
Supplementary Materials for Dynamic Optimization of Landscape Connectivity
Embedding Spatial-Capture-Recapture Information

Yexiang Xue
Dept. of Computer Science

Cornell University
yexiang@cs.cornell.edu

Xiaojian Wu
Dept. of Computer Science

Cornell University
xw458@cornell.edu

Dana Morin
NY Coop. Fish & Wildlife Res. Unit

Dept. of Natural Resources
Cornell University

djm466@cornell.edu

Bistra Dilkina
College of Computing

Georgia Institute of Technology
bdilkina@cc.gatech.edu

Angela Fuller
U.S. Geological Survey

NY Coop. Fish & Wildlife Res. Unit
Dept. of Natural Resources

Cornell University
akf34@cornell.edu

J. Andrew Royle
U.S. Geological Survey

Patuxent Wildlife Research Center
aroyle@usgs.gov

Carla P. Gomes
Dept. of Computer Science

Cornell University
gomes@cs.cornell.edu

1 Proof for Theorem 2.1
Theorem 2.1 The budget constrained density weighted
connectivity optimization problem is NP-hard. The density
weighted connectivity function is neither submodular nor
supermodular.

Proof. First, we prove that the BCDWC-Opt problem is NP-
hard. It can be proved by a reduction from the Knapsack
problem. In a Knapsack problem, we have n items, each hav-
ing a cost ci and a value vali. Given a budget B, we select a
subset of items to maximize their total value with their total
cost less than B.

To build an instance of our BCDWC-Opt problem to
model the Knapsack problem, we build a graphG = {V,E}
with 2n nodes indexed by (ij)i=1:n,j=0:1 with all Di1 = 0.
Edges only exist between i0 and i1 or E = {(i0, i1)|∀i =
1 : n}. Define Di0 , r

u
i0,i1

, rpi0,i1 arbitrarily as long as
Di0

(
exp(−rpi0,i1)− exp(−r

u
i0,i1

)
)
= vali. The cost of pro-

tecting edge (i0, i1) is ci. Also, we set p0 = 1 and α = 1.
That is, in this BCDWC-Opt problem, by protecting an edge
with cost ci, we can increase the objective by and only by
vali. So, with a budget B, the optimal strategy of edge pro-
tection corresponds to the optimal solution of the Knapsack
problem.

Now, we use an example in Fig. 1 to show that the objec-
tive function DWC(·) is not submodular. We have

• DWC(φ) = 0

• DWC({e1}) = 100 ∗ 0.9
• DWC({e1, e2}) = 2(100 ∗ 0.9 + 100 ∗ 0.9 ∗ 0.9)
whereDWC({e1}) means e1 protected and the same mean-
ing extends to any set of edges.

Let A = {e1}, B = φ with B ⊆ A and x = e2. We have

DWC(A ∪ {x})−DWC(A) > DWC(B ∪ {x})−DWC(B)

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example. Numbers in nodes represent den-
sity values D(·). We assume that all edges have the same
resistance ru and rp, and ru is very large and rp is very
small. We let exp(−α · ru) be nearly 0 (can be treated as 0),
p0 exp(−α · rp) = 0.9, and p0 = 1.

which violates the property of submodularity. The objective
function is not submodular.

A different example can be built to show that the objective
function is not super-modular. Briefly, we build a graph in
which there are multiple paths between two nodes with very
high densities and all other nodes have 0 density. If one path
has been protected and has the highest probability, efforts to
protect edges on other paths do not increase the objective
effectively.

2 Proof for Theorem 3.2
Theorem 3.2 Suppose |P̂ (s t|l) − P (s t|l)| < ε
for any l. Let the optimal solution to the original problem be
OPT . Let the optimal solution with P̂ as the objective func-
tion be OPT ∗ (measured in the original objective function).
We must have

OPT ≥ OPT ∗ ≥ OPT − (
∑
s,t

Ds)ε.

The definition of P̂ guarantees that

P̂ (s t|l) ≤ P (s t|l).

Because |P̂ (s t|l)− P (s t|l)| < ε, we must have:

P (s t|l)− ε ≤ P̂ (s t|l) ≤ P (s t|l) (1)

for any s, t pair, and any l. Suppose x0 is the optimal solu-
tion, Equation (1) guarantees that

OPT − (
∑
s,t

Ds)ε =
∑
s,t

DsPx0
(s t|lst)− (

∑
s,t

Ds)ε

≤
∑
s,t

DsP̂x0(s t|lst)

≤
∑
s,t

DsPx0
(s t|lst). (2)

Here, Px0
presents probabilities for a protection plan x0.

Now suppose there is an algorithm which optimizes for ob-
jective function P̂ and produces the optimal solution x1. By
the definition of the optimal solution, we have:∑

s,t

DsP̂x0(s t|lst) ≤
∑
s,t

DsP̂x1
(s t|lst). (3)

By Equation (1),∑
s,t

DsP̂x1(s t|lst) ≤
∑
s,t

DsPx1(s t|lst). (4)

By the Definition that x0 is the optimal solution for objective
function P , we have∑

s,t

DsPx1
(s t|lst) ≤

∑
s,t

DsPx0
(s t|lst) = OPT.

(5)
This is one side of the Inequality to prove. Combining the
Equations (3), (4) and (2), we can have the other side of the
Inequality.

3 Proof of Theorem 4.2
Theorem 4.2 If w(x; s, t,u) is an indicator function that
returns one if and only if (x, s, t,u) satisfies constraint (15)
and (16) in the main text, we have

1

2
max

x

∑
s,t

DsP (s t)− Dmax

2l+1−2w

≤Dmax

2l
max

x

∑
s,t,u

w(x; s, t,u) ≤ max
x

∑
s,t

DsP (s t).

To prove Theorem 4.2, we need the following two lem-
mas:

Lemma 3.1. For fixed x, s, t, we have

1

2
DsP (s t)− Dmax

2l+1
≤ Dmax

2l

∑
u

w(x; s, t,u)

≤ DsP (s t). (6)

Proof. For j = 1, . . . , l − 1, when 1
2l−j+1 < DsP (s t)

Dmax
≤

1
2l−j , uj , uj+1, ..., ul−1 are all fixed to 0 (Equation
(13) in main text). u1, . . . , uj−1 are not constrained, so
1
2l

∑
u w(x; s, t,u) =

1
2l−j+1 . We have

1

2
DsP (s t)− Dmax

2l+1
≤ Dmax

2l−j+1

Equation (6) holds.
When DsP (s t)

Dmax
> 1

2 , all u1, . . . ul−1 are free, so
1
2l

∑
u w(x; s, t,u) = 1

2 (note DsP (s t)
Dmax

< 1). Equation
(6) holds as well.

When DsP (s t)
Dmax

< 1
2l

, Equation (14) in the main text
guarantees that 1

2l

∑
u w(x; s, t,u) = 0. Equation (6) holds

as well.

Lemma 3.2. For fixed x, we have

1

2

∑
s,t

DsP (s t)− Dmax

2l+1−2w ≤
Dmax

2l

∑
s,t,u

w(x; s, t,u)

≤
∑
s,t

DsP (s t). (7)

Proof. Add the left and right hand side of Equation (6) to-
gether for different s and t. Note: w = log2 |V |.

Proof. (Theorem 4.2) From Lemma 3.2,

Dmax

2l

∑
s,t,u

w(x; s, t,u) ≤
∑
s,t

DsP (s t).

holds for all fixed x. Note that the probability P (s t) de-
pends on x. Let x0 be the one that attains maximal value
of the objective function Dmax

2l

∑
s,t,u w(x; s, t,u), then

we have Dmax

2l

∑
s,t,u w(x0; s, t,u) ≤

∑
s,tDsP (s

t;x0). Further because
∑

s,tDsP (s t;x0) ≤
maxx P (s t;x), we have the second inequality of Theo-
rem 4.2. The first inequality is similar.

4 Definition of Pairwise Independent
Functions

A family of functions H = {h : {0, 1}n → {0, 1}k} is said
to be pairwise independent if any function h randomly cho-
sen from H satisfies: (i) ∀x ∈ {0, 1}n, h(x) is uniformly
randomly distributed in {0, 1}k; (ii) ∀x1,x2 ∈ {0, 1}n,
x1 6= x2, the random variables h(x1) and h(x2) are in-
dependent. As a special case, when matrix A ∈ {0, 1}k×n
and vector b ∈ {0, 1}k are randomly uniformly sampled,
HA,b = {hA,b : hA,b(x) = Ax+ b mod 2} forms a family
of pairwise independent functions. Notice that in this case
hA,b(x) also correpsonds to a binary function formed with
k parity constraints.

5 MIP encoding for XOR k
For replication (i) in XOR k algorithm, we need establish
the following flow constraints:∑

e←v

(
Ip,(i)e + Iu,(i)e

)
−
∑
e→v

(
Ip,(i)e + Iu,(i)e

)
=1(bin(v) = s(i))− 1(bin(v) = t(i)),∀v ∈ V. (8)

Here, Ip,(i)e and I
u,(i)
e are flow variables for replication

(i). 1(bin(v) = s(i)) is an indicator variable that is one
iff the binary representation of the index of node v is
s(i) = (s

(i)
w−1, . . . , s

(i)
0). We introduce s(i)w−1, . . . , s

(i)
0 as bi-

nary variables in the MIP encoding. We use a continous vari-
able β(i)

v (0 ≤ β
(i)
v ≤ 1) to represent this indicator variable.

For example, when v = 1, we can enforce the following
contraints:

β(i)
v ≤ 1− s(i)k , ∀k = 1, . . . , w − 1

and
β(i)
v ≤ s

(i)
0 ,

and

β(i)
v ≥ s

(i)
0 +

w−1∑
k=1

(1− s(i)k)− w + 1.

This guarantees that β
(i)
v is the indicator variable for

1(bin(v) = s(i)). Similarily, we introduce γ(i)v as the in-
dicator for 1(bin(v) = t(i)), and we use similar constraints
to enforce it. Finally, we can enforce the flow constraint as:∑
e←v

(
Ip,(i)e + Iu,(i)e

)
−
∑
e→v

(
Ip,(i)e + Iu,(i)e

)
= β(i)

v − γ(i)v .

(9)

Equation (15) (16) in the main text are essentially indica-
tor constraints, which can be encoded using big-M notation.

6 Further Details about the Dataset
Synthetic Instances The density matrices are designed, with
population centers located far away from each other. The
edges are defined to connect adjacent parcels from top, bot-
tom, left and right. The resistance matrix is a randomly lo-
cated subregion of the resistance matrix for the realistic in-
stance (see below). The price of purchasing an edge ce is
always 1. rpe – the resistance of an edge under protection is
the average of the resistances of the two parcels it connects,
and rue is set to a large value.

Realistic Instances In order to generate realistic size in-
stance we use a a kriging algorithm to create a 32 x 32 pixel
spatially correlated surface of covariate values (resistance),
simulating differential cost of movement among landscape
pixels in a patchy environment. We scaled the covariate val-
ues between 0 and 1 to allow for only positive estimates of
cost.

