
6. APPENDIX

6.1 Modeling the Organizer’s Objective us-
ing Taylor Expansion

We describe how to model the organizer’s objective func-
tion based on the Taylor approximation of the sample vari-
ance, which we refer to as (OptIKA-L2T). Let vj,i be a bi-
nary variable, which is 1 if and only if li ∈ Lj . In this case,
Vi =

�m
j=1 vj,i = Yi−X0,i. BecauseX is the total number of

historical visits, andV = Y−X is the net amount of visits in
a short time window, it is often the case that ||X||2 � ||V||2.
In this case, we further approximate the sample variance
using first order Taylor expansion. Let σ(Y) be the sample
variance: σ(Y) = 1

n
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Y = X, we obtain: σ(Y) ≈ σ(X)+�σ(X)T ·(Y−X),where
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With V = Y −X and Vi =
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j=1 vj,i, we have: σ(Y) ≈�n
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Let si = 2
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�
, then the organizer’s problem is

to minimize S =
�m

j=1

�n
i=1 si · vj,i =

�n
i=1 siVi.

When the organizer’s objective is taking this specific form,
the optimal incentive allocation problem is related to the
Stackelberg pricing games [1, 18], in which a monopoly (or
leader) sets the price of multiple products so as to maximize
its revenue from various consumers (or followers). In [18], it
has been proven that the optimal incentives problem is APX-
hard when each follower can purchase at most one item, and
the seller can only set two possible prices.

6.2 Proofs for Theorems in Main Text

Theorem 2. (Weak Duality) The optimal objective value
to the problem max{λj} g({λj}) is a lower bound on the
optimal value of the global problem (OptIKA).

Proof. Let OPT be the optimal value of the original
global problem. Fix a set of {λj |j = 1 . . .m}, we must
have g({λj}) ≤ OPT, since by definition, g is the minimal
value for Lρ(.), subject to the constraint (vj , rj) ∈ Σj for
j = 1 . . .m, while OPT is also the minimal value for Lρ(.),
but subject to (vj , rj) ∈ Σj and an extra constraint r1 =
r2 = · · · = rm = r. Because g({λj}) ≤ OPT for all possible
choices of {λj}, max{λj} g({λj}) ≤ OPT .

Theorem 3. g({λj}) is concave for {λj |j = 1 . . .m}.
Proof. Fix r and rj , vj is determined by rj and the con-

straint (vj , rj) ∈ Σj , thus Lρ(.) becomes an affine function
w.r.t. λj . Let r and rj range over its domain, g(.) is a point-
wise infimum of affine functions, thus g(.) is concave.

Theorem 4. If OptIKA-L2T-ADMM converges, then r1, . . . rm
and r all converge to the same vector.

Proof. The proof follows from the fact that the gradient
for all the λj will converge to zero.

6.3 The Power of Uniform Sampling
To show the benefit of having a uniform training dataset,

we choose one flag species: the White-throated Sparrow, a
migrating species that mostly appears in Southern counties
of the New York State during the winter, and migrates North
as the weather becomes warmer. More interestingly, White-
throated Sparrows stay in the Adirondack Mountains mostly

during the summer, but there are few eBird submissions in
that region, since it is not easily accessible. This biased
sampling effort makes it challenging for a machine learning
model to capture the distribution of this species.

We learn the monthly distribution of this species using
eBird submissions in New York State. We fit a machine
learning model to predict a binary label on the existence of
this species, based on a set of environmental covariates. We
set aside 10% of observations as the test set, and use the
remaining observations as training set (the Complete set).
To show the impact of uniform sampling, we artificially cre-
ate three smaller training sets by subsampling about 5% of
the Complete set in the following way: (1) Grid : Spatially-
uniform sampling, i.e. lay down a grid on the study area and
sample one submission from each spatial grid cell; (2) Urban:
Sampling among submissions with a higher-than-median ur-
ban environmental component; and (3) Subsample: Random
sampling among all submissions.

The Grid dataset demonstrates the ideal case, in which
citizen scientists’ effort is uniformly spread out geographi-
cally, while the Urban dataset is used to reflect the worst
case, in which citizen scientists’ effort is restricted by their
daily activities to the urban areas. For comparison purposes,
we restrict the sizes of the three datasets to be equal. We
then train a random forest model with 1,000 trees with max-
imal depth of 10 on these three datasets as well as on the
Complete training set. Table 4 reports the Averaged Log-loss
score on the same separate test set. The averaged log-loss
is defined as: −�
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is the predicted probability for xi to be 1. The smaller the
log-loss, the better fit of the machine learning model.

In addition, we plot the distributions learned from the
four datasets as heatmaps in Fig. 6. These heatmaps show
the predicted probabilities at the different locations of the
study area. As depicted in the figure, there are significant
differences in the learned spatial distributions of the White-
throated Sparrow. As we can see, the performance of the
Urban dataset is always the worst. This is in line with
our expectations, because most observations in this dataset
come from the urban area, while the White-throated Spar-
row mostly resides in forests. Also, even though the Grid
dataset has only 5% of the data compared to the Complete
dataset, their performance is comparable. Moreover, the
model trained on the Grid dataset performs better than the
one trained on the Subsample dataset. This clearly sug-
gests a potentially huge saving in citizen scientists’ effort, if
they can follow a more uniform protocol to sample the entire
area, just as in the Grid case. In other words, if the total
effort citizen scientists can devote to the current project is
bounded by their participation rate, then their effort should
be spent more wisely to focus on under-sampled areas.

6.4 Simulation
We present additional simulation results based on the cur-

rent Avicache participants, whose behavior parameters are
learned based on the first two months’ field data (spring
migration period). In one round, we act as the organizer,
who uses OptIKA to set the rewards, and a set of virtual
agents in turn act to optimize for their own Knapsack prob-
lems to visit different locations. We simulate this process
for multiple rounds, and observe how effective the incentive
mechanism is in terms of driving people to under-sampled



Month Num Obs Log-loss Log-loss Log-loss Num Obs Log-loss
(Grid, Urban, Subsample) (Grid) (Urban) (Subsample) (Complete) (Complete)

April 796 0.40 0.55 0.44 34778 0.35
May 937 0.37 0.44 0.39 38075 0.34
June 901 0.18 0.30 0.20 22664 0.16
July 831 0.21 0.94 0.28 19112 0.18

August 774 0.10 0.13 0.15 21719 0.09
September 737 0.25 0.35 0.27 25218 0.23

Table 4: The performance of the random forest classifier for different training sets.

areas.
Moreover, once an agent decides to visit a location dur-

ing the simulation, we sample one observation from the real
eBird dataset, as if the agent submits this observation into
the database. At the end of each round, we fit a predictive
model based on all the data virtually collected so far, to see
how much the species distribution model can be affected by
agents’ shifts of exploration efforts.

As we are restricted to subsample from the current eBird
dataset, we start with a small dataset of 100 observations,
subsampled with bias from the popular birding sites. This
resembles the very early stage of eBird, where we have very
few and highly biased data. Our agents in the simulation
are all participants currently in avicache.

The left plot of Fig. 5 illustrates the sample variance D2

as a function of the number of iterations with and without
extra incentives. We offer four levels of incentives: 0, 4, 8,
12 points. We observe that, once incentives are introduced,
people are pushed to under-sampled areas. The right plot of
Fig. 5 shows the variation of the Log-loss of the predictive
model at the end of the first few iterations. Here we use
the collected data to predict the occurrence of the Horned
Lark in spring. As we can see, without incentives (blue
line) the Logloss of the predictive model stays at a high
level, despite more data is collected by citizen scientists. On
the other hand, the predicted performance quickly improves
once we introduce external rewards (red line). The green
dashed line shows the Log-loss of the predictive model fit
with all available data in these two counties, which should be
thought as the best we can do given the currently available
data.

In summary, our simulation shows that our incentive scheme
steers eBird participants to under-sampled area, and at the
same time improves the prediction performance of the occu-
pancy model for an interesting species.


