐿),
𝑤𝑟 is set to 0.2.𝑤 𝑓 is a 1-by-5 weight vector, each entry of which

is randomly drawn from a uniform distribution𝑈 [−0.1, 0.1]. 𝐹 is

a 5-by-30 matrix, each entry of which is generated from uniform

distribution 𝑈 [−0.1, 0.1]. 𝑊 is a 30-by-30 matrix capturing the

inter-dependency of locations in affecting participants’ interests.

We intentionally add a few large entries in𝑊 to increase the diffi-

culty of benchmarks. In particular, each entry of𝑊 ,𝑊𝑖 𝑗 is generated

by 𝑧𝑖 𝑗 (𝑏𝑖 𝑗 + 𝑔𝑖 𝑗 ), where 𝑧𝑖 𝑗 is uniformly sampled from a Binomial

distribution with 𝑝 = 0.1 to serve as a mask, 𝑏𝑖 𝑗 is from uniform

distribution𝑈 [−3, 3]. 𝑔𝑖 𝑗 = 20(ℎ𝑖 𝑗 − 0.5), where ℎ𝑖 𝑗 is drawn from

a Binomial distribution with 𝑝 = 0.5. The initial reward 𝑟0 is sam-

pled from uniform distribution𝑈 (0.1, 1). For distribution matching

game, 𝑄 (𝐿) is generated similarly as 𝑃 (𝐿), except for keeping all

reward 𝑟 zero. SGD step size [ = 0.1 are used in both experiments.

BRQR vs. XOR-Game For the comparison between BRQR and

XOR-Game on zero-sum games, the leader’s expected utilities dur-

ing as the optimization progress are shown in Fig 2. BRQR slightly

converges faster than XOR-Game. Both approaches converge to

close-to-optimal solutions. When 𝑁 grows larger than 2
1
6, which

is common in real-world benchmarks, the BRQR soon become in-

feasible because it needs to go over all the actions in each iteration.

B.2 Avicaching Game
This section provides the additional experiments we have done

for the Avicaching Game and additional details for the experiment

setup discussed in the main text. The rough idea behind is (1) learn-

ing the behavior model from real-world dataset, and (2) applying

XOR-Game𝐷𝑀 and other baselines to find the best reward that

can alter the behavior model towards a desired target distribution.

Finally, we evaluate the performance using the KL-Divergence be-

tween the final behavior model and the target model.

B.2.1 Learning Behavior Model. This section describes the exper-

iments we have done for learning the behavior model from Avi-

caching dataset.

Behavior Model As discussed in the main text, the behavior

model used in Avicaching game is as follows,

𝑃 (𝐿 |𝑟 ) =
exp

(
𝑤𝑟 𝑟

𝑇 𝐿 +𝑤𝑇
𝑓
𝐹𝐿 + 𝐿𝑇𝑊𝐿

)
∑
𝐿′∈L exp

(
𝑤𝑟 𝑟

𝑇 𝐿′ +𝑤𝑇
𝑓
𝐹𝐿′ + 𝐿′𝑇𝑊𝐿′

)
𝐿 = [𝑙1, . . . , 𝑙𝑁 ]𝑇 ∈ {0, 1}𝑁 represents a set of visited locations

by setting 𝑙𝑖 = 1 iff. 𝑙𝑖 is visited. 𝑟 = [𝑟1, . . . , 𝑟𝑁 ]𝑇 ∈ R𝑁 where 𝑟𝑖
represents the reward applied to location 𝑖 .𝑤𝑟 ∈ R is the weighting

parameter characterizing the preference of rewards.𝑤 𝑓 ∈ R𝑀 is the

weighting parameter characterizing the preference of the natural

land features. 𝐹 = [𝐹1, . . . , 𝐹𝑁 ] ∈ R𝑀×𝑁 is the feature matrix

containing the land characteristics of all 𝑁 locations.𝑊 ∈ R𝑁×𝑁
is the regularization term.

Dataset The dataset for learning the behavior model is gener-

ated from the Avicaching game [58] experiment conducted from

03/28/2015 to 10/30/2015 (30 weeks). Participants are encouraged

to visit several locations and report their bird observations. Around

50 users participated in this field experiment. There are 116 obser-

vation points, noted as L, of which 50 locations, noted as L𝑎 , are
Avicaching locations. In the actual field experiment, participants

are encouraged to visit Avicaching locations by setting rewards

ranging from 1.0 to 15.0 while the reward of visiting other locations



Figure 2: The leader’s expected utility vs. # iterations in different sized games for XOR-Game and BRQR. For small-sized games,
BRQR converges in slightly fewer iterations. Both algorithms find close-to-optimal solutions in the end. Combining with
Table 1, the actual running time of BRQR grows much faster than XOR-Game as the game sizes increase, and hence cannot
scale to games with large action spaces.

remain to be 0. The amount of reward changes weekly resulting in

16 different reward schemes.

To generate enough datapoints for training, all participants are

seen to be identical. For each participant, the locations visited in

one week is seen as his/her set of visited locations under the reward

that week. Therefore, we can generate one location set vector 𝐿

together with the corresponding reward vector 𝑟 as one data point.

We successfully generated 1112 pairs (𝐿, 𝑟 ).
The feature matrix 𝐹 contains land characteristics of all observa-

tion points from the National Land Cover Database (NLCD) 2011.

The database provides spatially explicit and reliable information on

the Nation’s land cover within a 375 meter circle around each loca-

tion. We finally selected 32 features including latitude, longitude,

and 30 distinguishable land cover features. The 32-dimensional

feature vectors of 116 locations formulate the feature matrix 𝐹 ∈
R32×116

.

Learning Setup Suppose we have𝐾 data points {(𝐿𝑖 , 𝑟𝑖 )} with a
known feature matrix 𝐹 , the log likelihood function 𝑙 (𝑤𝑟 ,𝑤 𝑓 ,𝑊 ) =

1

𝐾

∑𝐾
𝑖=1

log 𝑃 (𝐿𝑖 |𝑟 ) is:

𝑙 (𝑤𝑟 ,𝑤 𝑓 ,𝑊 ) =
1

𝐾

𝐾∑︁
𝑖=1

𝑤𝑟 𝑟
𝑇 𝐿𝑖 − Λ(𝑤𝑟 ,𝑤 𝑓 ,𝑊 )

Λ(𝑤𝑟 ,𝑤 𝑓 ,𝑊 ) = log

∑︁
𝐿∈L

𝑒
𝑤𝑟 𝑟

𝑇 𝐿+𝑤𝑇
𝑓
𝐹𝐿+𝐿𝑇𝑊𝐿

From Equation 6. in XOR-CD. The gradient of 𝑙 (𝑤𝑟 ,𝑤 𝑓 ,𝑊 ) with
respect to𝑤𝑟 ,𝑤 𝑓 , and𝑊 can be estimated as

𝑔𝑐𝑑 (𝑤𝑟 ) =
1

𝐾

𝐾∑︁
𝑖=1

𝑟𝑇 𝐿𝑖 −
1

𝑆

𝑆∑︁
𝑖=1

𝑟𝑇 𝐿′𝑖

𝑔𝑐𝑑 (𝑤 𝑓 ) =
1

𝐾

𝐾∑︁
𝑖=1

𝐹𝐿𝑖 −
1

𝑆

𝑆∑︁
𝑖=1

𝐹𝐿′𝑖

𝑔𝑐𝑑 (𝑊 ) =
1

𝐾

𝐾∑︁
𝑖=1

𝐿𝑖𝐿
𝑇
𝑖 −

1

𝑆

𝑆∑︁
𝑖=1

𝐿′𝑖
𝑇
𝐿′𝑖

where {𝐿′
1
, . . . , 𝐿′

𝑆
} are the samples from the current model distri-

bution. We use XOR-Sampling to obtain these samples.



With the gradient estimation, we apply SGD to learn the model

parameters. The dataset {(𝐿, 𝑟 )} is divided into 16 batches. In each

batch, the reward vectors are the same. The number of all data

points is 1112, and the number of data in each batch ranges from

33 to 136. The learning rate is fixed as 0.01 and the total number of

SGD iterations is 250. For initialization,𝑤𝑟 is uniformly sampled

from 𝑈 (0, 1). 𝑤 𝑓 is sampled from 𝑈 (0.1, 1).𝑊 is initialized as a

symmetric matrix with entries sampled from 𝑈 (0.1, 1). For XOR-
Sampling, we utilized the work from Ermon et al. [16]. and used

the same parameter. The number of samples is 80.

Time Consumption In the early stage, each iteration takes

around 480 seconds. From iteration 50, XOR-Sampling takes much

more time for queries to NP oracles. Each iteration takes up to

15000 seconds.

Evaluation We used principal component analysis (PCA) to

empirically visualize the behavior model learned. Figure 3 shows

the 2-dimensional plot of the data points in the real-world exper-

iments and the samples obtained from the learned model (using

XOR sampling). Both the data points and the samples are visualized

using a 2-dimensional PCA in Figure 3. The plot separates on indi-

vidual reward levels. We can see that the samples obtained from

the learned behavior model replicates the original data distribution

well.

B.2.2 XOR-Game & Baseline Settings. Here is additional informa-

tion regarding the experimental details of XOR-Game and other

baselines.

Target Model The idea in Avicaching game is to promote the

probability of sample-needed locations. We empirically designed

the target model as 𝑄 (𝐿), where

𝑄 (𝐿) = 𝑒𝐿
𝑇𝑊𝑄𝐿∑

𝐿′∈L 𝑒
𝐿′𝑇𝑊𝑄𝐿

′

The entry [𝑊 ]𝑖, 𝑗 in i-th row, j-th column satisfies:

[𝑊 ]𝑖, 𝑗 ∼



𝑈 (0, 0.05) 𝑖, 𝑗 ∈ L𝑎, 𝑖 = 𝑗

𝑈 (0.01, 0.02) 𝑖, 𝑗 ∈ L𝑎, 𝑖 ≠ 𝑗

𝑈 (−0.01, 0) 𝑖 ∈ L𝑎, 𝑗 ∉ L𝑎
𝑈 (−0.05, 0) 𝑖, 𝑗 ∉ L𝑎, 𝑖 = 𝑗

𝑈 (−0.02,−0.01) 𝑖, 𝑗 ∉ L𝑎, 𝑖 ≠ 𝑗

Generally, the probability of visiting Avicaching locations L𝑎 is

much higher than that of other locations in this 𝑄 model.

Experimental details The SGD step size is fixed at 0.1. The

maximum iterations 𝑇 = 100 which is enough for convergence.

The initialization of reward vector is sampled from a uniform dis-

tribution 𝑈 (5, 10). The number of samples from 𝑄 (𝐿) is 100, and
the number of samples from 𝑃 (𝐿 |𝑟𝑡 ) in each iteration is 50 consid-

ering the trade-off between running time and accuracy. For XOR-

Sampling, parameters are set the same as in [16]. Apart from the

sampling method, all baselines share the same settings as XOR-

Game. For Gibbs-Game, we use Gibbs sampling after taking 5800

MCMC steps in replace of XOR-Sampling. In BP-Game, the samples

are generated from Belief Propagation [42].



Figure 3: Location set vectors in Avicaching dataset and samples from learned behavior model under different reward level
(visualized through 2-dimensional PCA). We can see that the samples obtained from the learned behavior model (red dots)
replicates the original data distribution (green dots) well.
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