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Abstract
We propose a general framework for boosting combina-
torial solvers through human computation. Our frame-
work combines insights from human workers with the
power of combinatorial optimization. The combinato-
rial solver is also used to guide requests for the work-
ers, and thereby obtain the most useful human feedback
quickly. Our approach also incorporates a problem de-
composition approach with a general strategy for dis-
carding incorrect human input. We apply this frame-
work in the domain of materials discovery, and demon-
strate a speedup of over an order of magnitude.

Introduction
The past decade has witnessed the rapid emergence of the
field of human computation, along with numerous success-
ful applications. Human computation is motivated by prob-
lems for which automated algorithms cannot yet exceed
human performance (Von Ahn 2005). Indeed, some tasks
are naturally and truly easy for humans, while they re-
main surprisingly challenging for machines. These prob-
lems typically involve a perceptual or cognitive component.
For example, successful applications with a strong visual
recognition component include the ESP game (Von Ahn
and Dabbish 2004), Peekaboom (Von Ahn, Liu, and Blum
2006), and Eyespy (Bell et al. 2009), while TagATune (Law
and Von Ahn 2009) and the Listen Game (Turnbull et al.
2007) make extensive use of the human ability to per-
ceive and recognize sounds. In addition, human compu-
tation applications might exploit the implicit, background
or commonsense knowledge of humans, as it is the case
for Verbosity (Von Ahn, Kedia, and Blum 2006) and the
Common Consensus system (Lieberman, Smith, and Teeters
2007). Recent developments have also demonstrated how to
successfully exploit the wisdom of crowds by combining
user annotations for image labeling (Welinder et al. 2010;
Zhou et al. 2012) or clustering tasks (Gomes et al. 2011;
Yi et al. 2012; Chen et al. 2010).

The work described in this paper is motivated by appli-
cation domains that involve visual and audio tasks. In par-
ticular, we focus on a central problem in combinatorial ma-
terials discovery. New materials will help us address some
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of the key challenges our society faces today, in terms of
finding a path towards a sustainable planet (White 2012;
Patel 2011). In combinatorial materials discovery, scientists
experimentally explore large numbers of combinations of
different elements with the hope of finding new compounds
with interesting properties, e.g., for efficient fuel cells or
solar cell arrays. We are collaborating with two teams of
materials scientists, the Energy Materials Center at Cornell
(emc2) and the Joint Center for Artificial Photosynthesis
(JCAP) at Caltech. An overall goal is to develop the capa-
bility of analyzing data from over one million new materi-
als samples per day. Automated data analysis tools, boosted
with a human computation component, will be key to the
success of this project.

We consider a central task in combinatorial materials dis-
covery, namely the problem of identifying the crystalline
phases of inorganic compounds based on an analysis of
high-intensity X-ray patterns. In our approach, we inte-
grate a state-of-the-art optimization framework based on
constraint reasoning with a human computation component.
This hybrid framework reduces our analysis time by orders
of magnitude compared to running the constraint solver by
itself. The human input also helps us improve the quality of
solutions. For the human computation component, we de-
veloped a relatively simple and appealing visual representa-
tion of the X-ray images using heat maps (i.e. color-coded
graphical representations of 2-D real-valued data matrices),
which allows us to decompose the problem into manageable
Human Intelligence Tasks (HITs), involving the identifica-
tion of simple visual patterns, requiring no prior knowledge
about materials science.

This work is part of our broader research agenda focused
on harnessing human insights to solve hard combinatorial
problems. Our work is close in spirit to the seminal FoldIt
project for protein folding (Cooper et al. 2010). In FoldIt,
human gamers are the main driving force for finding new
protein folds, complemented with a limited amount of local
computation (e.g., “shaking” of structures). We are propos-
ing a framework that provides a much tighter integration of
a combinatorial solver with human insights. Our approach
takes advantage of the dramatic improvements in combina-
torial solvers in recent years, allowing us to handle practical
instances with millions of variables and constraints. Our ob-
jective is also to minimize the amount of required user in-



Figure 1: Diagram of the proposed framework.

put. In FoldIt, human gamers spent significant amounts of
time discovering improved and interesting folds for a single
given protein sequence. In our setting, our aim is to analyze
data coming from over a million compounds per day. We
therefore need to develop a setting where the required hu-
man input per data set is minimal. In our framework, we aim
to identify only those cases where fully automatic analysis
does not reach a high quality interpretation and where hu-
man input can make a real difference. Another work inves-
tigates how humans can guide heuristic search algorithms.
(Acuña and Parada 2010) show that humans provide good
solutions to the computationally intractable traveling sales-
man problem. Also, when modifying their solutions, they
tend to modify only the sub-optimal components of their so-
lutions. Similarly, in human-guided search (Anderson et al.
2000; Klau et al. 2002), humans visualize the state of a com-
binatorial optimizer, and leverage their pattern recognition
skills to identify and guide the solver towards promising so-
lution subspaces. This work shows that human guidance can
improve the performance of heuristic searches. While that
work uses human insights to guide local search algorithms
in an interactive optimization framework, our work a human
task in order to provide global insights about the problem
structure.

Our proposed algorithmic framework tightly inte-
grates human-computation with state-of-the-art combinato-
rial solvers using problem decomposition, and an incremen-
tal recursive strategy. The approach extends the solvers by
directly incorporating subtle human insight into the combi-
natorial search process. Current combinatorial solvers can
solve problem instances with millions of variables and con-
straints. This development has been rather surprising given
that the worst-case complexity of the underlying constrained
optimization problems is exponential (assuming P not equal

NP). The explanation of the good practical performance of
such solvers is that they exploit hidden problem structure.
One example of hidden structure is captured by the notion
of a backdoor variable set. Given a constraint satisfaction
problem instance, a set of variables is a backdoor if as-
signing values to those variables leads to a problem that
can be solved in polynomial time by using polytime prop-
agation techniques. Intuitively, small backdoor sets capture
the combinatorics of the problem and explain how current
solvers can be so efficient. (Randomized restarts are often
used to find runs with small backdoors.) It has been found
that many practical problems have relatively small backdoor
sets, on the order of a few percent of the total number of vari-
ables (Kilby et al. 2005; Szeider 2006; Dilkina et al. 2009;
O’Sullivan 2010; Fischetti and Monaci 2011; Gaspers and
Szeider 2012). Current solvers use heuristics to find back-
door variables, but there is still clear room for improvement
in a solver’s ability to focus in on the backdoor variables.
This is where human computation can provide additional in-
sights. As we will show, when presented with parts of the
overall combinatorial task in a visual form (“heat-maps”),
humans can provide useful insights into the setting of hid-
den backdoor variables. Subsequently asserting these vari-
able settings can significantly boost the performance of the
solvers.

Figure 1 illustrates our overall framework. In order to
solicit human insights, we need to decompose the overall
task into a series of relatively small subproblems that can
be viewed effectively for human input. At a high-level, the
idea is to decompose the underlying constraint optimiza-
tion problem into a set of sub-problems with overlapping
variables and constraints. Human insights can then help
solve the subtasks, providing potential partial solutions to
the overall problem. By cycling through many partial solu-



Figure 2: An edge-matching puzzle (Ansótegui et al. 2013).

tions of the subproblems, we can search for a coherent over-
all interpretation with optimal or near optimal utility. An-
other key issue we have to deal with is possible inconsistent
or erroneous human input. Such input will result in an over-
all inconsistent interpretation of our problem, which can be
detected by the aggregation/selection procedures or by the
complete solver. Interestingly, we can use our complete con-
straint solver to identify parts of the user feedback that cause
the overall inconsistency. This information can be extracted
from what is called unsat cores, which identify minimal sets
of inconsistent constraints. We can then use this information
to reject some of the user human input, potentially asking
for new human input, thus repeating the analysis cycle. The
back arrows in Fig. 1 capture the potential feedback loops
from the aggregator and complete solver to previous phases
when inconsistency is detected or time-out occurs.

In the next section we provide a high-level description of
our framework and how it applies to the edge-matching puz-
zle problem, an intuitive visual constraint satisfaction prob-
lem. We then describe our motivating materials discovery
problem and the different components of our framework
for solving it. We present an empirical evaluation of our
framework applied to the materials discovery problem that
shows a significant reduction in data analysis and interpre-
tation times. Overall, our results show that human compu-
tation and fully automated constraint optimization methods
can work in a hybrid complementary setting, leading to sig-
nificant overall performance gains.

Framework
In this section, we provide a high-level description of our
framework and how it applies to an intuitive constraint sat-
isfaction problem, the edge-matching puzzle problem, while
the following sections describe each of its components in
more details.

We consider a general setting where the problem at hand
is a constraint satisfaction problem (CSP). Namely, given a
set of variables and a set of constraints on those variables,
the problem is to find an assignment (”solution”) that sat-
isfies all the constraints. In addition, one can define an op-
timization criterion by introducing a cost measure for each
potential solution. Given a problem instance, a CSP encodes
the instance as a set of variables and constraints, and out-
puts a solution satisfying these constraints. As an example

we consider the edge-matching puzzle problem (see Fig. 2).
The edge-matching puzzle is a tiling puzzle involving

tiling an area, typically with regular polygons (e.g., squares),
whose edges are differentiated with different colors or pat-
terns, in such a way that the edges of adjacent tiles match.
Edge-matching puzzles are challenging since there is no pic-
ture to guide the puzzler and the fact that two pieces go to-
gether is not a guarantee that they should be together. In or-
der to guarantee the correctness of any local partial solution
it is required to complete the entire puzzle. This problem
has been shown to be NP Complete (Demaine and Demaine
2007).

The edge-matching puzzle problem can be formulated
as a constraint satisfaction problem. In particular the prob-
lem can be encoded as a Satisfiability (SAT) problem. Each
Boolean variable denotes a given puzzle piece, with a given
rotation, being placed at a given cell (i, j). The constraints of
this problem can be encoded as clauses, stating: (1) a cell has
one puzzle piece assigned to it; (2) a puzzle piece is assigned
to a single cell; (3) a piece matches its neighbors; and (4) for
the case of puzzles with specific pieces for the border (say a
specific color for the frame) border pieces are not allowed to
be assigned to internal cells. We can also consider another
“dual” encoding, in which the dual variables represent how
the edges of the puzzle are colored. While the encodings are
redundant, often it is advantageous to combine them to en-
force a greater level of constraint propagation that typically
speeds up search (Ansótegui et al. 2013).

Combinatorial solvers have been developed to solve CSPs
(Rossi, Van Beek, and Walsh 2006) and exploit advanced
techniques to speed up the solution runtime. Yet, some prob-
lem instances may not be solved in any reasonable amount
of time. In order to boost combinatorial solvers, we propose
a framework that combines human computation with state-
of-the-art combinatorial solvers into an incremental and re-
cursive process.

Figure 1 illustrates the components of this framework, as
described below.

Decomposition: The problem instance is decomposed
into overlapping subproblems. Combinatorial problem de-
composition typically involves subproblems that are sub-
stantially faster to solve or computationally tractable. In
our case, we are interested in subproblems that, although
might still be hard for computers, become tractable for hu-



mans. As in many human computation tasks, the challenge
is to present the worker with a partial view of the prob-
lem for which he or she will be able to provide valuable
insights. Overlapping subproblems allow for better consis-
tency in the presence of interdependent structure, which
differs from other human computation tasks, such as im-
age labeling, which tend to have more independence. In
the edge-matching puzzle we decompose the problem into
sub-problems by splitting the set of puzzle pieces into non-
disjoint subsets. The decomposition of the puzzle pieces into
overlapping subsets may be based on visual features of the
pieces, for example grouping pieces by predominant colors.
A key aspect of the decomposition procedure is that each
puzzle piece should be assigned to multiple subproblems
and sub-problems are selected using some locality notion
from the problem domain, e.g., the piece predominant col-
ors.

Crowdsourcing: Each subproblem is solved indepen-
dently multiple times and results in some candidate solu-
tions. In the case of the edge-matching puzzle, a worker pro-
vides a small set of partial solutions, i.e., small sets of par-
tial puzzle patterns. Note that we do not assume that these
solutions are correct for the original problem, or even the
subproblem. However, we expect that typically, many of the
subproblem solutions are reasonable considering only the
subproblem, and some of them are consistent or nearly con-
sistent with the full problem.

Aggregation: This step combines partial solutions to pro-
duce new candidates that provide information about a larger
segment of the original problem than the individual re-
sponses. Generally, this involves designing one or more
problem-specific operations that describe the portions of
two or more partial solutions that are compatible with each
other, followed by their recursive application. These com-
bination operations can be more complex than well-known
schemes like voting, agreement or iterative improvement.
In our edge-matching puzzle problem, as the subproblems
overlap, partial puzzle patterns provided by the workers can
be aggregated to form augmented (partial) puzzle patterns
when they agree on the overlapping components. This prob-
lem can be solved as a constraint satisfaction problem, con-
sidering the constraints of the puzzle, using a local search
method or a complete solver, if the problems are small.

Candidate selection: A subset of the augmented candi-
date solutions is selected, such that they are mutually con-
sistent and jointly maximize the amount of information they
provide. In our case, a combinatorial solver selects a consis-
tent subset of the augmented (partial) puzzle patterns so as to
cover the entire puzzle area as much as possible. If the selec-
tion procedure fails (e.g., due to detected inconsistency), we
can ask for new human input, potentially re-decomposing
the problem. See Fig. 1.

Solution Procedure: We run a complete solver, using the
selected partial solutions as either constraints or initial state.
When no solution is found, we return to a previous step
and exploit the information accompanying failure. Indeed,
constraint solvers can identify parts of the user feedback
that caused inconsistency. As described above, the edge-
matching puzzle problem can be encoded as a SAT prob-

lem. For complete SAT solvers the basic underlying solu-
tion strategy is backtrack search, enhanced by several tech-
niques, such as non-chronological backtracking, fast prun-
ing and propagation methods, nogood (or clause) learning,
and randomization and restarts. In addition, modern com-
plete SAT solvers can provide an UNSAT certificate when a
contradiction is detected. In the case of the edge-matching
puzzle problem, an UNSAT certificate corresponds to iden-
tifying which of the selected candidates (i.e. partial puzzle
patterns) were responsible for the contradiction. This infor-
mation can be used to eliminate the UNSAT set of clauses
from the set of selected partial solutions provided to the fi-
nal solver, select a different subset, or generate additional
subproblems for human workers.

Motivating Application in Materials Discovery
Many industrial and technological innovations, from steam
engines to silicon circuits and solar panels, have been en-
abled through the discovery of advanced materials. Accel-
erating the pace of the discovery cycle of new materials is
essential to fostering innovative advances, improving human
welfare and achieving sustainable development.

In order to effectively assess many candidate materi-
als, materials scientists have developed high-throughput de-
position techniques capable of quickly generating mixture
of chemical elements referred to as composition-spread li-
braries (Takeuchi, Dover, and Koinuma 2002). Once synthe-
sized, the promising libraries are characterized through X-
ray diffraction and fluorescence (Gregoire et al. 2009). The
goal of this characterization is to map the composition and
the structure of each library. This is called the phase map
identification problem and is the motivating application of
our work. This problem aims to provide composition and
structure maps that can be correlated with interesting phys-
ical properties within an inorganic library, such as conduc-
tivity, catalytic properties or light absorbency. Solving this
problem remains a laborious time-consuming manual task
that relies on experts in materials science. The contribution
of this work is to propose a principled approach to solving
this problem, accelerating the pace of analysis of the com-
position libraries and alleviating the need for human experts.

Fig. 3 depicts the input data of the problem. A sample
(a blue dot) corresponds to a given material composition of
different chemical elements (Elements 1, 2, and 3). In Fig.
3, the samples uniformly cover the composition space (i.e.
the simplex formed by the 3 elements), yet no assumption
is made about the distribution of the samples in composition
space, i.e., the actual percentage of each material in each
sample. In addition, each sample is characterized by an X-
ray diffraction (XRD) pattern (bottom-left), which can be
represented either as a spectrogram or a heat map. The x-
axis corresponds to the angle of diffraction of the X-rays,
while the y-axis (spectrogram) or the color (heat map) indi-
cate the intensity of the diffracted beam. As described be-
low, in order to visualize multiple XRD patterns at the same
time, the heat maps of different samples can be combined
by stacking the individual heat maps and interpolating the
intensities in between them. Moreover, each X-ray pattern



Figure 3: Problem input. A set of samples (blue dots) in
composition space, i.e. for different composition of the ele-
ments 1, 2 and 3. Each sample is characterized by an X-ray
diffraction (XRD) pattern, representing the beam intensity
as a function of the diffraction angle, as well as a list of
detected peaks. The XRD pattern can be represented as a
spectrogram or a heat map, i.e. a color-coded representa-
tion of the pattern. The heat map can conveniently repre-
sent a list of samples, where the heat maps of the samples
are stacked and interpolated between the samples.

Figure 4: Top: Pictorial depiction of pure phase regions
and mixture phase regions in composition space (Left) and
XRD patterns of one slice as stacked spectrograms (Right).
Bottom: Pictorial depiction of phases for a single slice.
The orange dots on the samples c-d-e represent peaks of
the X-ray diffraction curves, and characterize a phase, as
the 4 leftmost vertical blobs vary similarly in intensity on
the slice a-f. Overall, this phase has 4 X-ray diffraction
peaks and spans the samples c-d-e.

is characterized as a list of peak locations in the diffraction
curve.

In the phase map identification problem, given the ob-
served diffraction patterns of a composition-spread library,
the goal is to determine a set of phases that obey the underly-
ing crystallographic behavior and explain the diffraction pat-
terns. From a materials scientist’s perspective, a phase corre-
sponds to a specific crystal structure, as a particular arrange-
ment of atoms and characterizing lattice parameters. From
the aggregation algorithm’s standpoint, a phase is character-
ized by a set of X-ray diffraction peaks as well as the set
of samples where the phase is involved. From a worker’s
perspective, a phase is simply a visual pattern of vertical
lines/blobs that behave in a similar fashion. See Fig. 4.

From an algorithmic point of view, the phase map identi-
fication problem can be defined as follows:

Given A set of X-ray diffraction patterns representing dif-
ferent material compositions and a set of detected peaks
for each pattern; and K, the expected number of material
phases present.

Find A set of K phases characterized as a set of peaks
and the sample points they are involved in satisfying the
physical constraints that govern the underlying crystallo-
graphic process.

Decomposition and Crowdsourcing
Decomposition The decomposition we used to generate
Human Intelligence Tasks (HITs) for the phase map identi-
fication problem is based on three main criteria: 1) the solu-
tions to subproblems should provide insight into the global
solution, 2) each subproblem must be tractable for a hu-
man worker, and 3) the number of subproblems for sufficient
problem coverage should scale reasonably.

Domain experts try to solve this problem typically by
looking for common patterns in each XRD signal that can
be traced through the different sample points. Therefore our
subproblems consist of the entire XRD curves for a subset
of the sample points.

In order to make the subproblems tractable for human
workers, we generate HITs that exploit human visual pattern
recognition, and tend to present as few extraneous variations
in these patterns as possible. The patterns in the XRD signals
that are structurally important tend to change linearly along
gradients in the chemical composition, so we choose sub-
sets of sample points that are close to a linear slice through
composition space. For example, in Fig. 3, the samples a-
f correspond to a slice going through samples a,b,c,d,e,f.
Overall, this linear slice defines a chain of adjacent sam-
ple points. Namely, it represents a totally-ordered sequence
of X-ray diffraction curves where the visual patterns tend to
vary continuously along that sequence. We generate a heat-
map representation of each such slice so that the patterns



Figure 5: Example of a starting point of a HIT. This heat
map represents the beam intensity of 9 sample points (1
through 9), and the intensities in between samples is ob-
tained by interpolation according to the color scale on
the right. A worker is asked to identify patterns of similar
vertical lines that intersect with sample 4 (whose detected
intensity peaks are marked with red dots). We note that
another HIT could include the same set of samples, but
the worker would be asked to identify patterns of similar
vertical lines that intersect with another sample, say sam-
ple 7 (in which case its detected intensity peaks would be
marked with red dots).

Figure 6: Example of a completed HIT. The three left-
most vertical lines are marked in orange as one pat-
tern spanning three sample points upwards (2 through 4),
while three more towards the right are marked in blue as a
separate pattern, spanning five sample points downwards
(4 through 8). The others are less clear and because of
their ambiguity have been left unmarked by the worker,
which is the correct decision, since workers are told to be
conservative. Constrast this figure with Fig. 4 in which
the phase in the top left of the picture includes the fourth
vertical line on the right as revealed by a complete solver.

are more visually apparent than in alternate representations,
such as plots or a discrete representation of detected signal
peak locations. Note that the y-axis of the heat map repre-
sents the sample points and is therefore categorical, and the
beam intensity value in between samples is obtained by in-
terpolation. While this interpolation smooths the heat map
in the y-direction and may introduce some visual artifacts,
it allows, on the other hand, to better perceive unexpected
variations in diffracted beam intensity. In any case, the order
of the X-ray diffraction curves on the heat map is key. In-
deed, when considering linear slices in composition space,
the patterns are expected to vary continuously on the heat
map, and they become more apparent than in alternate rep-
resentations.

With this decomposition structure, the number of possi-
ble tasks is cubic in the number of sample points, because
assuming a fixed distance threshold, there is at most one
unique slice for each pair of sample points, and to guaran-
tee solution coverage, we generate a separate HITs for each
sample point in the slice. In practice, we only use slices with
orientations that exactly intersect many points, resulting in a
number of HITs that scales quadratically.

Human Intelligence Tasks In each HIT (Fig. 5), the
worker is presented with a heat-map image representing a
single slice, with horizontal grid lines marking the signal for
each sample point that is included. The worker is instructed
to look for patterns involving one particular sample point,
whose detected peaks are marked with red dots (the tar-
get line). The perceptual challenge is to identify what ver-
tical blobs constitute a pattern, and this is the main focus

of a 40-minute tutorial and qualification test (available at
http://www.udiscover.it). The task is then to se-
lect a representative set of the peaks (vertical lines) belong-
ing to one pattern, and to stretch the selection to indicate the
adjacent sample points where it is present as well as the vari-
ation that occurs across sample points (Fig. 6). The worker
repeats this process for a second and third patterns, if they
exist. Again, in this paper, we refer to the set of peaks se-
lected for one particular pattern, including their locations at
adjacent points, as a partial solution or partial phase. In-
dicating the relationship of a partial phase across adjacent
sample points is key, providing a basis for aggregating re-
sponses from different HITs and slices.

We control quality in several ways. Workers are required
to complete a tutorial and qualification test that covers the
rules that describe valid patterns, the interface, and response
criteria. Workers are also instructed to be conservative in
their submissions, excluding more ambiguous patterns or
peaks within those patterns; this helps to reduce the con-
tradictions within and among responses. The user interface
itself enforces many of the structural properties that result
from the underlying physics of the problem, increasing the
chances that each individual response is at least internally
feasible. Finally, each HIT is assigned to at least 5 work-
ers. In addition, once the final solution is identified, sub-
missions can be evaluated based on correctness according
to this solution; in the event that no acceptable solution is
found, responses contributing to the failure can be similarly
evaluated. This information allows us to directly evaluate the
performance of the workers.



Aggregation and Selection
In this section, we provide the intuition behind the aggrega-
tion and the selection steps. We refer the reader to Appendix
A for the formal definitions.

Informally, as illustrated in Fig. 4, we define a peak as
a set of pairs (sample, diffraction angle). For example in
Fig. 4, the leftmost vertical blob spanning the samples c-d-e
corresponds to a peak that covers 3 samples. Moreover, we
define a phase as a set of peaks involved in the same sample
points (again, see Fig. 4). Finally, a partial phase refers to a
subset of the peaks of a phase and/or a subset of the sample
points.

We translate the output of each HIT into a set of partial
phases. Namely, each worker has provided up to 3 partial
phases on the samples of the slice of the HIT. Formally, sup-
poseB = B1∪B2∪· · ·∪BL is the set of all (partial) phases
identified by the workers, where Bi is the set of (partial)
phases identified in task i. In addition, let K be a positive
integer representing the target number of phases.

Intuitively, the aggregation step takes as input the re-
sponses B from all workers, and generates a set B of aug-
mented phases, while the candidate selection step extracts a
subset ofK partial phases fromB, in order to feed and boost
the combinatorial solver.

The key intuition is that many partial phases can be com-
bined into larger ones. Figure 7 provides an example. Ba-
sically, two phases A and B may be combined into a new
phase C, which contains the subset of peaks from A and B,
whose diffraction angles match across all the sample loca-
tions they both belong to. For this combination operator, we
use the notation C = A ◦ B. Note even though C contains
a subset of peaks from A and B, the peaks in C span across
the union of all sample points in A and in B. Therefore,
we can use this combination operator to extend one partial
phase to a larger set of sample locations. We also denote S
the closure of a set of phases S according to that operator,
which generates all possible combinations of the phases in
S.

Therefore, we define the aggregation problem as:

• Given: B = {B1, B2, . . . , BL},
• Find: B;

and the candidate selection problem as:

• Given: B, and a positive integer K,

• Find: K phases from B, that are mutually compat-
ible (defined in Appendix A) and maximize the ob-
jective Objsel(P1, ..., PK), where the objective function
Objsel(P1, ..., PK) corresponds to the total number of ob-
served X-ray diffraction peaks explained by the set of se-
lected phases P1, ..., PK .

Because we are aggregating thousands of workers’ input,
B is a large space and we are unlikely to be able to enu-
merate all items in B to find an exact solution. Instead, we
first expand B to a larger set B′ ⊆ B using a greedy algo-
rithm. Then we employ a Mixed-Integer Program (MIP) for-
mulation that selectsK phases fromB′, covering the largest
number of X-ray diffraction peaks, to be given to a complete

Figure 7: An example showing two partial phases that can
be combined into an augmented candidate phase. Suppose
worker A is given the indicated slice between sample points
f and h, and worker B is given the one between sample
points a and i. Worker A annotates phase PA, which spans
over sample points a, b, c, and its peaks at sample point a
are p1, p2, p3. Worker B annotates phase PB , which and
spans over sample points a, d, and has peaks p2, p3, p5 at
sample point a. The responses from worker A and B can
be combined into an augmented candidate phase PC , which
spans sample points a, b, c, d, and has peaks p2 and p3. PC

contains all the peaks (p2 and p3) from PA and PB whose
diffraction angles match across sample locations that PA and
PB both belong to (sample point a).

solver. The following two subsections provide details on the
greedy expansion algorithm and the MIP encoding.

Aggregation Algorithm: Greedy Expansion
The greedy algorithm is shown in algorithm 1. The
algorithm works by repeatedly calling a subroutine,
Expansion(B,P0, t), each time with a different initial
phase P0 from B. Each time the subroutine Expansion
generates a set of new phases, which is merged into the final
set B′. The subroutine Expansion starts with one initial
partial phase P0, and iteratively combines the current phase
with another phase Pnext inB, to generate new phases (lines
5 and 6).

Note, after combination, the number of peaks in P ei-
ther stays the same or monotonically decreases. However,
the new phase after combination in general expands to more
sample points. In order to keep it tractable for the selection
procedure, the algorithm does not collect all the new phases
encountered along the way: it only collects the first phase
it encounters for the same set of peaks (lines 7 and 8). The
cardinality of P , denoted |P |, in algorithm 1 measures the
number of peaks in phase P .

There is still one question left, which is how to select
the next phase Pnext from B to be combined with the cur-
rent phase (line 4). Experimentally, we find it is often bet-
ter to favor those phases that result in the largest num-
ber of total peaks after combination, while keeping cer-



tain degree of randomness. Hence, we select the next phase
with probability proportional to Softmax(Objsel(P ), t) =
e−t·(|P |−|Pnext◦P |). In our experiment, the temperature t is
set to take value 3.

Algorithm 1: The greedy expansion algorithm.
Data: phase set B.
Result: An extended set of phases B′ ⊇ B.

1 B′ ← ∅;
2 for P ∈ B do
3 B′ ← B′ ∪ Expansion(B,P, t0);
4 end
5 return (B′)

Function Expansion(B, P0, t)
Data: phase set B; A phase P0 ∈ B as the starting

point; temperature t;
Result: An extended set of phases B′ ⊇ {P0}.

1 P ← P0;
2 B′ ← P0;
3 while |P | > 0 do
4 select Pnext from B with probability proportional

to e−t·(|P |−|Pnext◦P |);
5 Pprev ← P ;
6 P ← P ◦ Pnext;
7 if |P | < |Pprev| then
8 B′ ← B′ ∪ {P};
9 end

10 B ← B \ {Pnext};
11 end
12 return B′

Candidate Selection Algorithm: MIP Formulation
After obtaining the extended setB′ from the previous greedy
phase, we use a Mixed-Integer Program (MIP) encoding to
select a set Y of K phases in B′ that covers as many peaks
as possible. We briefly outline the MIP formulation in this
section, while Appendix B provides a detailed formal defi-
nition.

Firstly, we enforce that we select exactly k elements from
B′ and that any element of B′ can be selected at most once.
Secondly, at thermodynamical equilibrium, the underlying
crystallographic process requires that no more than three
phases appear in any single sample point. This is obtained
by limiting the number of selected phases among the ones
involved in any given point. Finally, the objective of the MIP
is to minimize the number of unexplained peaks, which can
be modeled by counting how many peaks are left uncovered
by the selected phases Y .

Solving and Feedback
In this section, we describe how we boost a combinato-
rial solver using the output from the selection task de-
scribed in the previous section, namely the selected partial

phases Y . We first formulate the phase map identification
problem as a Satisfiability Modulo Theories (SMT) model,
following the description provided in (Ermon et al. 2012;
Le Bras et al. 2013). Basically, the main variables repre-
sent the locations of the peaks in the phases, and their do-
main corresponds to a discretized space of diffraction an-
gles. Then, quantifier-free linear arithmetic theory is used to
model the behavior of the underlying crystallographic pro-
cess. In addition to that encoding, we formally translate the
output of the aggregation step into additional constraints.
Namely, we formulate each selected partial phase Yi ∈ Y
as an additional hard constraint φ(Yi), where φ(Yi) forces
the partial assignment of the ith phase to Yi. Moreover, we
add an indicator variable zi corresponding to whether we
impose this selected partial phase when solving the overall
problem. Namely, we define: zi → φ(Yi). Therefore, when
assuming all selected partial phases, we impose that ∧Ki=1zi
holds true.

In order to solve the problem we use a complete SMT
solver. The basic underlying solution strategy is backtrack
search enhanced by several sophisticated techniques, such
as fast pruning and propagation methods, nogood (or clause)
learning, and randomization and restarts. An important is-
sue that we have to consider is potentially inconsistent or
erroneous input in the worker submissions. If we identify
the inconsistent input, we can relax the corresponding zi
propositions. State-of-the-art combinatorial solvers can pro-
vide an unsat core whenever an instance is unsatisfiable. In
that case, the solver would return a subset of the assumptions
{zi|i = 1..K} that led to the contradiction. Partially remov-
ing elements in that set either leads to a satisfiable instance,
or allows us to generate a new unsat core. This approach is
formally described in Algorithm 2. The lines 5-13 identify,
within the unsat core U , the smallest subset of assumptions
Z that has not yet been considered. In line 15, the program
rechecks the feasibility after removing the assumptions Z
from the original set Y . Overall, this process starts by re-
moving a single phase from the unsat core. If every single
phase in the unsat core has been considered individually, the
algorithm attempts to remove pairs of phases, and so on, un-
til it finds a correct set of phases whose removal leads to a
feasible solution.

Note that these iterative steps benefit from an incremen-
tal solving inside the combinatorial solver, as any constraint
reasoning that was performed on the initial assertions (the
problem instance) remains valid at each iteration, and limits
the overhead of keeping track of the unsat core.

Interestingly, once we solve the problem, we obtain as a
by-product the accuracy of each worker submission. Indeed,
we can evaluate the quality of each input by cross-checking
the partial phases in the submission with the overall solution
of the problem. This opens up new research directions in
terms of user feedback and contribution-based rewards to
the workers.

Experimental results
In this section, we provide empirical results of our approach
on the phase map identification problem.



Figure 8: Quality of the workers’ submissions and of the aggregated phase by system (or instance). We considered eight different
systems (all of them involving three different metals): A1, A2, B1, C1, C2, C2, C3, D1, and D2. (Upper) The average precision
of workers’ submissions towards ground truth phases; (Lower) The precision of the aggregated phases towards ground truth
phases. The color of the bars denote the ground-truth phase they are comparing to.

Algorithm 2: The unsat core-based solving algorithm.
Data: problem instance X; preselected phases Y
Result: selected phases P ; solution S of X

1 Z ← ∅; C ← {∅}; // Conflicts
2 assert(X);
3 status = check(Y );
4 while status == unsat do
5 U = unsatcore();
6 for k = 1...|Y | do
7 for Z ⊆ U ∧ |Z| = k do
8 if Z 6∈ C then
9 C = C ∪ Z;

10 goto next;
11 end
12 end
13 end
14 next;
15 status = check(Y \ Z);
16 end
17 P = Y \ Z; S = getsolution();
18 return (P, S)

The instances we use for evaluation are synthetic in-
stances that were generated as described in (Le Bras et al.
2014). The advantage of synthetic instances is that they al-
low us to compare the results with the ground truth, and eval-
uate the proposed approach. Nevertheless, the generated in-
stances are based on a well-studied real physical system, and
comparable in size and complexity to the real systems. For
our experiments we considered 8 different systems (all of
them involving three different metals): A1, A2, B1, C1, C2,
C2, C3, D1, and D2.

In terms of the crowdsourcing tasks, we used the Amazon
Mechanical Turk (AMT) platform to recruit workers. We
provided a 40-minute qualifying test, which also acted as
a tutorial (available at http://www.udiscover.it).
Once a worker passed the test, he was sent to our own in-
terface to complete the actual tasks. We randomly clustered
the tasks into groups of 25 tasks. Namely, each time a worker
was assigned a task on AMT, he or she had to complete 25
tasks on our interface before getting the confirmation code
to feed back to the AMT website. The average completion
time per task was approximately 15 seconds, and a worker
was rewarded $1 for completing a group of 25 tasks. Thus,
the average rate was about $9.6 per hour, and contributed
to the high worker attrition in the experiment. We generated
660 tasks, and each one had to be completed by 5 differ-
ent workers. Overall, the tasks were performed by the active
participation of 25 human workers. Indeed, on average, a
worker completed over 20% of all the tasks that were avail-
able to him/her, and all the tasks were completed within 48
hours after being posted on AMT. In the following, we study



Dataset Solver only Solver with Human Computation input
System P L∗ K Time (s) Overall Time (s) Aggregation (s) Backtrack (s) #backtracks

A1 36 8 4 3502 859 17 300 4
A2 60 8 4 17345 4377 29 272 2
B1 15 6 6 79 4 0.07 0
C1 28 6 6 346 62 0.5 0
C2 28 8 6 10076 271 4 0
C3 28 10 6 28170 1163 6 105 1
D1 45 7 6 18882 596 7 0
D2 45 8 6 46816 1003 13 0

Table 1: Comparison of the runtimes of the solver with and without the human component for the different systems. P is the
number of sample points, L∗ is the average number of peaks per phase, K is the number of basis patterns, #var is the number
of variables and #cst is the number of constraints.

the quality of the workers and of the output of the aggrega-
tion step, and evaluate how it effectively speeds up the com-
binatorial solver.

First of all, we study the quality of the workers input, as
shown in Fig. 8. We use the average precision as a mea-
sure of quality. Formally, the precision of one phase P rel-
ative to a ground truth phase Q is defined as the percentage
of the number of peaks in P which also belong to Q, i.e.
prec(P,Q) = |P∩Q|

|P | . The upper chart of figure 8 shows the
average precision of a submitted phase relative to a ground
truth phase, which is denoted by

prec(Q) =
1

|P ∈ sub, P ∩Q 6= ∅|
∑

P∈sub,P∩Q6=∅

prec(P,Q).

where sub denotes the set of submitted phases and the all
bar denotes the average precision of a submitted phase rela-
tive to any ground truth phase:

precall =
∑

Q∈ground truth

|P ∈ sub, P ∩Q 6= ∅|∑
Q |P ∈ sub, P ∩Q 6= ∅|

prec(Q).

phase 1 phase 2 phase 3

phase 4 phase 5 phase 6

A1 C1 B1 A2 

C2 C3 D1 D2 

Figure 9: Percentage of workers’ annotations that belong to
each ground truth phase, for the different systems (A1, A2,
B1, C1, C2, C2, C3, D1, and D2). The percentage related to
ground truth phase Q is defined as |P∈sub,P∩Q 6=∅|∑

Q |P∈sub,P∩Q6=∅|
. We

use the same color as in Fig. 8 for the ground truth phases.

As we can see, human workers provide very high quality
input. Many partial phases identified by the workers belong

to the actual ground-truth phase as a whole. The average pre-
cision score is almost always greater than 90%. More impor-
tantly, the phases identified by human workers span nicely
over all phases in the ground truth set, except for the A2 in-
stance. Note this allows the later aggregation step to pick up
all the K phases.

Regarding the low precision for one phase in the A2 sys-
tem, it is worth noting that the peaks of that phase have rel-
ative low visual intensity. Since the workers were explicitly
told in the description of the tasks to only annotate peaks
they are most confident about, it is natural that most work-
ers skipped annotating any peak for that phase. A similar
yet less obvious problem occurs in A1. Figure 9 illustrates
the percentage of workers submissions that belong to each
phase in the ground-truth. We observe very few annotations
of the fourth phase for A1 and A2.

Next we study the quality of the output of the aggregation
step. The lower chart of figure 8 shows the precision of the
K aggregated phases relative to the K ground-truth phases.
As shown, in most instances the aggregation algorithm is
able to select all ground truth phases, except for the instance
of A1, A2 and C3. For these 3 systems, the aggregation
algorithm selects a partial phase of the same ground truth
phase multiple times. Note that A1, A2 and C3 actually cor-
respond to the cases where the combinatorial solver needs to
backtrack in order to find the complete solution, due to in-
consistent human input. In order to understand why these 3
systems seemed more problematic, we analyzed the ground
truth solutions of these problems. In addition to the low vi-
sual intensity case in A1 and A2, several ground truth phases
in A1 and C3 have many overlapping peaks, which confused
the workers during the annotation, as well as the aggregation
solver which falsely combined two distinct phase into one.

Finally, we study the speed-up of applying the aggregated
information to the complete solver. We feed the aggregated
phases into the SMT solver, and study the time the solver
takes to find a complete solution with and without initial-
ization from human input. The result is shown in table 1. We
run on a machine running 12-core Intel Xeron5690 3.46GHz
CPU, and 48 gigabytes of memory. As shown in this table,
aggregated crowdsourced information dramatically boosts
the combinatorial solver. When considering the largest in-
stance D2 for example, the solver cannot find the solution in



13 hours without human input, while it only takes about 15
minutes with human input.

We observe that the solver can find the complete solution
in 5 out of 8 instances, including the biggest two D1 and
D2, without even having to reconsider the choices made by
the selection algorithm. In these 5 instances, the speed-up
corresponds to several orders of magnitude. Furthermore, a
worker typically spends approximately 15 seconds annotat-
ing one slice. On the eight instances we solve, the number
of tasks per system ranges from 34 (B1) to 172 (D2). Thus
even if one human worker takes over the entire job of anno-
tating phases for one system, it takes him or her less than 45
minutes to annotate, which is relatively small compared to
the original solving time of 13 hours.

On the other 3 instances, we need to backtrack, due to
inconsistent human input, in order to find the complete solu-
tion. Nevertheless, the overhead of computation time due to
the backtracks is relatively small, which suggests that find-
ing inconsistencies among workers input is relatively easy.
In any case, it still performs at least an order of magni-
tude better in terms of computation time. The reason for
backtracking is mainly due to the fact that the visual clue
is not enough for the human worker to tell apart between
two distinct phases, which in turn confuses the aggregation.
Nonetheless, the solver is able to find out the complete solu-
tion with minimal number of backtracks.

Conclusions
In this paper, we propose a framework that combines state-
of-the-art optimization solvers based on constraint reasoning
with a human computation component. The experimental re-
sults show that this hybrid framework reduces our analysis
time by orders of magnitude compared to running the con-
straint solver without human input, when applied to an im-
portant materials discovery problem.

Overall, we show that human computation and fully au-
tomated constraint optimization approaches can work in a
hybrid complementary setting, leading to significant overall
performance gains. Our decomposition and solution aggre-
gation strategy provides a general framework for decompos-
ing large, complex tasks into units suitable for human feed-
back. Moreover, the solver provides feedback on the human
input and allows us to resample and correct for “noise” from
the human feedback.

Future research directions include active learning meth-
ods to identify, in an online setting, which human tasks need
to be performed, as well as to provide feedback to the work-
ers, actively evaluate their quality and provide incentives
based on worker accuracy.
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Appendix A
We first formally define the notions of peaks and phases.

Definition (peak) A peak q is a set of (sample point, lo-
cation) pairs: q = {(si, li)|i = 1, . . . , nq}, where {si|i =
1, . . . , nq} is a set of sample points where q is present, and
li is the location of peak q at sample point si, respectively.
We call {si|i = 1, . . . , nq} the realization set of q, denoted
as Rel(q). We also use q(si) to denote li – the peak location
at si.

When non-ambiguous, we also use the term “peak” to re-
fer to a particular realization of a peak within one sample
point as well. A phase corresponds to a set of peaks that
share a common realization set, subject to certain physical
constraints on their variation. Formally, we define:

Definition (phase) A phase (or a partial phase) P is com-
posed of a set of peaks {q1, q2, . . . , qnP

}, with all peaks qj
sharing a common realization set S. We call S the realiza-
tion set of P , denoted as Rel(P ). |P | is used to denote the
number of peaks in a phase.

We use lower-case letters p, q, r, . . . to represent peaks,
and use upper-case letters P,Q,R, . . . to represent phases.

Suppose P andQ are two partial phases whose realization
sets intersect, {p1, . . . , pk} are matched peaks between P
and Q on all the sample points where P and Q co-exist. It
is not hard to see that peaks {p1, . . . , pk} form a new valid
phase which spans over Rel(P ) ∪ Rel(Q). Based on this
idea, we can formally define the combination of two peaks
and two phases as follows.

Definition (Combination of peaks) Suppose we have peak
q1 = {(s1i , l1i )|i = 1, . . . , n1} and q2 = {(s2i , l2i )|i =
1, . . . , n2}. The combination of q1 and q2, denoted as q =
q1 ◦ q2, is a peak, and,

• If Rel(q1) ∩Rel(q2) = ∅, then q1 ◦ q2 = ⊥.
• Otherwise, q = q1 ◦ q2 is a peak which exists on sample

points Rel(q) = Rel(q1) ∩Rel(q2), and

q(s) =

{
q1(s) for s ∈ Rel(q1)
q2(s) for s ∈ Rel(q2) \Rel(q1).

We denote ⊥ a special null peak and define ∀q : q ◦ ⊥ = ⊥.

Intuitively speaking, the previous definition says if two
peaks p and q match on all sample points they coexist, then
their combination is the peak that spans over the union of the
realization set of the two peaks. In all other cases, p◦q = ⊥.
Now we define the combination of two phases.

Definition (Combination of phases) Suppose A, B are two
phases with peaks {qA,i|i = 1, . . . ,m} and {qB,j |j =
1, . . . , n}, respectively. The combined phase C is then:

C = A ◦B = {q′ ◦ q′′|∀q′ ∈ A, q′′ ∈ B} \ {⊥}.



As the combination of two peaks extends the realization
set of one peak p to the realization of another peak q if
p and q match on their shared points, the combination of
two phases extends all peaks from one phase to the matched
peaks of the other.

Definition (Closure) For a set of phases S =
{P1, P2, . . . , Pn}. The closure of S, denoted as S, is
defined as the minimal set that satisfies,

• S ⊆ S.
• For Pi, Pj ∈ S, Pi ◦ Pj ∈ S.

Appendix B
In this appendix, we present the MIP formulation that mod-
els the candidate selection problem.. Let Ei,k be binary in-
dicator variables, where Ei,k = 1 iff the i-th phase in B′ is
selected as the k-th phase (i = 1, . . . , n and k = 1, . . . ,K).

The first constraint is that each phase inB′ can be selected
at most once, i.e.,

∀i,
K∑

k=1

Ei,k ≤ 1.

Next, there is exactly one phase from B′ that is selected
as the k-th phase.

∀k,
n∑

i=1

Ei,k = 1.

Let O(j) ⊆ B′ be all the phases existing at sample point
j. There is a physical constraint that no more than three
phases can be present at one sample point:

∀j,
∑

i∈O(j)

K∑
k=1

Ei,k ≤ 3.

Let wl be the binary variable indicating whether peak l is
not covered by any selected phase, and C(l) ⊆ B′ be the set
of all phases that cover peak l. Then the following constraint
holds:

wl +

 ∑
i∈C(l)

K∑
k=1

Ei,k

 ≥ 1 for all l.

Here, wl will only be forced to take value 1 if none of
the Ei,k variables covering l takes value 1. Finally, we want
to find the set Y of phases that minimizes the number of
uncovered peaks. Namely, we have:

Y = argmin
{B1,...,BK}⊂B′

∑
l∈L

wl.
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