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Abstract

Maintaining landscape connectivity is increasingly important
in wildlife conservation, especially for species experiencing
the effects of habitat loss and fragmentation. We propose a
novel approach to dynamically optimize landscape connec-
tivity. Our approach is based on a mixed integer program for-
mulation, embedding a spatial capture-recapture model that
estimates the density, space usage, and landscape connectiv-
ity for a given species. Our method takes into account the
fact that local animal density and connectivity change dy-
namically and non-linearly with different habitat protection
plans. In order to scale up our encoding, we propose a sam-
pling scheme via random partitioning of the search space us-
ing parity functions. We show that our method scales to real-
world size problems and dramatically outperforms the solu-
tion quality of an expectation maximization approach and a
sample average approximation approach.

1 Introduction
Conserving our world’s declining wildlife is a central prob-
lem in computational sustainability (Gomes 2009). Main-
taining landscape connectivity allows animals to move
among resource patches (Taylor et al. 1993) and is becoming
increasingly important in wildlife conservation, especially
for species experiencing effects of habitat loss and fragmen-
tation. Conservation plans that optimize landscape connec-
tivity for wildlife, typically with limited budgets, are impor-
tant to maximize the value of scarce resources devoted to
the management and conservation of species. While there
has been work in this research area, e.g., (Williams and Sny-
der 2005; Conrad et al. 2012; Dilkina and Gomes 2010;
Sheldon et al. 2010; Wu, Sheldon, and Zilberstein 2014), ex-
isting approaches decouple the optimization problem of de-
ciding what land parcels to protect from the problem of esti-
mating what parcels provide landscape connectivity. In other
words, the standard approach in previous work is to incor-
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porate static, pre-computed parameters, derived from a sepa-
rate model that estimates landscape resistance to movement,
into the optimization problem for choosing what parcels to
conserve. Further, previous approaches have not considered
local abundance or density of the species in conjunction with
landscape connectivity, even though protection of a mini-
mum number of individuals and maintaining connectivity
are important considerations for species persistence.

In contrast, our approach dynamically optimizes land-
scape connectivity weighted by local animal densities, given
constrained budgets, by simultaneously estimating animal
movement as a function of the conservation plan. This prob-
lem is challenging mainly because the spatial proximity of
landscape parcels influences parcel specific density and con-
nectivity values for a species, such that a change to any
single parcel can result in different density and connectiv-
ity values to nearby parcels. We use a well-established eco-
logical model, the spatial capture-recapture (SCR) ecologi-
cal distance model, to estimate species abundance and land-
scape connectivity based on species spatial encounter his-
tory data (Royle et al. 2013; Sutherland, Fuller, and Royle
2015; Fuller et al. 2016). The SCR ecological distance
model estimates where individuals locate their home ranges
and how individuals use space within their home range based
on where individuals are detected in relation to possible trap
locations.

More specifically, our contributions are: (1) A novel
approach that encapsulates a spatial capture-recapture
model, that estimates the population density, space use,
and landscape connectivity, into a mixed-integer program-
ming formulation (MIP) for deciding what parcels to pro-
tect, under limited budgets; (2) Our approach takes into ac-
count the fact that animal density and connectivity change
dynamically and non-linearly with different protection
plans; (3) In order to scale up our encoding, we propose a
novel sampling approach via random partitioning of the
search space using parity functions; and (4) We show that
our method scales to real-world size problems and dramat-



ically outperforms the solution quality of an expectation
maximization approach and a sample average approach.

2 Spatial Capture Recapture Model
The Spatial Capture-Recapture Model (SCR) (Royle et al.
2013) is a probabilistic model in ecology describing animal
movements within a home range based on capture rates in
relation to a spatial trap array. The landscape can be mod-
eled as a graph G = {V,E}. Each node v ∈ V represents
a small land parcel and is associated with an animal popu-
lation density Dv , which describes the number of animals
whose activity center is at v. Each edge e represents a path
connecting two neighboring land parcels and is associated
with a resistance value re, measuring the cost for animals
to travel across the edge. The resistance is additive, that is,
the resistance of a path P = {e0, e1, ..., ek} is

∑
e∈P re. We

treat the resistance of an edge as its length. The minimal re-
sistance path between node s and t is the one connecting s
and t with minimal resistance value. According to the SCR
model, the probability for one animal whose activity center
is at land parcel s to use parcel t is determined by the mini-
mal resistance distance between s and t as

P (s t) = p0 exp(−α · ds,t),
where ds,t is the length of the minimal resistance path con-
necting node s and t. Since we mainly study the optimiza-
tion problem to improve landscape connectivity, the SCR
model is used to predict the effects of protection alternatives.
Therefore, we assume that p0 and α are given parameters.
One can estimate them with field data following (Royle et
al. 2013). Given this definition, the expected number of ani-
mals which use parcel t is

∑
s∈V DsP (s t).

Density weighted connectivity (dwc) is the sum of the ex-
pected use of each parcel based on estimated cost of move-
ment in relation to individual activity centers, weighted by
the estimated density of activity centers in each parcel across
the entire landscape. DWC is an important metric capturing
the connectivity and density of animals over the landscape:

dwc =
∑
t∈V

(∑
s∈V

DsP (s t)

)
. (1)

Landscape Connectivity Optimization Our problem is
to choose a set of edges to protect which best maintain the
connectivity of a landscape. We define a binary decision
variable xe for each edge. xe = 1 means that the edge e
is protected, at which time the cost of movement value is
rpe . The financial cost to protect an edge is ce. If xe = 0,
edge e is unprotected, which increases the resistance value
from rpe to rue (rue > rpe ). Notice that protecting one edge
could decrease the length of the minimal resistance paths
between multiple node pairs, which could in turn increase
pairwise probabilities and the connectivity of the entire land-
scape. With slight modification, our constraint programming
approach could also apply to problems attempting to select
node parcels (instead of edges) to restore or to improve con-
nectivity (McRae et al. 2012). For a given budget limit B,
our goal is to find a set of edges to protect to maximize the
density weighted connectivity in Equation (1).

The Budget Constrained Density Weighted Connectiv-
ity optimization problem (BCDWC-Opt) therefore is:

max
x

dwc =
∑
t∈V

(∑
s∈V

DsP (s t)

)
, (2)

s.t. P (s t) = p0 exp(−α · ds,t),
re = rue + (rpe − rue )xe,∑
e∈E

xece ≤ B.

Theorem 2.1. The budget constrained density weighted
connectivity optimization problem (2) is NP-hard. The den-
sity weighted connectivity function is neither submodular
nor supermodular.

The proof of Theorem 2.1 is left to the supplementary ma-
terials. Previously, connectivity design problems were stud-
ied in (Dilkina and Gomes 2010; Dilkina, Lai, and Gomes
2011; LeBras et al. 2013), in which they optimize for eco-
logical models based on classical concepts in graph theory,
such as the length of the shortest path, the number of node
disjoint paths, etc. Our connectivity optimization problem is
based on SCR – a well-established and more realistic eco-
logical model. (Sheldon et al. 2010) studied the stochastic
network design problem, which maximizes the spread of a
cascade. Unlike our problem, the probabilities on edges are
pre-defined, which is the key that allows them to simulate
cascades in advance. The probabilities in our model change
as a function of the protection plan, which is a more com-
plex, yet more realistic setting. DWC is also related to a
widely used landscape connectivity metric called the prob-
ability connectivity (PC) (Saura and Pascual-Hortal 2007).
(Wu, Sheldon, and Zilberstein 2014) propose an approach to
maximize PC only for tree-structured networks. Our algo-
rithm can optimize PC on a general graph.

3 MIP for All Pairwise DWC
Auto Converge to the Minimal Resistance Path
One key challenge of the BCDWC-Opt Problem (2) is that
it embeds a pairwise resistance minimization problem into
the global optimization. According to the SCR model, ds,t
must be the length of the minimal resistance path connect-
ing s and t, which is nontrivial to incorporate into a MIP
encoding, especially when the distance ds,t is an input of an
exponential function in the objective function.

A rather interesting observation is that we do not have
to explicitly enforce the minimal resistance. The following
proposition guarantees that the minimal resistance condition
will be automatically enforced in the optimal solution:

Proposition 3.1. Define a variable ls,t to represent the
length of a path connecting node s and node t. Denote the
optimal solution of the original problem in (2) as OPTd.
The optimal solution of (2) with all ds,t substituted with ls,t
as OPTl. We have OPTd = OPTl.

Intuitively, the objective function we maximize in (2)
monotonically increases as the length of the path between
(s, t) decreases. Therefore, as we maximize the objective



function (2), the path between each pair of nodes (s, t) will
automatically converge to the shortest path, since the objec-
tive function further improves with a shorter path.

Motivated by Proposition 3.1, we use flow constraints to
guarantee that ls,t is the length of an actual path connecting
node s with t. More specifically, we push one unit of flow
from s to t, and enforce ls,t to be the total length of edges in
the flow. Because each edge in our problem has two states
– either protected or unprotected, adopting the ideas from
(Dilkina, Lai, and Gomes 2011), we replace each edge in the
original graph G with two edges, one with the protected re-
sistance as length, the other one with unprotected resistance
as length. Let Ips,t,e be a flow variable indicating whether
edge e in its protected state is in the flow from s to t (and
Ius,t,e for the unprotected state). We have the following con-
straints:

ls,t =
∑
e∈E

rue I
u
s,t,e + rpeI

p
s,t,e. (3)

∑
e←v

(
Ips,t,e + Ius,t,e

)
−
∑
e→v

(
Ips,t,e + Ius,t,e

)
= 0, ∀v 6= s, t, (4)∑

e←v

(
Ips,t,e + Ius,t,e

)
−
∑
e→v

(
Ips,t,e + Ius,t,e

)
= 1, if v = s, (5)∑

e←v

(
Ips,t,e + Ius,t,e

)
−
∑
e→v

(
Ips,t,e + Ius,t,e

)
= −1, if v = t,

(6)

0 ≤ Ips,t,e ≤ 1, 0 ≤ Ius,t,e ≤ 1. (7)

Constraints (4) to (7) are flow constraints. e← v (or e→ v)
means that edge e starts (or ends) at node v, respectively.
Equation (3) guarantees that ls,t is indeed the length of a
path connecting s and t. Finally, we need to enforce the
constraint that there cannot be any flow passing Ipi,j,e unless
edge e is protected. This can be achieved by enforcing

Ips,t,e ≤ xe, ∀s, t ∈ V, e ∈ E. (8)
Tradeoff Between Encodings The aforementioned en-
coding is the best one among a few other encodings that
we tried, since it does not introduce extra binary variables
to formulate the minimal resistance distance part. However,
the tradeoff is a large number of continuous variables, e.g.,
the number of flow variables is O(|V |2|E|).

Encoding the Objective Function
We now encode the non-linear objective function:

dwc =
∑
t∈V

∑
s∈V

DsP (s t|ls,t),

We write P (s t|ls,t), mainly to emphasize that the proba-
bility depends on the value of ls,t, in which ls,t corresponds
to the distance of a path between s and t, and has already
been encoded in the previous section. To illustrate the idea,
in this section we provide the encoding for one term of dwc:
P (s  t|ls,t) = p0 exp (−α ls,t). The non-linear function
is convex, but we are maximizing (instead of minimizing)
this function. We apply piecewise constant approximation
to this objective function. Let 0 = m0 < m1 . . . < mg be
g+1 points. Let oi = p0 exp(−αmi) (i ∈ 0, . . . , g). We use
extra binary variables to model the following step function:

P̂ (s t|ls,t) =
{
oi if mi−1 ≤ ls,t < mi, i ∈ {1, .., g}
0 if ls,t ≥ mg.

Algorithm 1: XOR K(w : X × Y → {0, 1}, k, T )
Sample T pair-wise independent hash functions

h
(1)
k , h

(2)
k , . . . , h

(T )
k : Y → {0, 1}k;

Solve the following problem

max
x∈X ,y(i)∈Y

T∑
i=1

w(x,y(i))

s.t. h
(i)
k (y(i)) = 0, i = 1, . . . , T.

(11)

Return true if the max value is larger than dT/2e,
otherwise return false.

Algorithm 2: XOR MAX COUNT(w : X ×Y → {0, 1}, T )
k = log2 |Y|;
while k > 0 do

if XOR K(w, k, T ) then
Return 2k;

end
k ← k − 1;

end
Return 1;

We can obtain a good approximation bound of P (s t|ls,t)
using P̂ (s  t|ls,t), as long as we carefully choose the lo-
cations of mi and a large enough number of segments g. For
example, choose g = dp0/εe − 1, and choose correct values
for mi to make oi = p0(g − i + 1)/(g + 1). This ensures
that |P̂ (s t|l)− P (s t|l)| < ε for any l.

Theorem 3.2. Suppose |P̂ (s  t|l) − P (s  t|l)| < ε
for any l. Let the optimal solution to the original problem be
OPT . Let the optimal solution with P̂ as the objective func-
tion be OPT ∗ (measured in the original objective function).
We must have OPT ≥ OPT ∗ ≥ OPT − (

∑
s,tDs)ε.

The proof of Theorem 3.2 is left to the supplementary ma-
terials. We can use the following MIP Encoding to model the
piecewise constant approximation function, introducing bi-
nary variables Hs,t,i for i ∈ {1, . . . , g}. Then the piecewise
approximation could be represented as:

P̂ (s t)(ls,t) =

g∑
i=1

oiHs,t,i, (9)

(Hs,t,i = 1)⇒ (mi−1 ≤ ls,t < mi) . (10)

The indicator constraint (10) can be enforced with the big-
M notation. Finally, taking the constant approximation al-
lows us to prune unnecessary variables. If under the best cir-
cumstance where every edge is purchased, the length of the
shortest path ds,t between node s and t is still beyond mg ,
we do not include this pair of nodes into the MIP encoding.

4 XOR Encoding
The number of variables in the previous all-pair DWC en-
coding prevents it from scaling to large instances. For a net-
work G = (V,E), the number of continuous variables is in



the order of O(|V |2|E|), and the number of discrete vari-
ables is in the order of O(|V |2g), where g is the number of
segments in the piecewise constant approximation.

One way to circumvent this difficulty is a sampling ap-
proach. We sample a small number of (s, t) pairs and find
a protection strategy that maximizes the density weighted
connectivity of these sampled pairs. We hope that the found
strategy is close to the optimal solution, even though it con-
siders only those sampled pairs. However, no principal way
is available to decide which pairs of nodes are more impor-
tant to connect than others before solving the problem.

We therefore leverage a recent progress in hashing based
sampling, which uses random XOR constraints to partition
the entire space, and takes samples dynamically along the
progress of the optimization, while enforcing the constraints
of our BCDWC-Opt Problem. This drastically differs from
the standard approaches that take samples before the opti-
mization starts.

Recently, (Xue et al. 2016) used this idea to develop a ran-
domized algorithm (XOR MAX COUNT shown in Algorithm 2)
with constant approximation guarantee to solve the follow-
ing general Max-Counting Problem:

max
x

∑
y

w(x,y). (12)

Here, x ∈ {0, 1}m, y ∈ {0, 1}n are binary variables, and
w is a general binary function: w : {0, 1}m+n → {0, 1}.
Here, we call (x,y) a satisfiable solution if and only if
w(x,y) = 1. In the max-counting problem, one finds the
best configuration x that maximizes the number of satisfi-
able solutions (x,y). Similarly, in the BCDWC-Opt Prob-
lem, one finds the best set of edges to protect that maximizes
the density weighted connectivity.

The idea behind the XOR MAX COUNT Algorithm reflects
one line of research (Gomes, Sabharwal, and Selman 2006;
2007; Gomes et al. 2007; Ermon et al. 2013; 2014), which
approximates the counting problem

∑
y w(x,y) with a se-

ries of decision or optimization problems, each of which
enforcing additional parity constraints. The rigorous defi-
nition of pairwise independent hash functions in algorithm
XOR MAX COUNT is left to the supplementary materials. To
understand the intuitions behind the algorithm, it is suffi-
cient to treat constraint hk(y) = 0 as imposing k random
XOR constraints on y ∈ Y . Consider a fixed x0, and the
following optimization problem:

max
y∈Y

w(x0,y), s.t. hk(y) = 0. (13)

Assume the total number of satisfiable solutions is 2k0 , i.e.,∑
y w(x0,y) = 2k0 . Imposing one XOR constraint corre-

sponds to randomly dividing the search space Y into two
halves and discard one of the two halves (those do not sat-
isfy the XOR constraint). This applies equally to satisfying
and unsatisfying states. Therefore, half of the 2k0 solutions
are discarded, after imposing the first XOR constraint. Im-
posing k XOR constraints corresponds to repeating this op-
eration of discarding half of the solutions k times. If k < k0,
with high probability, there will still be non-zero solutions
left after k operations, in which case, problem (13) returns 1.

Conversely, when k > k0, with similar arguments, problem
(13) returns 0 with high probability. In short, we can obtain
a rough count on the number of configurations that makes
w(x0,y) = 1 via checking the outcome of problem (13).

After reducing the counting problem into an optimization
with additional parity constraints as in Eq. (13), we can em-
bed this optimization problem into the max-counting prob-
lem in Eq. (12), so that the entire problem becomes a single
optimization over both x and y:

max
x∈X

max
y∈Y

w(x,y), s.t. hk(y) = 0. (14)

The high level idea of our algorithm hence is to find the
best x0, such that w(x0,y) can be satisfiable with as many
parity constraints added as possible, which indicates that∑
w(x0,y) is large, and therefore x0 is a good solution

to the max-counting problem. Algorithm XOR MAX COUNT
takes the aforementioned intuition one step further. In its
subprocedure XOR K, it checks whether more than half of T
optimization problems of type (13) return 1. All these opti-
mization problems share the common x, but have their local
copy of variables y(i). This is a necessary variance reduction
step to establish the constant approximation result.

Our contribution is a novel way of encoding the BCDWC-
Opt problem as a variant of the Max-Counting Problem,
with an original mapping of the density weighted connec-
tivity function to an unweighted one, with binary domain
and range, taking a 2-approximation. The mapped problem
can then be transformed into optimization problems with ad-
ditional parity constraints, under the XOR MAX COUNT frame-
work. Interestingly, this mapping can be done by only intro-
ducing mixed integer constraints. Our transformation also
has very few sum variables, so the whole approach can
be implemented with very short XOR constraints, which is
highly important for scalability purposes.

Encoding as a Max-Counting Problem We first write the
indices of starting and ending points in the density weighted
connectivity function using binary representation. Assume
|V | = 2w (it can be easily extended to the general case), de-
note s = (sw−1, sw−2, . . . s0) and t = (tw−1, tw−2, . . . t0)
as the binary representation of the indices of s and t, respec-
tively. The objective function of BCDWC-Opt can be written
as:

max
x

∑
s∈{0,1}w

∑
t∈{0,1}w

DsP (s t). (15)

Here, x is the vector representing the edge protection plan.
Ds is the density at the node whose binary index is s, and
P (s  t) is the transition probability from the node whose
binary representation is s to the one whose binary represen-
tation is t. The total number of variables in this binary rep-
resentation is small, i.e., 2 log2 |V | variables. This results in
short parity constraints being added in the XOR MAX COUNT
framework, which is beneficial for scaling up the encoding.

Next we transform the weighted objective function (15)
into a binary one, taking a 2-approximation. Introduce extra
variables u = (u1, . . . , ul−1). Let Dmax = maxs∈V Ds.



We enforce the following constraints:

DsP (s t)

Dmax
≤ 1

2l−j
⇒ uj = 0, ∀j ∈ {1, . . . , l − 1}. (16)

DsP (s t)

Dmax
>

1

2l
. (17)

Define w(x; s, t,u) as a binary function that outputs 1 if
and only if (x, s, t,u) satisfies constraint (16) and (17).
The idea is to use the number of different configurations
that make w(x; s, t,u) = 1 to approximate the value of a
weighted objective. We prove that the approximation is close
by the following theorem:
Theorem 4.1. If w(x; s, t,u) is an indicator function that
returns one if and only if (x, s, t,u) satisfies constraint (16)
and (17), we have

1

2
max

x

∑
s,t

DsP (s t)− Dmax

2l+1−2w

≤Dmax

2l
max

x

∑
s,t,u

w(x; s, t,u) ≤ max
x

∑
s,t

DsP (s t).

The proof of Theorem 4.1 is left to supplementary ma-
terials. It informs us that the solution obtained by solving
the unweighted problem maxx

∑
s,t,u w(x; s, t,u) is al-

most 2-approximation to the optimal solution of the original
BCDWC-Opt problem that has a weighted objective func-
tion. For real-world networks,w = log2 |V | is usually small.
We can choose l to be much larger than 2w, to make Dmax

2l+1−2w

very small till it can be ignored.
The XOR K procedure with an unweighted objective func-

tion now consists of the following optimization:

max
x,s(i),t(i),u(i)

T∑
i=1

w(x; s(i), t(i),u(i)),

s.t.
∑
e∈E

cexe ≤ B, (18)

h
(i)
k (s(i), t(i),u(i)) = 0,∀i = 0, . . . , T.

Here, (s(i), t(i),u(i)) are replication variables of (s, t,u).
h
(i)
k is a randomly sampled pairwise independent function

for the i-th replication. The MIP encoding of problem (18)
is left to the supplementary materials. The main challenge
for the MIP encoding comes from enforcing the constraint
that the flow for replication (i) is between the node whose
binary representation is s(i), and the node whose binary rep-
resentation is t(i). Unlike from the previous all-pair DWC
encoding (section 3), s(i) and t(i) are not pre-defined. They
are dynamically updated in the XOR K procedure.

5 Competing Encodings
Expectation Maximization
The BCDWC-Opt Problem in (2) can be expressed as a
parameter learning problem with hidden variables. Define
two random variables S and T , both with domain V , and
a random variable z taking value 0 or 1. Define P (S =

s, T = t) = Ds

|V |
∑

s∈V Ds
as the prior distribution and

P (z = 1|S = s, T = t,x) = p0 exp (−αds,t(x)) as
the conditional distribution of z given S and T . We wrote
P (z|S = s, T = t,x) to emphasize that it depends on the
edge protection plan x. Then, maximizing the objective of
the BCDWC-Opt problem is equivalent to:

max
x

∑
s,t

P (S = s, T = t)P (z = 1|S = s, T = t,x)

Assuming that we have the observation z = 1, in machine
learning, this optimization problem is to find the value of pa-
rameters x to maximize the marginal probability of z = 1
while S and T are treated as hidden variables. This learn-
ing problem can be solved by the expectation maximization
(EM) algorithm (Bishop 2007), which interleaves between
the following two steps.
E step The posterior probability distribution of the hidden
variables S and T given our observation is calculated by

P (S, T |z = 1,xold)

=
P (S, T )P (z = 1|S, T,xold)∑

s,t∈V P (s, t)P (z = 1|S = s, T = t,xold)
.

xold is the edge protection plan in the previous iteration.
M step We maxmize Q(x,xold) =∑

S,T

P (S, T |z = 1,xold) lnP (z = 1, S, T |x) (19)

=
∑
S,T

P (S, T |z = 1,xold)(−α dS,T (x)) + const. (20)

s.t.
∑
e∈E

xece ≤ B.

In this case, the M-step in (20) does not involve the expo-
nential operator, so the M-step can be solved by maximizing
the weighted sum of the shortest path. We can use classi-
cal techniques in EM algorithm (Bishop 2007) to show that
the objective function is guaranteed non-decreasing with the
E-step and the M-step.

Greedy
We also tried the greedy approach, which selects one edge
to protect at a time until we run out of budget. At each step,
the edge with the largest marginal gain, which is defined as
the ratio between the increase of density weighted connec-
tivity and its cost, is added. Interestingly, even Greedy is an
expensive algorithm, since we have to maintain all pairs of
shortest path during each iteration. When the resistance of
one edge is updated (reduced), the best algorithm to update
the all-pair shortest path takes time O(|V |2). Besides, since
in each iteration we have to check which edge is the best
one to add (then for each one updating the shortest path),
the complexity of one greedy iteration is O(|V |2|E|), which
is already too large for the problem size that we consider.

Sample Average Approximation
We also tried the Sample Average Approximation approach
(Shapiro 2003), which randomly samples a small number of



(s, t) pairs and finds a protection strategy that maximizes
the density weighted connectivity, only taking into account
of these sampled (s, t) pairs. We are not aware of a good
strategy to select samples intelligently. Currently, the sam-
ples are taken randomly, which could be improved as future
work.

6 Experiments
We compare our algorithm against various algorithms, in-
cluding the Expectation Maximization (EM) approach with
4 different initialization strategies, the Sample Average Ap-
proximation (SAA) and the greedy algorithm. Our approach
and SAA are encoded and run as MIP without warm start-
ing from any initial solutions. We first run our experiments
on a set of small synthetic instances (25 parcels), where our
all-pair DWC encoding (discussed in Section 3) scales, pro-
viding a nice lower bound on the objective function. We run
experiments with different budgets. For each budget, we ran-
domly generate 10 instances. We give all algorithms 4-hour
time limit and 4GB of memory. After 4 hours, the solver re-
turns the best feasible solution it has found so far. If no fea-
sible solution is found, we treat it as failure, and report the
result as if it has the worst objective value. The number of
segments g is set to 3 for all-pair DWC algorithm (og = 1

3 ),
mainly due to scaling limitations. The Sample Average Ap-
proximation algorithm randomly samples 500 (s, t) pairs in
DWC objective as its objective function, which is the largest
number without exceeding the memory limit. The number
of replications T in the XOR encoding is set to 11, based
on empirical performance. Selecting a large T would im-
prove solution quality, however at a cost of computational
complexity. The number of XOR constraints we need to
add is O(log2 |V | + l). In our application, since log2 |V |
is small, we run XOR K with different number of parity con-
straints k in parallel, and choose the best solution among the
ones returned with different k. Empirically, the solutions of
our XOR encoding keep improving until approximately one
hour, at which time they become relatively stable. We com-
pare the solutions returned by each algorithm by evaluating
the density weighted connectivity objective function value.
A better algorithm should return a solution which achieves a
larger value in this metric. Because the objective value could
vary by orders of magnitude across different instances, they
are further normalized by the best solution among all solvers
for each instance, which rescales the value to between 0 and
1. We call this value the fraction w.r.t. the best solution.

The upper panel of Figure 1 shows the median fraction
w.r.t. the best solution for various solvers, averaged over 10
instances per budget on small instances. As we can see, the
algorithm that always perform the best is the XOR encod-
ing. It is the best in all budget levels except two. The subop-
timality of the two cases is due to the randomness as well as
the 2-approximation we take in the XOR encoding. It even
outperforms the all-pair DWC encoding, which almost mod-
els the entire problem exactly, except for an approximation
in the objective function. The solution values obtained by
all-pair DWC encoding are pretty good, except for a few
losses on certain budget levels. This is due to the coarse ob-
jective function approximation (small g chosen). We can-
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Figure 1: The XOR encoding outperforms the all-pair DWC
encoding, EM with 4 initializations, SAA, and the greedy al-
gorithm. (Upper) on small instances of 25 parcels. (Lower)
on large instances of 255 parcels, where all-pair DWC en-
coding does not scale. The metric compares the dwc objec-
tive function of solutions obtained by each algorithm, nor-
malized by the best solution among solvers. Higher is better.
For clarity, we only plot the 2 best performing EM variants.

Figure 2: The solutions of the XOR encoding on large-scale
simulated dataset (budget: 200 edges). The edge purchased
are shown in blue. When α is small (Left α = 0.02), the
solutions found by the XOR encoding tend to form one con-
nected component. When α is big, local connectivity is em-
phasized (Right α = 0.45). The resistance matrix is in the
background.

not enforce a more refined approximation while keeping the
solver making sufficient progress within the time limit. The
EM algorithm is sensitive to initialization (which is a known
issue in machine learning). The initialization that works best
for this set of benchmarks involves solving a related MIP
problem upfront, which could take hours. Even EM with the
best initialization performs worse than XOR encoding on
small budgeted instances. The greedy and SAA algorithms
perform poorly. We further compare the performance of the
solvers on larger instances (225 parcels), for which the all-
pair DWC encoding cannot scale. As shown in the lower
panel of Figure 1, our XOR encoding still outperforms all
other approaches.

Finally, we run our XOR solver on large scale (1024 par-
cel) realistic instances (see details in the supplementary ma-
terials). The size of the problem is challenging. Even greedy
algorithm cannot scale to problems with this size in reason-
able amount of time. We run XOR solver with a 10-hour



time limit. Figure 2 shows the edges purchased with our
XOR encoding with a 200-edge budget, with different SCR
model parameterizations. Here, α is the parameter in the ex-
ponential distribution, that tunes the expected distance that
animals travel. As we can see, when α is small (0.02) in the
left figure, in expectation animals travel far, so it becomes
more important to connect long range density centers. As a
result, the protection plan tend to purchase edges that form
a connected component. In contrast, when α is large (0.45)
in the right figure, animals stay mostly locally. In this case,
many edges are bought to enforce local connectivity.

7 Conclusion
We propose a novel approach to dynamically optimize den-
sity weighted landscape connectivity, simultaneously esti-
mating animal movement as a function of the conservation
plan. Our approach is based on a mixed integer program, em-
bedding the well-known spatial capture-recapture ecologi-
cal model. Our approach dynamically adapts to the change
of connectivity values of the entire landscape, as a result of
the change of spatial proximity of several landscape parcels
due to the selected conservation plan. In order to scale up
our encoding, we propose a novel sampling scheme via ran-
dom partitioning of the search space using parity functions.
We show that our method scales to real-world size problems
and dramatically outperforms the solution quality of an ex-
pectation maximization approach and a sample average ap-
proximation approach. This is a novel and scalable way of
solving an important dynamic optimization problem in com-
putational sustainability, with the potential of being general-
ized to many other domains.
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