
Avicaching:
A Two Stage Game for Bias Reduction in Citizen Science

Yexiang Xue
Computer Science Dept

Cornell University
yexiang@cs.cornell.edu

Ian Davies, Daniel Fink,
Christopher Wood

Cornell Lab of Ornithology
{id99, daniel.fink,

chris.wood}@cornell.edu

Carla P. Gomes
Computer Science Dept

Cornell University
gomes@cs.cornell.edu

ABSTRACT
Citizen science projects have been very successful at col-
lecting rich datasets for different applications. However, the
data collected by the citizen scientists are often biased, more
aligned with the citizens’ preferences rather than scientific
objectives. We introduce a novel two-stage game for reduc-
ing data-bias in citizen science in which the game organizer,
a citizen-science program, incentivizes the agents, the citi-
zen scientists, to visit under-sampled areas. We provide a
novel way of encoding this two-stage game as a single opti-
mization problem, cleverly folding (an approximation of) the
agents’ problems into the organizer’s problem. We present
several new algorithms to solve this optimization problem
as well as a new structural SVM approach to learn the pa-
rameters that capture the agents’ behaviors, under different
incentive schemes. We apply our methodology to eBird, a
well-established citizen-science program for collecting bird
observations, as a game called Avicaching. We deployed
Avicaching in two New York counties (March 2015), with a
great response from the birding community, surpassing the
expectations of the eBird organizers and bird-conservation
experts. The field results show that the Avicaching incen-
tives are remarkably effective at encouraging the bird watch-
ers to explore under-sampled areas and hence alleviate the
eBird’s data bias problem.

Keywords
Two-Stage Game, Bilevel Optimization, Structural SVM,
Citizen Science

1. INTRODUCTION
Over the past decade, along with the emergence of the big

data era, the data collection process for scientific discovery
has evolved dramatically. One effective way of collecting
large datasets is to engage the public through citizen sci-
ence projects, such as Zooniverse, Cicada Hunt and eBird
[24, 42, 35]. The success of these projects relies on the abil-
ity to tap into the intrinsic motivations of the volunteers
to make participation enjoyable [5]. Thus in order to en-
gage large groups of participants, citizen science projects
often have few restrictions, leaving many decisions about
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Figure 1: Highly biased distribution of eBird ob-
servations until 2014. (Left) continental US (Right)
Zoom in Midwest US. Submissions coincide with ur-
ban areas.

where, when, and how to collect data up to the partici-
pants. As a result, the data collected by volunteers are often
biased, more aligned with their preferences, rather than pro-
viding systematic observations across various experimental
settings. Moreover, since participants volunteer their effort,
personal convenience is an important factor that often deter-
mines how data are collected. For spatial data, this means
more searches occur in areas close to urban areas and roads
(Fig. 1).

We provide a general methodology to mitigate the data
bias problem, as a two-stage game in which the game or-
ganizer, e.g., a citizen-science program, provides incentives
to the agents, the citizen scientists, to perform more cru-
cial scientific tasks. We apply it to eBird, a well-established
citizen-science program for collecting bird observations, as a
game called Avicaching.

Our proposed two-stage game is related to the Principal-
Agent framework, originally studied in economics [31], and
more recently in computer science [1, 17, 14], and to the
Stackelberg games [13, 12, 28, 15], which also involves e.g.,
a principal or a leader and agents or followers. These games
have been studied under different assumptions regarding the
agents’ preferences and computational abilities [18, 8]. In
crowdsourcing, there has been related work on mechanisms
to improve the crowd performance [29, 23, 21, 22, 34, 26, 37,
7]. Notable works include using incentives to promote ex-
ploration activities [16], and steering user participation with
badges [3]. [32, 10, 9] discuss the optimal reward allocation
to reduce the empirical risk of machine learning models.

In our two-stage game setting, the agents are citizen sci-
entists maximizing their intrinsic utilities, as well as the
incentives distributed by the game organizer, subject to a
budget constraint. The organizer corresponds to an organi-
zation with notable influence on the citizen scientists. The



organizer factors in the reasoning process of the citizen sci-
entists to optimize an incentive scheme. In our setting, the
game organizer’s goal is to optimize an incentive scheme in
order to induce a uniform data collection process. Fur-
thermore, the organizer explicitly models the discrete
choice problem of each agent as a knapsack problem.
We refer to this two-stage game as the Optimal Incentives
for Knapsack Agents (OptIKA) game.

We provide several novel algorithms to solve OptIKA and
in particular we convert the two-stage game into a single
optimization problem by cleverly folding (an approximation
of) the agents’ problems into the organizer’s problem.

We consider (1) different objectives for the organizer,
corresponding to different measures of data uniformity using
Mixed Integer Programming and Mixed Integer Quadratic
Programming formulations. We also consider (2) different
levels of rationality for the agents, which result in differ-
ent approaches to fold the agents’ knapsack problems into
the organizer’s problem. For the scenario in which the agents
have unbounded rationality, we developed an iterative,
row generation method, given the exponential number of
constraints induced by agents’ knapsack problems. We also
consider two scenarios in which the agents have bounded
rationality: one in which the agents use a greedy heuris-
tic and another one based on a dynamic programming
(DP), polynomial time approximation scheme for the
knapsack problem. For (3) scalability, we use the Tay-
lor expansion of the L2-norm and develop a novel approach
based on the Alternating Direction Method of Multipliers.
(4) We propose a novel structural SVM framework to
solve the so-called identification problem, which learns
agents’ behaviors under different incentive schemes.

We applied our methodology to eBird as a game called
Avicaching, deploying it as a pilot study in two New
York counties. Since the inception in March 2015, 19% of
the eBird observations in our pilot counties shifted from tra-
ditional locations to Avicaching locations with no previous
observations. Our field results show that our Avicaching
incentives are remarkably effective at encouraging
the bird watchers to explore under-sampled areas
and hence it alleviates the data bias problem in
eBird. We also showed that under our Avicaching scheme,
agents can cover the area more uniformly, which leads
to higher performance on a predictive model for
bird occurrence than the no-incentive case, with the same
amount of effort devoted. Our methodology is general and
can be applied to other citizen science applications as well
as similar scenarios, beyond citizen science.

2. PROBLEM FORMULATION
We consider the setting in which citizen scientists are

encouraged to conduct scientific surveys. For example in
eBird, bird watchers survey a given area, and record all the
interesting species observed in that area. This setting can
be generalized to other scientific exploration activities. The
general formulation of the two-stage game is:

(Organizer) maximize r Uo(v, r),

subject to Bo(r),

(Agents) maximize v Ua(v, r),

subject to Ba(v),

(1)

where r is the external reward that the organizer (e.g., a cit-

izen science program) uses to steer the agents (e.g., citizen
scientists), and v are the reactions from the agents, which
is the result of optimizing their own utilities. Uo(v, r) and
Ua(v, r) are the utility functions of the organizer and agents,
respectively, and Bo(r) and Ba(v) are their respective bud-
get constraints.

The Organizer’s Objective is to promote a balanced
exploration activity, which corresponds to sending people to
under-sampled areas. The pricing problem is the associ-
ated organizer’s problem of determining the optimal rewards
to induce the desired behavior from the agents, namely send-
ing the agents to undersampled areas. Let L = {l1, l2, . . . , ln}
be the set of locations, and X0,i the number of historical
visits at location li at the beginning of a time period T .
Suppose there are m citizen scientists b1, b2, . . . , bm. Dur-
ing time period T , each citizen scientist bj chooses a set
Lj ⊆ L of locations to explore. At the end of time period
T , location i received a net amount of visits Vi = |{li ∈
Lj : j = 1, . . . ,m}| and its total number Yi of visits cor-
responds to Yi = X0,i + Vi. We denote by Y the column
vector (Y1, . . . , Yn)T and by Y the constant column vector
(Y , . . . , Y )T where Y = 1

n

∑n
i=1 Yi. As the organizer aims

to promote a more uniform sampling effort among different
locations, this objective can be expressed as the reduction
Dp = 1

n
||Y−Y||pp of the difference between Y and Y. Given

this definition, D1 corresponds to the mean absolute devia-
tion, while D2 corresponds to the sample variance. Other
objectives could be used, e.g., maximizing the entropy of the
sample distribution in order to minimize the distance to a
uniform distribution.1 (See section 3.1.)

The Agents’ Model – Each agent is maximizing her own
utility subject to her budget constraint. Namely, if a citizen
scientist bj chooses to visit location li, she will receive an
intrinsic utility uj,i, at a cost cj,i. We assume that agent
bj has a given budget Cj , so the total cost of all the places
explored by bj cannot exceed Cj .

To incentivize citizen scientists to visit undersampled ar-
eas, the organizer introduces an extra incentive ri for each
location li. Every citizen scientist visiting location li re-
ceives an extra reward ri, besides their internal utility uj,i.
For the sake of fairness, we require that these rewards only
vary across locations and are the same for all agents. In
addition, to make it easier to communicate with the agents,
we assume that all rewards come from a fixed discrete set:
ri ∈ R = {r∗1 , . . . , r∗k}. Taking into account intrinsic utili-
ties, external rewards and the budget constraint, the citizen
scientist bj ’s planning problem becomes:

maximize
Lj⊆L

∑
li∈Lj

uj,i + wr · ri,

subject to
∑
li∈Lj

cj,i ≤ Cj .
(2)

In this formulation, uj,i is the intrinsic utility, ri is the exter-
nal reward, wr is the relative importance ratio between the
intrinsic utilities and the external rewards, cj,i is the cost,
and Cj is the total budget for an agent. Overall, combin-
ing the organizer’s goal and the agents’ models, the pricing

1Note: uncertainty measures, often used in active learning
[30], are typically tied to a particular predictive model and
therefore do not serve our goal of meeting multiple scientific
objectives with balanced sampling. We cannot commit to
improving one particular predictive model.
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Figure 2: Two stage game scenarios and correspond-
ing algorithms described in Section 3.1.

problem of the Optimal Incentives for Knapsack Agents
(OptIKA) game is:

(OptIKA) minimize
r

1

n
||Y −Y||pp

subject to Lj = argmax
Lj⊆L

∑
i∈Lj

uj,i + wr · ri,

∑
li∈Lj

cj,i ≤ Cj , j ∈ {1, . . . ,m},

ri ∈ R, i ∈ {1, . . . , n}.
(3)

The Identification Problem learns the parameters cap-
turing agents’ behavior, by fitting a model to predict the
agents’ preferences under various incentive schemes. The
identification problem is related to Inverse Reinforcement
Learning [27, 36, 20], in which one also assumes that the
agents are optimizing for long-term rewards (Section 3.2).

3. ALGORITHMS

3.1 Pricing Problem
We developed a variety of algorithms to solve the pric-

ing problem, capturing different organizer’s objectives and
agents’ computational capabilities, as summarized in Fig. 2.
First, the complexity of the OptIKA problem depends on
the uniformity measure of the organizer. The OptIKA prob-
lem can be solved using a Mixed Integer Programming (MIP)
formulation when minimizing the mean absolute deviation
(L1-norm), whereas it becomes a Mixed Integer Quadratic
Program (MIQP) when minimizing the sample variance (L2-
norm). Second, the computational capability of the agents
impacts how one can fold the constraints of the agents into
the organizer’s problem. If the agent solves her knapsack
problem optimally with full rationality, it yields an exponen-
tial number of constraints to be handled by the organizer,
thus raising scalability issues and requiring an iterative ap-
proach (see Row Generation encoding). We also consider the
case in which agents have bounded rationality, whether the
agent solves her knapsack using a dynamic programming-
based approach or in a greedy fashion. In this scenario, the
polynomial number of linear constraints to consider can be
encoded in a single Constraint Programming instance. Fur-
thermore, in order to scale up with the number of agents,
we improve our approach with a decomposition method that
decouples the agents’ optimization problems (see ADMM ).

3.1.1 Modeling the Organizer’s Objective
A first measure of sample uniformity is the mean abso-

lute deviation D1, which allows us to formulate the objective
function as a MIP. For every location li, introduce a variable
Zi such that Zi ≥ |Yi − Y |. Overall, the organizer’s objec-

Algorithm 1: Row Generation OptIKA-LX-Full

1 Φ← ∅;
2 OptimalF lag ← False;
3 while OptimalF lag = False do
4 (r†,v1†, . . . ,vm†)← OptIKA-LX-Full-Relax(Φ);
5 OptimalF lag ← True;
6 for j ∈ {1, . . . ,m} do
7 v∗j ← argmax (uj + wr · r†)T · vj ,
8 subject to cTj · vj ≤ Cj ;
9 if (uj +wr · r†)T ·v∗j > (uj +wr · r†)T ·vj† then

10 Φ← Φ ∪ { (uj + wr · r)T · vj ≥
(uj + wr · r)T · v∗j };

11 OptimalF lag = False;

12 end

13 end

14 end

tive function can be captured as: min
∑n
i=1 Zi, s.t. Zi ≥

Yi−Y , Zi ≥ Y −Yi. We refer to this formulation as OptIKA-
L1. A second formulation (OptIKA-L2) uses the L2-norm
sample variance (D2). In this case, the organizer’s objec-
tive is quadratic, and hence the entire problem becomes
a Mixed Integer Quadratic Program (MIQP). As a third
option, we model the organizer’s objective using the Tay-
lor approximation of the sample variance (OptIKA-L2T), in
which case the organizer’s problem translates into minimiz-
ing S =

∑n
i=1 siVi, where si = 2

n

(
X0,i −X0

)
. Notice that

the Stackelberg pricing games studied in [17] is a special
case of OptIKA in this form, therefore OptIKA is APX-
hard. We leave the details in the supplementary materials,
anonymously online at [40].

3.1.2 Modeling the Knapsack Agents
Row Generation Encoding We first present the algorithm
OptIKA-LX-Full (where X is either 1, 2 or 2T) in which we
assume the agents have full rationality, and their reasoning
process is captured by an iterative row generation method.
This algorithm can be combined with any of the three orga-
nizer’s objectives. Let vj,i be a binary variable, which is 1
if and only if li ∈ Lj . Using vector representations, we set
vj = (vj,1, . . . , vj,n)T , uj = (uj,1, . . . , uj,n)T , cj = (cj,1, cj,2,
. . . , cj,n)T , r = (r1, . . . , rn)T , s = (s1, . . . , sn)T .

The key to solve a bilevel optimization like OptIKA is to
find clever ways to fold the nested optimization (the agents’
problem) as constraints to the global problem. Here we show
that the agents’ optimization problem can be transformed
into an exponential number of constraints of the type:

(uj + wr · r)T · vj ≥ (uj + wr · r)T · v′j , (4)

in which v′j ranges over all vectors in {0, 1}n, which satisfies

cTj · v′j ≤ Cj , for all j ∈ {1, . . . ,m}. The intuitive meaning
of Inequality 4 is that the location set that the agent chooses
is better in terms of utility values than any other location
set within the budget constraint. We use Φ to denote a set
of constraints of this form, and we write {v1, . . . ,vm} ∈ Φ
to mean that v1, . . . ,vm satisfy all the constraints in Φ.

We cannot add all the constraints upfront, as there are ex-
ponentially many of them. Instead, we add them in an iter-
ative manner until proving optimality. The row generation
scheme starts by solving a relaxation of the original pric-



ing problem: OptIKA-LX-Full-Relax(Φ), with a small initial
constraint set Φ of constraints as shown in Inequality 4:

OptIKA-LX-Full-Relax(Φ) : Min: (organizer’s obj) Dp or S,

s. t. cTj · vj ≤ Cj , j ∈ {1, ..,m},
{v1, . . . ,vm} ∈ Φ,

ri ∈ R, i ∈ {1, . . . , n}.

Then the algorithm seeks to enlarge the set Φ with new
constraints of the form in Inequality 4 to further improve
the objective function. This step is done by solving the
Knapsack problem for each agent. If the current response
of one agent bj is not the optimal response to the Knapsack
problem, then it implies that at least one constraint of the
form shown in Inequality 4 is violated. We then add in
the constraint into Φ and solve again. The whole algorithm
iterates until no new constraints can be added to Φ, at which
point we can prove optimality. The algorithm is shown as
Algorithm 1.

There is one last subtlety: the Inequality (4) is not a linear
one, because both r and vj are variables. To linearize it, we
bring in an extra variable urj,i, and we add constraints to
ensure that urj,i is always equal to vj,i · (uj,i +wr · ri). The
constraints needed are:

urj,i ≥ 0,

urj,i ≤ uj,i + wr · ri,
vj,i = 0⇒ urj,i ≤ 0, (5)

In this case, Inequality (4) can be rewritten as
∑n
i=1 urj,i ≥

(uj +wr · r)T · v′j . Eq. (5) is an indicator constraint, which
can be linearized with the big-M formulation [11].
Dynamic Programming Encoding OptIKA-LX-DP is the
best performing encoding, motivated by the polynomial time
approximation scheme to solve the Knapsack Problem. It
encodes the entire problem into a single MIP, rather than a
series of iterative MIPs as in the row generation approach.
It reflects the bounded rationality of agents, as it sacrifices
a little precision when modeling the cost under a bounded
memory size.

In the Knapsack Problem for citizen scientist bj , we first
discretize the budget Cj into Nb equal-sized units. Let Dj =
{kCj/Nb|k = 0, . . . , Nb} be the set of all discrete units. We
further round the cost cj,i to its nearest discrete unit from
above in Dj . We introduce extra variables opt(j, i, c), for
i ∈ {1, . . . , n} and c ∈ Dj , to denote the optimal utility
for agent bj if we only consider the first i locations l1, . . . , li
and the total cost cannot exceed c. Consider the Dynamic
Programming recursion to solve the Knapsack Problem:

opt(j, i, c) =


max{opt(j, i− 1, c− cj,i) + uj,i + wr · ri,

opt(j, i− 1, c)}, if i > 1, c ≥ cj,i,
opt(j, i− 1, c), if i > 1, c < cj,i,
0, otherwise.

(6)
The key insight of OptIKA-LX-DP is that this recursion can
be translated as a set of linear inequalities. As an example,
when i > 1 and c ≥ cj,i, the recursion can be encoded as,

opt(j, i, c) ≥ opt(j, i− 1, c), (7)

opt(j, i, c) ≥ opt(j, i− 1, c− cj,i) + uj,i + wr · ri. (8)

There are similar inequalities to capture other cases in
Equation 6. Denote uknapDj

as the optimal utility for solving

the knapsack problem for citizen scientist bj . We must have

uknapDj
≥ opt(j, n, c), for all c ∈ Dj . In summary, agent bj ’s

knapsack problem can be encoded as:

(uj + wr · r)T · vj ≥ uknapDj
, (9)

cTj · vj ≤ Cj and uknapDj
≥ opt(j, n, c), ∀c ∈ Dj ,

Here, opt(j, n, c) is encoded by linear inequalities similar to
the ones in Equations 7 and 8. Finally, we need to use a
big-M notation to linearize the inequality in Equation 9.

If we bound Nb, this encoding introduces O(mnNb) ex-
tra variables and O(mnNb) extra constraints. Notice that
this encoding can be combined with the row generation ap-
proach. We can first solve the problem under limited preci-
sion using this dynamic programming encoding, then further
refine the solution using the row generation approach.
Greedy Formulation OptIKA-LX-Greedy assumes each agent
follows a simple greedy heuristic: first, rank all the loca-
tions based on their efficiency, i.e. the ratio between the
utility (including the external reward) and the cost; then
greedily select locations with the highest efficiency, without
exceeding the budget limit. This simple heuristic is a 2-
approximation for the Knapsack problem, and works well in
practice. Define ψj,i = (wr ·ri+uj,i)/cj,i as the efficiency of
location li according to agent bj . Our formulation is based
on the following theorem:

Theorem 1. Assume for all i 6= i′, ψj,i 6= ψj,i′
2, then

{vj,1, . . . , vj,n} is a decision made by the greedy algorithm if
and only if the following two constraints hold:

vj,i = 0⇒ cj,i > Cj −
∑
i′ 6=i

vj,i′cj,i′1 (ψj,i′ ≥ ψj,i) , (10)

for all i ∈ 1, .., n, and
∑n
i=1 cj,i · vj,i ≤ Cj.

In this theorem, 1 (ψj,i′ ≥ ψj,i) is an indicator variable, which
is one if and only if ψj,i′ ≥ ψj,i. Theorem 1 translates the
greedy process into a set of constraints. The intuitive mean-
ing of inequality (10) says that if location li is not in the
knapsack (vj,i = 0), then it must be the case that some lo-
cations with higher efficiency than li has already taken up its
space. Unfortunately, inequality (10) is not linear. We can
again use big-M notation to transform the above constraint
into a set of linear constraints.

3.1.3 Scaling to Many Agents with ADMM
In order to model a large number of citizen scientists, the

pricing algorithm needs to be able to scale. To that end,
we develop OptIKA-L2T-ADMM, harnessing a variant of the
Alternating Direction Method of Multipliers [6, 25]. This
approach decomposes the global problem of designing the
rewards for all agents to a series of subproblems, each of
which designs the optimal rewards for one agent. Then the
algorithm matches the local rewards for all agents using an
iterative approach. To the best of our knowledge, this is the
first time that a decomposition based method is introduced
to solve the optimal pricing problem. Because ADMM re-
quires a decomposable objective function, this variant only
applies to the third organizer’s objective function that uses
the Taylor expansion (OptIKA-L2T) as described in the sup-
plementary material [40]. We introduce a local copy of the

2In practice, efficiencies almost always differ when they are
learned from data.



reward vector for each agent bj : rj = (rj,1, . . . , rj,n)T , and
we rewrite the global problem as:

min S =

m∑
j=1

sT · vj ,

s.t. (rj ,vj) ∈ Σj , rj = r, ∀j ∈ {1, . . . ,m}.

In this formulation, we use (rj ,vj) ∈ Σj to mean that vj is
optimal for agent bj given rewards rj :

(rj ,vj) ∈ Σj ⇐⇒ rj,i ∈ R, ∀i ∈ {1, . . . , n},

vj = argmax (uj + wr · rj)T · vj ,

s.t. cTj · vj ≤ Cj .

Our variant of the ADMM can be derived via the Augmented
Lagrangian:

Lρ =

m∑
j=1

sT · vj + λTj · (rj − r) + (ρ/2)||rj − r||22.

in which λj ’s are Lagrangian multipliers, ρ > 0 is the penalty
parameter. Our variant starts with an initial r0

j , v0
j , λ

0
j and

r0, and updates the Lagrangian in an alternating manner
for T steps. At the k-th step, (vk+1

j , rk+1
j ) and rk+1 are

obtained by minimizing Lρ(.) w.r.t. (vj , rj) and r, respec-
tively. λk+1

j is updated by taking a subgradient step in the
dual. The updates of OptIKA-L2T-ADMM are:

(vk+1
j , rk+1

j ) =argmin(vj ,rj)∈Σj
sTvj + λkTj (rj − rk)

+ (ρ/2)||rj − rk||22, (11)

rk+1 =
1

m

m∑
j=1

(1/ρ)λkj + rk+1
j , (12)

λk+1
j =λkj + ρ(rk+1

j − rk+1). (13)

The difference of our variant with classical ADMM is that we
impose extra constraints (vj , rj) ∈ Σj in the first optimiza-
tion step in Equation 11. This makes it computationally
hard. In practice, we solve it via MIP, using the three en-
codings as described above.3 However, the benefit of this
algorithm is that the optimization problem for agent bj is
localized : it only involves variables and constraints for agent
bj herself, which represents a significant improvement over
the previous algorithms, in which we need to consider all m
agents all together in one encoding.

ADMM allows us to derive a series of interesting proper-
ties about the obtained solution. The Lagrange dual func-
tion g({λj}) is defined as:

g({λj}) = infr,vj ,rj :(vj ,rj)∈Σj
Lρ ({rj}, {vj}, {λj}, r) .

We can view OptIKA-L2T-ADMM as an alternating direction de-
scend algorithm trying to find the optimum of the optimiza-
tion problem max{λj} g({λj}). The proofs of the following
theorems are left to the supplementary materials [40].

Theorem 2. (Weak Duality) The optimal objective value
to the problem max{λj} g({λj}) is a lower bound on the
optimal value of the global problem (OptIKA).

Theorem 3. g({λj}) is concave for {λj |j = 1 . . .m}.
Theorem 4. If OptIKA-L2T-ADMM converges, then r1, .., rm

and r all converge to the same vector.

3In the case of OptIKA-L2T-DP (or greedy), Σj is then a
relaxed constraint set, which only has constraints specified
by the dynamic programming (or greedy) encoding. We use
a big-M notation to handle the quadratic term ||rj − rk||22.

3.2 Identification Problem
In practice, parameters governing agents’ preferences, such

as uj , wr, are unknown to us. The identification problem
therefore is to learn these parameters by observing agents’
reactions under different reward schemes. In our setting, we
use road distance as cost cj,i (which is the main factor for
accessibility) and we learn each agent’s budget Cj from the
historical mean. The variables left to estimate are the intrin-
sic utilities uj,i and the elasticity of external rewards wr. We
further assume that the intrinsic utility uj,i is parameterized
by a set of features: uj,i = wT

u · fj,i, in which fj,i includes
both personal features related to agent bj and environmental
features related to location i. We assume agents are rational,
therefore, their choices should always maximize the overall
utility. In other words, suppose one agent chooses location
set Lj , then

∑
i∈Lj

wT
u ·fj,i+wr ·ri ≥

∑
i∈L′ wT

u ·fj,i+wr ·ri,
holds for any other set of locations L′, when the total dis-
tance to reach all locations in L′ is within the budget. The
identification problem then corresponds to finding (wu, wr)
to satisfy all inequalities of this type. Because of the trivial
solution wu = 0, wr = 0, we aim to maximize the margin:

Min ||wu||2 + w2
r ,

s.t.
∑
i∈Lj

wT
u · fj,i + wr · ri ≥

∑
i∈L′

wT
u · fj,i + wr · ri+

Φ(Lj , L
′), ∀L′ :

∑
i∈L′

cj,i ≤ Cj . (14)

Here Φ(Lj , L
′) is a loss function, which applies different lev-

els of penalties to location set L′, depending on how similar
L′ and Lj are. We choose Φ(Lj , L

′) = |Lj \ L′| + |L′ \ Lj |
in the experiment. In practice, not all constraints shown
in Equation 14 can be satisfied. Therefore, we introduce
linear slack variables, and the whole identification problem
becomes:

Min ||wu||2 + w2
r + C

m∑
j=1

ξj ,

s.t.
∑
i∈Lj

wT
u · fj,i + wr · ri ≥

∑
i∈L′

wT
u · fj,i + wr · ri+

Φ(Lj , L
′)− ξj , ∀L′ :

∑
i∈L′

cj,i ≤ Cj . (15)

This is a novel application of structural SVM [39]. As an-
other contribution, we developed a modified delayed con-
straint generation approach to solve the optimization prob-
lem as shown in Equation 15, which involves solving knapsack-
type problems for both the prediction and the separation
problem within the structural SVM.

4. EXPERIMENTS

4.1 Algorithm Performance
We first compare algorithms assuming different levels of

rationalities for the organizer and agents, on synthetically
generated benchmarks, in which the initial number of visits
X0,i is drawn from a geometric distribution in order to intro-
duce some spatial bias, and other variables are drawn from
uniform distributions. All the experiments are run using
IBM CPLEX 12.6, on machines with a 12-core Intel x5690
3.46GHz CPU, and 48GB of memory. We implement the dis-
tributed version of the ADMM-based algorithms with 12 cores,
in which each agent problem is allocated to one core.
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Figure 3: Comparison between OptIKA-L2T-Full and
OptIKA-L2T-DP. (blue) Improvement of the objec-
tive function for OptIKA-L2T-Full over time. (red)
Approximate solution value found by OptIKA-L2T-DP
from solving a single MIP (very close to optimal,
and much faster).

Method Red. δr
OptIKA-L2-Full 44% 0
OptIKA-L2-DP(50) 41% 1.36
OptIKA-L2-DP(100) 42% 1.13
OptIKA-L2-Greedy 41% 1.30

Method δr
OptIKA-L2-Full 0
OptIKA-L1-Full 1.20
OptIKA-L2T-Full 0.74

Table 1: (Left) Comparison of different agents’ ra-
tionality level. Red. is the L2-norm reduction w.r.t.
the non-incentive case, while δr is the average ham-
ming distance of the reward vector w.r.t. the Full-
rational case. (Right) Comparison of different orga-
nizer’s objectives, where δr is the average hamming
dist. of the reward vector w.r.t. the L2 case.

Comparing Organizer’s Objectives & Agents’ Ra-
tionality Levels: We test our algorithms with 300 syn-
thetic benchmarks. We fix the organizer’s goal (L2-norm),
and consider the case where agents are planning with differ-
ent levels of rationality. The left panel of Table 1 reports the
reduction in terms of the organizer’s objective, and the mean
hamming distance of the reward vectors obtained (i.e. the
total number of locations in which the two reward vectors
differ). Regarding the solution quality, the performance of
the different approaches is similar in terms of the reduction
in L2 and, while these approaches recommend 5 locations
with positive rewards in the median case, the hamming dis-
tance between the reward vectors is barely more than 1.
This suggests that the different models for the agents yield
very similar results.

On the other hand, they largely differ in terms of com-
putational complexity. When assuming full rationality of
the agents, the row generation approach needs to solve mul-
tiple CPLEX instances iteratively. Fig. 3 depicts the run-
ning time for OptIKA-L2T-Full for one instance, compared
with OptIKA-L2T-DP. As we can see, it takes the row gener-
ation algorithm a very long time to prove optimality, while
OptIKA-L2T-DP finds a solution, close to optimal, and it is
much faster. For a set of instances with 10 locations and
up to 10 agents, the median completion time for the Full

case is 1, 251 seconds, while it corresponds to 80, 93 and 38
seconds for the single MIP in the DP case with Nb = 50,
Nb = 100 and in the Greedy case, respectively.

Second, we study the impact of choosing different orga-
nizer’s objectives. As shown in the right panel of Table 1,
the difference in terms of the solution quality is again very
small. However, the running times vary significantly. The
median completion times are 1, 251, 11 and 10 seconds for
L2, L1 and L2T objectives, respectively.

Convergence of ADMM: In order to measure how fast
OptIKA-ADMM-L2T-DP converges, we first run OptIKA-ADMM-
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Figure 4: (Left) The mean variance and the relative
error of OptIKA-ADMM-L2T-DP vs. iteration on small in-
stances. (Right) Mean variance vs. iteration on a
real eBird instance with 3,000 observers. ADMM
converges very quickly.

Metric SVM-struct #Species Popularity
Percentage Loss 3.9% 10.6% 8.2%
Utility Percentile 2.3% 46.0% 20.3%

Environmental Diff 2.0 5.9 4.9

Table 2: The Structural SVM model outperforms
two other models on identifying people’s behavior
(#Species: model based on estimated species num;
Popularity: model based on location popularity).

L2T-DP for a set of small benchmarks with 20 or 30 agents
and 20 locations. Although OptIKA-ADMM-L2T-DP works for
problems of much larger scale, we still experiment with small
benchmarks in order to compare it with non-decomposition
based methods. In this experiment, the ADMM algorithm
allocates one subproblem per agent. Because the main goal
is to examine the decomposition method, each subproblem
is solved by an OptIKA-L2T-DP module, and we compare the
result with another OptIKA-L2T-DP which considers all agents
at once. The two OptIKA-L2T-DP algorithms share a common
discretization. The ρ for OptIKA-ADMM-L2T-DP is selected to
be 1.

The blue line (top curve) in the left plot of Fig. 4 shows
the relative error in the objective function as a function
of the iteration number. The relative error is defined as
|Sdp−Sadmm|/|Sdp|, in which Sdp and Sadmm are the objec-
tive values found by OptIKA-L2T-DP and OptIKA-ADMM-L2T-DP,
respectively. The mean relative error is averaged among all
benchmarks. As we can see, the error quickly drops from
10% to about 2% in only 3 iterations. At the same time,
the red line shows how quickly the local copies rj converge
towards a common r. For one benchmark, the variance is
defined as: 1

nm

∑m
j=1 ||r − rj ||2, in which r is the mean of

r1, . . . , rm. The mean variance is taken among all bench-
marks. As we can see, the variance drops to close to zero
after 3 iterations.

Next we show the performance of OptIKA-ADMM-L2T-DP on
an instance with 63 locations and 3,000 agents, which cannot
be solved by non-decomposition methods at all. The agents’
behavior parameters come from real eBird data. We would
like to emphasize that 3, 000 is enough for real use, since
there are in total 2, 626 bird observers in New York State
who submitted 3 or more observations in the past 10 years.
The right plot of Fig. 4 shows the mean variance w.r.t. differ-
ent iterations. Again we see that the local copies rj almost
converge to a common r in a few iterations.

4.2 Avicaching in eBird
eBird is a well-established citizen-science program for col-

lecting bird observations. In its first years of existence, eBird
mainly focused on appealing to birders to help address sci-
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Figure 6: Heatmaps for the prediction of the White-throated Sparrow. (Upper 4 figures) Models for April.
(Lower 4 figures) Models for July. A model trained on small, only 5% of the original data, but spatially
uniform dataset (Grid, 2 in the leftmost column) has comparable accuracy with a model trained on the
whole, big dataset that experts consider close to the ground truth (Complete, 2 in rightmost column), while
other biased datasets have lower accuracy (Urban, 2nd column, Random Subsample, 3rd column).
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Figure 5: (Left) The change of spatial variance
with and without incentives in the simulation study.
(Right) The change of Log-loss to predict the occur-
rence of Horned Lark (with and without incentives).
Dashed line is the performance limit.

Year norm D2

2015 0.010
2014 0.016
2013 0.018

Treatment norm D2

OptIKA 0.015
B1: Inv-correlate #visits 0.021
B2: Uniform-in-Avicache 0.017

Manual (Expert’s) 0.020

Table 3: (Left) Visits are more uniform (in nor-
malized D2) from April to August, 2015, when Avi-
caching is introduced, compared to previous years.
(Right) Visits are more uniform under rewards de-
signed by OptIKA against baseline B1 which assigns
rewards inversely correlates to the number of visits
to locations, B2 which assigns uniform rewards to
all Avicaching locations, zero to others, and man-
ually designed rewards (average over weeks of each
treatment) in summer 2015.

ence objectives. The participation rates were disappointing.
After 3 years, in order to make participation more fun and
engaging, in the spirit of “friendly competition”and“cooper-
ation”, eBird started providing tools to allow birders to track
and rank their submissions (e.g., leaderboards by region,
number of species, and number of checklists). This approach
resulted in an exponential increase of submissions [35]. Nev-
ertheless, like most citizen-science programs, eBird suffers
from sampling bias. Birders tend to visit locations aligned
with their preferences, leading to gaps in remote areas and
areas perceived as uninteresting, as shown in Fig. 1.

In order to address this data bias, we gamified our method-
ology via a web-based application called Avicaching , ex-
plaining to birders that the goal of Avicaching is to“increase
eBird data density in habitats that are generally under-
represented by normal eBirding”. We deployed Avicaching
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Figure 7: The number of eBird submissions in
Tompkins and Cortland County in New York State.
The circle sizes represent the number of submissions
in each location. (Left) from Mar 28 to Oct 31, 2014
before Avicaching. (Right) from Mar 28 to Oct 31,
2015 when Avicaching is in the field. 19% effort is
shifted to undersampled Avicaching locations.

as a pilot study in Tompkins and Cortland counties, NY,
starting in March 2015. Tompkins is known for a high partic-
ipation rate for eBird, while surprisingly, Cortland, a county
adjacent to Tompkins, receives much fewer observations. We
identified a set of locations with no prior observations and
defined them as Avicache locations: bird watchers receive
extra avicache points for every checklist submitted in those
locations. The locations were selected around undercovered
regions, emphasizing on important yet undersampled land
types. We also ensure that all locations are publicly accessi-
ble. Avicache points have intrinsic values to bird watchers,
because these points mark their contribution to science. In
addition, participants have a chance to win a pair of binoc-
ulars from a lottery drawn based on their avicache points.

Pricing and Agents’ Model We update the Avicaching
points every week. In the first few weeks, the allocation of
points is manually assigned, based only on the number of
previous visits to locations. This phase is designed to col-
lect data to fit participants’ behavior model. After the ini-
tial phase, the points are assigned by the pricing algorithm
(OptIKA-L1-DP). We fit the agents’ model using data from
the two counties in 2015 (with Avicaching rewards), as well
as data from the same season in 2013 and 2014 (without
rewards). The results of the structural model are shown in
Table 2, in which we predict the location set that people will
visit per week. We randomly split all the data into a 90%
training set and a 10% test set. The scores shown in the table
are evaluated on the separate test set. The first measure is
the the percentage loss: 1

n
(|Lpred \ Ltrue|+ |Ltrue \ Lpred|),

which is the difference between the predicted location set



with respect to the ground truth set. As shown in the table,
the mean percentage loss is merely 4%. This result
is remarkably good, especially taking into account
of the fact that we are modeling complex and noisy
human behaviors. We also look at how good our model is
in terms of capturing people’s rationality. Ideally, we would
like to see that our model always ranks the ground truth
behavior the highest in terms of the utility score. Yet, this
is impossible, because human beings occasionally take sub-
optimal actions. In the utility percentile row, we show the
percentile of the ground truth actions in terms of the utility
scores among all valid actions. For example, the score 2.3%
means that on average the utility scores of the ground truth
actions are ranked at top 2.3% among all valid actions. Be-
cause the action set is big, we sample 10,000 location sets
per test point. The low rank indicates that people are indeed
motivated by the utilities defined in our model. Finally, the
third row shows the difference of the environmental variables
(NLCD values [19], normalized) between the predicted loca-
tion set and the ground truth set. We compare our learned
model with two other models. One chooses the set of lo-
cations which maximizes the estimated number of species
(column #Species), and the other maximizes the total pop-
ularity of locations (column Popularity). These are the two
main factors when planning a trip, according to expert opin-
ions and birders’ surveys. In summary, our model is quite
good at capturing agents’ preferences.

Field Results and Simulation We are delighted to see
that people’s behaviors are changing with Avicaching.

1. Between Mar 28, 2015 and Aug 31, 2015, there have
been 1,021 observations submitted from Avicaching lo-
cations, out of the 5,376 observations in total for these
two counties: 19% birding effort has shifted from
traditional locations to Avicaching locations, which
received zero visits before. A few new birders
also became more active, motivated by the Avi-
caching game.

2. In terms of locations, Cortland, an undersampled county,
received only 128 observations from April to August in
2013 and 2014 combined. This year during the same
period of time, with Avicaching, it received 452 obser-
vations, over 3.5 times the total number of ob-
servations of the previous 2 years!

3. Serious bird watchers are motivated to participate in
Avicaching. 14 out of the Top 20 bird watch-
ers in Tompkins and 15 out of the Top 20 bird
watchers in Cortland (ranked by the number of
species discovered since 2015) participated in
Avicaching. People who participated in Avicaching
submitted 64% of total observations in Tompkins and
Cortland, from April to August, 2015.

4. In terms of whether Avicaching is useful to motivate
people to visit undersampled areas, we compare Op-

tIKA against two baselines and a manually designed
scheme. To eliminate time effects, we ensure that the
results against baselines were all collected in summer-
time, with treatments interleaved. All baselines and
OptIKA were given two weeks time. The numbers
of locations receiving each level of rewards were kept
the same for B1, OptIKA, and manual. The non-zero
reward in B2 matches the mean of other treatments.
Table 3 shows the comparison on the normalized D2

score, which is 1
n
||Y−Y||2/Y . The visits are more uni-

form in 2015, when Avicaching is introduced. More-
over, OptIKA wins against baselines in terms of uni-
formity. Figure 7 provides a visual confirmation on the
map. The success of Avicaching is the combination of
the gamification and the algorithm. It is difficult to
isolate the algorithm’s contribution, because field im-
plementation is time-consuming and we cannot afford
to alienate the community with drastic or complicated
experiments. The OptIKA algorithm is better in our
experiment, but simpler algorithms may also work, es-
pecially at a small scale. However, they are likely to
perform worse for new scenarios or over a large scale.

5. We further simulate, for a longer period, a set of vir-
tual agents whose behaviors are learned from the real
bird watchers. At the end of each round, we fit a pre-
dictive model based on all the data virtually collected
so far, to see how much the species distribution model
can be affected by agents’ shifts of exploration efforts.
We use the collected data to predict the occurrence of
the Horned Lark in Spring. The left plot of Fig. 5 il-
lustrates the sample variance D2 as a function of the
number of iterations with and without extra incentives.
The right plot of Fig. 5 shows the Log-loss of the fitted
predictive model in the first few iterations. This sim-
ulation shows that under the Avicaching scheme,
agents cover the area more uniformly than the no-
incentive case, which leads to higher performance
on a predictive model for bird occurrence, with
the same amount of effort devoted. More details of this
simulation are in the supplementary materials [40].

Power of Uniform Sampling Finally, we also illustrate
the benefit of incentivizing people to sample areas uniformly,
by comparing the performance of a random forest classifier
trained on four datasets, subsampled in different ways from
the real eBird dataset. In Fig. 6, we show that the predic-
tive model fit on a small, but spatially uniformly subsam-
pled dataset is close to the ground truth, and outperforms
the model fit on biased datasets. More details are in the
supplementary materials [40].

5. CONCLUSION
We introduced a methodology to improve the scientific

quality of data collected by citizen scientists, by provid-
ing incentives to shift their efforts to more crucial scientific
tasks. We formulated the problem of Optimal Incentives
for Knapsack Agents (OptIKA) as a two-stage game and
provided novel algorithms on optimal reward design and on
behavior modeling. We applied our methodology to eBird
as a gamified application called Avicaching, deploying it in
two NY counties. Our results show that our incentives are
remarkably effective at steering the bird watchers’ efforts to
explore under-sampled areas, which alleviates the data bias
problem and improves species modeling.
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F. Ordóñez, and S. Kraus. Playing games for security:
an efficient exact algorithm for solving bayesian
stackelberg games. In AAMAS, pages 895–902, 2008.

[29] G. Radanovic and B. Faltings. Incentive schemes for
participatory sensing. In AAMAS, 2015.

[30] B. Settles. Active learning literature survey. University
of Wisconsin, Madison, 52(55-66):11, 2010.

[31] S. Shavell. Risk sharing and incentives in the principal
and agent relationship. The Bell Journal of
Economics, 1979.

[32] Y. Singer and M. Mittal. Pricing mechanisms for
crowdsourcing markets. In Proceedings of the 22nd
Internat. Conf. on World Wide Web (WWW), 2013.

[33] A. Singla and A. Krause. Truthful incentives in
crowdsourcing tasks using regret minimization
mechanisms. In Proceedings of the 22Nd International
Conference on World Wide Web, 2013.

[34] A. Singla, M. Santoni, G. Bartók, P. Mukerji,
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