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Abstract

Real–world problems are often not fully characterized by
a single optimal solution, as they frequently involve multi-
ple competing objectives; it is therefore important to iden-
tify the so-called Pareto frontier, which captures solution
trade-offs. We propose a fully polynomial-time approxima-
tion scheme based on Dynamic Programming (DP) for com-
puting a polynomially succinct curve that approximates the
Pareto frontier to within an arbitrarily small ε > 0 on tree-
structured networks. Given a set of objectives, our approx-
imation scheme runs in time polynomial in the size of the
instance and 1/ε. We also propose a Mixed Integer Program-
ming (MIP) scheme to approximate the Pareto frontier. The
DP and MIP Pareto frontier approaches have complementary
strengths and are surprisingly effective. We provide empir-
ical results showing that our methods outperform other ap-
proaches in efficiency and accuracy. Our work is motivated
by a problem in computational sustainability concerning the
proliferation of hydropower dams throughout the Amazon
basin. Our goal is to support decision-makers in evaluating
impacted ecosystem services on the full scale of the Amazon
basin. Our work is general and can be applied to approximate
the Pareto frontier of a variety of multiobjective problems on
tree-structured networks.

1 Introduction
In recent years there has been considerable interest in the
study of multi-objective optimization problems (see e.g.,
(Ehrgott and Gandibleux 2000; Qian, Tang, and Zhou 2016;
Terra-Neves, Lynce, and Manquinho 2017; Wiecek et al.
2008)). Multi-objective optimization is critical in Compu-
tational Sustainability (Gomes 2009), as real-world sus-
tainability problems often involve balancing environmental,
economic, and societal objectives. In multi-objective opti-
mization, solutions are evaluated with respect to several, of-
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Figure 1: Dams throughout the Amazon basin: around 500
dams are proposed, planned, or under construction.

ten competing, criteria. We are interested in understanding
the trade-offs between the objectives for different solutions:
the so-called Pareto frontier.

Our work is motivated by a challenging real-world com-
putational sustainability problem concerning the placement
of hydropower dams in a river network. In recent years,
there has been a significant proliferation of hydropower
dams in the Amazon basin: around 500 dams are pro-
posed, planned, or under construction. Hydropower dams
affect many ecosystem services such as, energy produc-
tion, navigation, biodiversity, sediment export, nutrient cy-
cling, and freshwater fisheries. Therefore, it is impera-
tive to integrate ecosystem service trade-offs into decision-
making models for the placement of hydropower dams in
the Amazon Basin (Finer and Jenkins 2012; Kareiva 2012;



Winemiller et al. 2016; Zarfl et al. 2015; Ziv et al. 2012).
The Amazon hydropower dam placement problem repre-

sents a multiobjective optimization problem naturally cap-
tured by a tree-structured network. We are interested in map-
ping the Pareto frontier, since a single optimal solution does
not fully characterize the problem: optimizing one objective
often sacrifices the values of other objectives. The Pareto
frontier is the set of all Pareto-optimal solutions, where a
solution is considered Pareto-optimal if its vector of ob-
jective values is not dominated by the corresponding vec-
tor of any other feasible solution. Often the Pareto fron-
tier is of exponential size, making it challenging to com-
pute. By introducing an approximation of the exact fron-
tier, we can replace the full frontier by a polynomial num-
ber of approximate Pareto points. Our approximate fron-
tier is such that each Pareto solution in the full frontier
is within a guaranteed approximation ratio from a point in
the approximate frontier. Our approximation therefore pro-
vides an effective polynomial representation of the full fron-
tier. Existing approaches are primarily heuristic based and
provide no formal guarantees (e.g., (Wiecek et al. 2008;
Ehrgott and Gandibleux 2000)). We develop efficient al-
gorithms for approximating the Pareto frontier for tree-
structured networks with a guarantee on the approximation
quality.

Our contributions: 1) We provide an exact algorithm
based on dynamic programming (DP) to compute the Pareto
frontier on tree-structured networks. 2) A DP-based fully
polynomial-time approximation scheme (FPTAS) for ap-
proximating the Pareto frontier for tree-structured networks.
3) We formulate the hydropower dam placement problem
as a multiobjective optimization problem on a tree-structure
network and demonstrate how our FPTAS approach can
be applied to approximate its Pareto frontier. 4) We also
formulate the problem of optimizing the placement of hy-
dropower dams as a mixed integer programming problem
(MIP) and use it to approximate the Pareto frontier follow-
ing the scheme proposed in (Papadimitriou and Yannakakis
2000). 5) We provide empirical results on different basins
of the Amazon to show interesting trade-offs between the
two approaches. In general, our FPTAS captures the Pareto
frontier more accurately than the MIP approach and pro-
vides a substantially larger set of Pareto frontier solutions.
Nevertheless, in some cases, given that the MIP considers a
smaller set of Pareto solutions (one solution per cell of the
so-called ε-hyper-rectangle), it can take less time to approx-
imate the Pareto frontier, despite its worst case exponential
complexity. 6) We also show that our exact DP approach can
compute the full (exact) Pareto frontier for several Amazon
sub-basins and several criteria, which is infeasible for the
MIP approach.

Our DP and MIP Pareto frontier approximations have
complementary strengths and are surprisingly effective,
scaling up to real-world size problems: the DP approximates
the Pareto frontier for the entire Amazon basin, when opti-
mizing for energy, seismic risk, and connectivity (a proxy for
e.g., fish migrations, transportation, sediment production), in
around 1.7 hours, with a coverage of 19955 non-dominated
solutions, with the guarantee that the solutions are within at

most 10% of the true optimum (ε = 0.1); in around 3 min-
utes, the DP provides a coverage of 3521 non-dominated so-
lutions (ε = 0.2); in around 1 minute, the DP provides a cov-
erage of 1976 non-dominated solutions (ε = 0.25); the MIP
approach can approximate the Pareto frontier faster (≈ 16
seconds), but with a smaller coverage of 257 non-dominated
solutions (ε = 0.1).

Our approach will enable policy-makers to make bet-
ter informed decisions concerning the trade-offs of socio-
economic and environmental impacts of hydropower dam
placements. We are developing analytical and visualization
tools for an interactive exploration of the frontier for policy
makers. The tools will allow policy makers to explore the
trade-offs among the various solutions.

In the next sections we provide a formal characterization
of the concept of Pareto frontier, describe our proposed FP-
TAS and MIP approaches for computing the Pareto frontier
on tree-structured networks, and provide empirical results
for different basins of the Amazon, demonstrating the trade-
offs between the approaches.

2 Problem Statement
Pareto Frontier: We consider the trade-offs in optimizing
multiple objective functions (z1, z2, ..., zm), whose values
depend on a common solution (referred to as a policy π). In
our application domain, a policy represents the selection of
a particular set of dams to be built. Given such a policy (set
of dams), we obtain values for our objective functions such
as energy produced, seismic risk, etc. Without loss of gen-
erality, we only consider the problem of maximizing objec-
tive functions. Minimizing objective functions can be treated
similarly. A Pareto optimal policy is the one that is not dom-
inated by any other policy. Given two policies π and π′, we
say that π dominates π′ if the following two conditions hold:
(1) for all i, zi(π) ≥ zi(π′); (2) at least one strict inequal-
ity holds for some i. The goal is to find all Pareto-optimal
policies, which forms a set called the Pareto frontier.
Example: In our application domain, some objective func-
tions that we consider are Energy (total energy generated by
the dams), Connectivity (total river length from root with-
out dams), and Seismic Risk (the overall seismic risk due
to the constructed dams). These objective values are a direct
function of the choice of dam placement and the structure of
the underlying river network. We will define these objectives
formally in later sections. For now, consider a very small ex-
ample with only three possible dam placements P1, P2, and
P3, with objective values (10, 5, 35) (i.e., Energy = 10, Con-
nectivity = 5, and Seismic Risk = 35), (10, 3, 35), and (11, 4,
34), respectively. The policy P1 dominates P2 because of the
higher Connectivity. P1 and P3 are non-dominated policies
and form the Pareto frontier. (Note that P1 does not dominate
P3 because of the Energy value, and P3 does not dominate
P1 because of the Connectivity and the Seismic Risk.) See
figure 2 for an example of a visualization of the Pareto fron-
tier. In the next paragraph we define the problem formally
and then we show how our formulation can be applied to the
dam placement problem.
Value Function on a Tree Network: The objective func-
tions that we consider are value functions defined on a tree



Figure 2: Example of a visualization of the Pareto frontier.
(Top panel) Location of the selected dams corresponding to
the solution highlighted in black in the bottom panel. (Bot-
tom panel) Visualization of the Pareto frontier for four cri-
teria for the Marañon sub-basin (DP solution; ε = 0.1). X
axis: energy; Y axis: connectivity; Size of the circle: Sedi-
ment; Color: Seismic risk (green - low risk; red - high risk).
The solution in the far right of the top row of the circles is
highlighted in black. Note that the solutions with the high-
est energy level have the lowest connectivity and the highest
seismic risk.

structured network. A tree structured network T = (V,E)
has a unique root node denoted by s. Any node v other than
the root s is associated with a unique parent node u. v is
also referred to as a child node of u. There is a directed edge
linking the parent u to the child v. All children of u form the
children set of u, denoted as ch(u). A node is called a leaf
node if its children set is empty.

We first give a general definition of the value function on a
tree network. Some of the details will become clearer below,
when we illustrate this definition in terms of the hydropower
dam placement problem.

A value function zi(π) is defined recursively on a tree
structured network. We assume there are node rewards
r1v, . . . , r

m
v associated with each node v in the tree. The value

function defined on a leaf node v is its corresponding reward,
i.e., ziv(π) = riv . Each edge has two states. If an edge uv is
at its first state, then it has a passage probability of piuv; oth-
erwise, qiuv . In practice, the states of edges are used to model
policies that we take on the edges. For example, in the dam
placement problem, an edge represents a potential dam lo-
cation, and the state of an edge represents our decision on
whether or not to build the dam. A policy π is the subset of
all edges that are in the first state. The value function on a
non-leaf node v is defined recursively:

ziu(π) = riu +
∑

v∈ch(u)

(
I(uv ∈ π)piuv + I(uv /∈ π)qiuv

)
ziv(π).

(1)

Here, I(·) is an indicator function. The value function for
the entire tree network T is the value function on the root
node s, i.e., zi(π) = zis(π).

The value function defined in this way is general and cap-
tures many interesting families of functions. For example,
the value function of a finite binary-state Markov Decision

Process can be encoded in this way by unfolding the de-
cision process into a chain, which is in a special tree form.
The value function can also be equivalently written in a more
concise way. Let u v denote the path from u to v. Define
the probability that u is connected to v as

piu v(π) =
∏

e on u v

(
I(e ∈ π)pie + I(e /∈ π)qie

)
,

that is, the product of all passage probabilities of edges on
the path from u to v depending on their states. Then,

zi(π) =
∑
v∈V

pis v(π)rv. (2)

Given m objective functions (z1, z2, . . . , zm), each de-
fined as value functions on a tree network T , our multi-
objective optimization problem on a tree structured net-
work is to find the Pareto frontier consisting of all non-
dominated policies.

The Pareto multi-objective optimization problem is NP-
hard even though it is defined on a tree. To prove the
NP-completeness, consider the following decision problem:
Pareto Dec(t1, . . . , tm): given t1, . . . , tm, is there one
policy π such that zi(π) ≥ ti for all i?
Theorem 1. Pareto Dec is NP-complete even for two ob-
jectives.
Proof: See the full version of the paper (Wu et al. 2018).
Application to the Hydropower Dam Placement Prob-
lem: We refer to the problem of determining the optimal
placement of hydropower dams as the hydropower dam
placement problem. As discussed earlier, we seek to balance
multiple social, economic, and ecological metrics. The hy-
dropower dam placement problem fits naturally into the gen-
eral framework of the multi-objective optimization problem
defined in the previous section.

To encode this problem, we first transform the river net-
work and potential dam locations into a directed tree. A node
in the directed tree corresponds to a contiguous region of the
river network, that is, all stream segments in a region that are
connected without being blocked by potential dam sites. An
edge in the directed tree corresponds to a potential dam site.
Figure. 3 provides an example of this transformation.

Our policy π is a subset of potential dam sites that we
decide to build. Since each potential dam site is represented
by an edge, the policy π, which is a subset of potential dam
sites, corresponds to a subset of E, i.e., π ⊆ E. Building
dams changes the passage probabilities for the edges on the
tree network. If we build a dam, then the corresponding edge
in the tree network is in its first state; otherwise it is in its
second state. Using this framework, we can encode many
important social and economic objectives, as follows:
Longitudinal connectivity: For a given policy π, the con-
nectivity of a river network is measured by the total length
of the stream segments that one can travel starting from the
root without passing a selected dam site in π. Suppose we
use the ith objective to formulate the connectivity. We set
riv to be the total lengths of all stream segments in the region
represented by node v in the directed tree. We set pie = 0 and
qie = 1 for all e ∈ E, that is, we either acquire all upstream



(a) River Network (b) Dir. Rooted Tree

Figure 3: Converting a river network (left) into a directed
rooted tree (right: x is root). One contiguous region of the
river network (represented by different color) is converted to
a node (also referred to as a hypernode) in the tree network.
One potential dam site (represented by a red-yellow circle)
is represented by an edge in the directed rooted tree.

segments (when we do not build the dam corresponding to
edge e) or lose all of them (when we build the dam). It is easy
to show that Equation (1) encodes the connectivity metric.
Energy: The total hydropower that is produced by a set of
selected dam sites is

∑
einπ he, where he is the hydropower

for the dam represented by edge e. Therefore, selecting a
dam site on edge e adds energy he to the total energy. For
any dam site (u, v) that can produce hydropower huv , we
set piuv = qiuv = 1. We move the energy huv to its parent
u. In other words, the reward at node u, riu now becomes
riu(π) =

∑
v∈ch(u) I(uv ∈ π)huv . Notice that riu depends

on whether each edge (u, v) is in policy π. The total energy
can be calculated by the same recursion as in (1).
Sediments: This objective captures the total amount of sed-
iment carried downstream. Dams stop a certain fraction of
sediments from moving downstream. The formulation of
this objective is very similar to connectivity: riv represents
the amount of sediment that is produced by the region en-
coded by a node v; qie = 1 and pie is the percentage of sedi-
ment that can go through the dam denoted by edge e.
Seismic Risk: Dam locations are associated with three lev-
els of seismic risk: level 1 (no risk) to 2 (medium risk) or 3
(high risk). Let he be the hydropower produced by dam e,
le be the risk level for its location, and η = 10 be a base
risk score. We define the seismic hazard for dam e as zero
if the dam is located in a level 1 region (le = 1); otherwise
its risk is (he+C)ηle , which can be encoded analogously to
the energy objective. C is a constant. We set it to 1000.

Many other objectives can be encoded in a similar way.

3 Dynamic Programming and Rounding
We first present a dynamic programming algorithm which
computes the Pareto frontier exactly for value functions de-
fined on a tree-structured network. We prove that the algo-
rithm can find all Pareto optimal policies.

In practice, the number of Pareto optimal policies may
be exponential even for a fixed number of objective func-

tions. Motivated by the ideas in (Wu, Sheldon, and Zil-
berstein 2014a; 2014b), we apply a rounding technique to
the dynamic programming algorithm. (Wu et al. do not con-
sider the problem of approximating the Pareto frontier.) We
provide a fully polynomial-time approximation scheme (FP-
TAS) that finds a policy set of polynomial size, which ap-
proximates the Pareto frontier within an arbitrary small ε and
runs in time polynomial in the size of the instance and 1/ε.

Definition 1. We say that a policy set S ε-approximates the
Pareto frontier, if and only if for any policy π in the Pareto
frontier, there exists a policy π′ in set S, such that zi(π′) ≥
(1− ε)zi(π) for all i.

Definition 2. We say an algorithm A is a fully polynomial-
time approximation scheme (FPTAS) for a multi-objective
optimization problem, if A finds a policy set S that ε-
approximates the Pareto frontier, and A runs in time poly-
nomial in the size of the instance and 1/ε.

As we will show below, our main contribution can be
summarized by the following statement:

Suppose there are universal constants c and C such that
c ≤ riu ≤ C for all u ∈ V and all i. Our algorithm
Pareto approxT , described below, is a FPTAS for the mul-
tiple objective optimization problems defined on a tree struc-
tured network. The size of policy set found by the algorithm
is bounded by O

((
n
ε

)m)
, and the running time is bounded

by O
((

n
ε

)2m)
, where n is the number of nodes in T and m

is the number of objective functions.

We assume that the tree T is a binary tree. In section 5, we
discuss how to transform a general directed rooted tree into
an equivalent binary tree, which allows us to apply the algo-
rithm discussed in this section with the additional benefit of
increased early pruning.

3.1 Exact Dynamic Programming Algorithm
Our proposed algorithm, ParetoT , is an exact dynamic pro-
gramming algorithm, which computes all policies in the
Pareto frontier. One may relate it to the bucket elimination
algorithm in probabilistic inference (Dechter 1998). Nev-
ertheless bucket elimination is applied to single objective
problems; we note that having multiple objectives makes
the problem structure very different from single objective
problems. In fact, the complexity of variable elimination is
bounded by the tree width, so tractable on trees. However,
our problem is NP-hard even for two objectives and on a
two-layer tree. In addition, we obtain an FPTAS for our
problem, which is not provided by the bucket elimination
algorithm, even for single objective problems.

Let Φu denote the set of all edges in the subtree rooted at
u and πu be a partial policy on u that only includes edges
in Φu; in other words, πu ⊆ Φu. A partial policy is Pareto
optimal if and only if it is not dominated by any other partial
policies on the same node. Our dynamic programming al-
gorithm is based on the following theorem, which states that
all Pareto optimal partial policies on a node can be computed
based on Pareto optimal partial policies from its children:



Theorem 2. Let l and r be the children of u. Any Pareto-
optimal partial policy at u can be constructed by combining
one Pareto-optimal partial policy from node l, one from node
r and four different joint states of edge (u, l) and (u, r).

Proof. Prove by contradiction. See the full version of the
paper (Wu et al. 2018).

Motivated by Theorem 2, we design our exact dynamic
programming algorithm, ParetoT , to recursively compute
the Pareto optimal partial policies from leaf nodes to the
root. Instead of keeping all partial policies, we only keep the
Pareto-optimal partial policies at each node. The recursion
of computing the Pareto optimal partial policy for node u is
as follows. Suppose l and r are the two children of node u.
We first compute the Pareto optimal partial policies for l and
r. Then we enumerate each pair of partial policies from node
l and r and consider four different combinations of whether
to include edge (u, l) and (u, r). For each combination, we
compute the objective values based on Equation 1, and add
them to the policy set P . Finally, we remove all dominated
policies from P . Based on Theorem 2, the remaining poli-
cies are Pareto optimal for node u. Note that it is straight-
forward to adapt this algorithm to include the case when the
node u only has one child.

3.2 Approximation with Rounding
In practice, the optimal Pareto frontier may have an ex-
ponential number of points. In this case, we propose
Pareto approxT , based on a rounding technique that gives
a FPTAS to the multi-objective optimization problem.

We first explain how rounding works for longitudinal con-
nectivity and sediments. The rounding for energy and seis-
mic risk, which will be detailed later, is very similar to the
rounding scheme presented here, except for an additional
pre-rounding step to take into account the fact that the node
reward varies according to policy.

We introduce a hyper-parameter Ki
v for each node and

each objective. Define a rounded objective value ẑiu(π),
which is calculated by the following recursion, ẑiu(π) =

riu +

⌊∑
v∈ch(u)

(
I(uv ∈ π)piuv + I(uv /∈ π)qiuv

)
ẑiv(π)

Ki
u

⌋
Ki
u.

(3)

In Equation. 3, the fraction less than Ki
u is removed so

that the number of different rounded objective values is re-
duced. This idea is similar to rounding different fractional
numbers to the same integer value.

The rounded dynamic programming algorithm
Pareto approxT , is similar to the DP algorithm, ParetoT ,
except that we use Equation 3 to calculate objective values.

Proposition 1. zi(π) ≥ ẑi(π) for any hyperparameter Ki
v

and any policy π.

This proposition is a direct consequence of taking the
floor operator in Equation 3.

Proposition 2. If we set Ki
u = εriu, for any policy π we

have
zi(π)− ẑi(π) ≤ εzi(π).

To see why this proposition is true, at each node, we at
most lose a value of Ki

u. Based on Equation. 2, the total
value we lost due to the floor operation in Equation. 3 is

zi(π)− ẑi(π) ≤
∑
v∈V

ps v(π)Ki
u = εzi(π). (4)

Proposition 3. The approximate algorithm computes all
Pareto optimal points for the rounded objective.

This is because the approximate algorithm
Pareto approxT is the same as the exact algorithm
ParetoT , except for replacing the exact objective function
with a rounded one. The correctness of ParetoT does not
depend on particular objective function. Therefore, this
proposition is true.
Theorem 3. Let P (s) be the set of (partial) Pareto op-
timal policies for a node s. Let P (s) be the set of ap-
proximate (partial) Pareto optimal policies computed via
Pareto approxT with rounded objective function (Equa-
tion 3). We must have P (s) ε-approximates P (s).

Proof. Suppose π is in the exact Pareto frontier P (s). If π is
in P (s), we are done. Otherwise, because of Proposition 3,
there must be at least one π′ ∈ P (s), such that π′ dominates
π in terms of the rounded objective; i.e.,

ẑi(π′) ≥ ẑi(π), (5)

for all i. Because of Proposition 1, we have

zi(π′) ≥ ẑi(π′). (6)

Because of Proposition 2, we have

ẑi(π) ≥ (1− ε)zi(π). (7)

Combining Equation (5) (6) and (7), we have

zi(π′) ≥ (1− ε)zi(π). (8)

This concludes the proof.

We are also able to show that Pareto approxT runs in
polynomial amount of time. To show this, we have to bound
the number of partial policies in P (u) for each node u.
In practice, we can assume that the objective functions are
bounded.
Assumption 1. There are universal constants c and C such
that c ≤ riu ≤ C for all u ∈ V and all i.
Theorem 4. With Assumption 1, the number of different
rounded tuples in P (u) isO

((
nu

ε

)m)
, where nu is the num-

ber of nodes in the subtree rooted at u.

Proof. The upper bound of the ith objective value of u is
UBiu =

∑
v∈Tu

riv with Tu denoting the subtree rooted at u.
Due to Assumption 1, the number of different tuples of u is

m∏
i=1

UBiu
Ki
u

≤
m∏
i=1

nuC

εc
= O

((nu
ε

)m)
. (9)



Theorem 5. The runtime of the rounded dynamic program-
ming algorithm is O

((
n
ε

)2m)
.

Proof. As we proved, the number of different rounded tu-
ples P (u) at node u is O

((
nu

ε

)m)
. Let Tu be the runtime to

compute all these tuples at u. We have the recursion

Tu = O(P lP r) + Tl + Tr. (10)

Solving the recursion, we have Tu = O
((

nu

ε

)2m)
. There-

fore, the total runtime is Ts = O
((

n
ε

)2m)
where n is the

number of nodes in the tree.

For energy and seismic risk: We apply a two-step rounding
scheme for energy and seismic risk. Notice it can be applied
to connectivity and sediments to obtain the same approxi-
mation guarantee. For presentation purposes, we use energy
as an example. In the first step, we round upfront the energy
value huv to

bhuv
K1
cK1.

in which K1 = ε
2hmin, where hmin is the minimal energy

value among all dams. This rounding is similar to the one
used in the FPTAS to solve the knapsack problem (see page
67 of (Williamson and Shmoys 2011)1). In fact, one can
prove that we already get an FPTAS, if we only apply the
first-step rounding. The proof is similar to that of the knap-
sack rounding.

The rounding in the first step is often too conservative. To
obtain additional pruning, we apply a second rounding step
in our DP approach when combining partial solutions from
the children for the parent node. The rounding looks exactly
like the one we use for connectivity and sediments in (3)2,
except that we do not round when riu(π) = 0. The second
rounding is more aggressive. As more partial solutions are
rounded to the same value, the algorithm is able to prune
more solutions, therefore scaling to larger instances.

To prove the approximation guarantee of the two-step
rounding, we show that the first and the second rounding
each incurs at most a ε/2-approximation. Therefore, the en-
tire algorithm has an ε-approximation guarantee. Let ziu(π)
be the true objective function without any rounding. z̃iu(π) is
the objective value after applying the first rounding. ẑiu(π) is
the objective value after applying both the first and the sec-
ond rounding. We are able to prove that

ziu(π)− z̃iu(π) ≤ ε

2
ziu(π), (11)

z̃iu(π)− ẑiu(π) ≤ ε

2
z̃iu(π). (12)

1One difference: the rounding depends on the minimal energy
value, rather than the maximal value as in the knapsack rounding.
This is because the value of the most valuable object is naturally a
lower bound to the knapsack problem, but it is not the case in our
multi-objective optimization problem.

2Ki
v is set to b riu

hmin
c ε
2
hmin.

Adding these two inequalities together, we get Proposition 2,
which the proof of the approximation guarantee mainly de-
pends on. The proof to Equation 11 is similar to that for the
knapsack algorithm. The proof to Equation 12 is similar to
the proof of Proposition 2 with connectivity and sediments
as objectives.

To prove that the DP algorithm runs in polynomial amount
of time, we notice that during the execution of the algorithm,
all intermediary energy values are in the form of kK1, where
k is an integer and K1 is the rounding factor of the first step.
As a consequence, the maximal number of different energy
values at node u are bounded by

nuhmax
K1

=
2nuhmax
εhmin

= O
(nu
ε

)
where nu is the number of nodes for the subtree rooted at u.
hmax is the maximal energy value.
Theorem 6. Pareto approxT is an FPTAS for the multi-
objective optimization problem on a tree structured net-
works.
We provide a detailed proof of FPTAS with the two-step
rounding scheme in the full version of the paper (Wu et al.
2018).

4 Mixed Integer Programming
We also formulate the problem of optimizing the placement
of hydropower dams as a mixed integer programming prob-
lem (MIP) and use it to approximate the Pareto frontier fol-
lowing the scheme proposed in (Papadimitriou and Yan-
nakakis 2000). While the resulting method has exponential
worst case complexity because of the cost of solving the
MIP, we find that in practice it is complementary to the DP
approximation.

The scheme proposed by (Papadimitriou and Yannakakis
2000), which finds a policy set that ε-approximates the
Pareto frontier, can be summarized as follows: for a multi-
objective optimization problem, we divide the space of ob-
jectives into small rectangular cells and we query whether
there exists a solution in each cell. We form a set S that
includes one solution for each rectangular cell where there
is at least one solution. It can be proved that if the bound-
aries of the rectangular cells are carefully chosen, the set
of non-dominated solutions from S form a ε-approximate
Pareto frontier.

Specifically, the rectangular cells are designed to satisfy
the condition that, for each dimension, the upper bound is
(1 + ε) from the lower bound (assuming the objectives are
always positive values). For our problem, we are consider-
ing four objectives: C (longitudinal connectivity), S (Sedi-
ment), H (Hydropower) and L (Seismic Risk). The four ob-
jectives are always positive. Assume thatCmin andCmax are
the minimum and maximum possible connectivity values for
any dam building scheme. Let C be the set

{Cmin(1+ε)k | k = 0, 1, 2, ...KC , Cmin(1+ε)KC+1 ≥ Cmax}
L,H and S are defined similarly. Then, each rectangular cell
is of the form

[Ĉ, (1+ε)Ĉ]× [Ŝ, (1+ε)Ŝ]× [Ĥ, (1+ε)Ĥ]× [L̂, (1+ε)L̂]



where Ĉ ranges in C, Ŝ ranges in S, Ĥ ranges in H, and
L̂ ranges in L. The decision problem that the MIP solves
is to decide whether there is at least one solution for each
rectangular cell.

We construct a MIP formulation of the decision problem.
We use the following notations:
· V : the set of all nodes.
· E: the set of all edges (dams).
· s: the root of the tree (also the mouth of the river network).
· e = (u, v): u is the node downstream of edge e and v is

the node upstream of e.
· cv: the total connectivity of river segments at node v.
· sv: the total sediment produced at node v.
· he: hydropower of dam e.
· le: seismic risk level of dam e.
· pe: percentage of sediment trapped by dam e if the dam is

built.
· π: the set of dams we plan to build.
· πe: indicator variable of MIP. It evaluates to 1 iff e ∈ π.
· nv: indicator variable of MIP. It evaluates to 1 iff node
v can be reached from the river mouth without passing a
dam.
· yv: continuous variable in MIP. The percentage of the sed-

iment produced at the node v not trapped by dams.
Here we show the MIP encoding considering the follow-

ing objectives:
Longitudinal Connectivity (C). To define connectivity we
assign a binary variable nv ∈ {0, 1} to each node v, which
represents whether a node can be reached from the river
mouth without passing a built dam. Therefore, the longitu-
dinal connectivity can be defined as

C =
∑
v∈V

nvcv.

Suppose s is the river mouth. For each node v 6= s, nv = 1 if
and only if at least one downstream node u satisfies nu = 1
and the dam e = (u, v) is not built (πe = 0). This fact can
be encoded using the following constraints:

ns = 1;nu ≥ nv,∀(u, v) ∈ E
nv ≤ 1− πu,v,∀(u, v) ∈ E
nv ≥ nu − πu,v,∀(u, v) ∈ E

Sediment (S). For each node v, we define a continuous vari-
able yv ∈ [0, 1] that represents the percentage of the sed-
iment produced at the node that is not trapped by down-
stream dams. At river mouth s, ys = 1. Also, yv ={
yu if π(i) = 0,

(1− pe)yu otherwise.
This condition can be linearized

using the big M method. Since yv ∈ [0, 1] for all v ∈ V , we
can replace the condition with

yv ≤ yu and yv ≥ (1− pe)yu,∀(u, v) ∈ E
yv ≤ (1− pe)yu + (1− πe),∀e = (u, v) ∈ E
yv ≥ yu − πe,∀e = (u, v) ∈ E.

Figure 4: MIP encoding to decide if there is a valid solution
in the rectangular region [Ĉ, (1 + ε)Ĉ] × [Ŝ, (1 + ε)Ŝ] ×
[Ĥ, (1 + ε)Ĥ]× [L̂, (1 + ε)L̂].

MIP solvers like CPLEX can also linearize the constraint
automatically. The total sediment S is

∑
v∈V yvsv.

Hydropower (H). The energy output is encoded as H =∑
e∈E πehe.

Seismic Risk (L). L can be encoded as L =∑
e∈E,le>1(he+F )ηle . (F is a constant. See earlier descrip-

tion of seismic risk.)
Summarizing the constraints above, we obtain a compact

MIP encoding of the problem shown in Figure 4. Because
the MIP solves a decision problem, we minimize a dummy
variable d. We run the MIP to see if there is a solution in
every rectangular cell and we remove dominated solutions.

5 Experimental Results
Data: In order to test our methodological approach at dif-
ferent spatial scales, we developed three sub-sets of data
that correspond to different geographical areas within the
Amazon region: the western Amazon basin, the Marañon
basin, and the entire Amazon basin (Finer and Jenkins 2012;
Shedlock et al. 2000; Venticinque et al. 2016; Winemiller et
al. 2016; Zarfl et al. 2015). See figure 1. We use the Ama-
zon river network for the tree-structured graph and corre-
sponding values for connectivity, sediment, and seismic risk,
as described in section 2. The number of dams (proposed,
planned or built) for the entire Amazon basin is 467; 108
for the Marañon basin; and 217 for the western Amazon
basin. The entire Amazon basin has more than four million
(4083059) river segments , whereas the western Amazon,



ε Orig.
Tree
(sec.)

Bin.
Tree
(sec.)

Orig. Tree:
Num.
Policies

Bin.
Tree:
Num.
Policies

0 1day+ 2.75 N/A 363081
0.001 1day+ 0.08 N/A 39633
0.0025 17500.32 0.04 3910567437 22872
0.005 7817.56 0.03 1725983274 15943
0.01 1546.82 0.02 320738784 10594
0.025 83.97 0.01 17710130 6119
0.05 5.09 0.01 1146922 3921
0.1 2.91 0.01 609127 8255
0.25 0.23 0.01 50288 4130

Table 1: The equivalent DP binary tree (Western Amazon)
leads to considerable speed-ups: it considers many fewer
policies than the original tree due to early pruning.

B Criteria ε DP
(sec)

MIP
(sec)

DP
#Sol

MIP
#Sol

M SdE 0 1313 N/A 24575 N/A
M SdE 0.001 1.63 2d+ 297 −
M SdE 0.1 0.01 14.81 8 20
M CESdSs 0.02 46798 2d+ 28251 −
M CESdSs 0.25 6.26 14.9 276 147
WA SsE 0.001 804.3 2d+ 12640 −
WA SsE 0.0025 284.17 2138 7887 1198
A CE 0 17170 N/A 38459 N/A
A CE 0.001 72.97 6432.9 3095 342
A CSsE 0.01 2d+ 13856 − 21959
A CSsE 0.1 6109 16.8 19955 257
A CSsE 0.2 186.67 3.24 3521 77
A CSsE 0.25 58.93 1.96 1976 52

Table 2: Examples of runtimes and number of solutions:
Marañon (M; 109 nodes), Western Amazon (WA; 219
nodes) and Amazon (A; 468 nodes) showing the trade-offs
between the different methods. (Sd - sediment; Ss seismic)

and Marañon basin have 455156, and 128801 river segments
respectively. As described in section 2, we generate a di-
rected rooted tree that collapses contiguous regions of the
network without dams into a hypernode and associates with
each node the corresponding values of connectivity, sedi-
ment, and seismic risk. The resulting collapsed trees are as
follows: 1) Amazon basin: 468 hypernodes and 467 edges
(dams). 2) Western Amazon: 219 hypernodes and 218 edges.
3) Marañon: 109 hypernodes and 108 edges.
Transforming DP original tree into binary tree: To im-
prove the efficiency of the DP algorithm, we first convert the
original directed rooted tree into an equivalent binary tree.
Given a directed rooted tree, we transform each node u with
more than two children in to a binary subtree equivalent, by
creating additional intermediary nodes and link the children
of u to these intermediary nodes (and u). The newly added
edges between the u and intermediate nodes are treated as

Figure 5: Approximation quality: The DP approximations
(for all considered ε) nearly overlap the exact Pareto curve
(blue). The MIP approximations lie farther from the exact
Pareto-Frontier than the corresponding DP approximations
do. The DP approximations also better capture the shape and
coverage of the exact Pareto frontier.

special non-dam edges. The algorithm never builds a dam
on these edges. We also propose a scheme to maintain the
objective value information of the original tree. Node re-
wards such as connectivity and sediments are split evenly
among the original root u and intermediary nodes. Edge re-
wards such as energy and seismic risk are moved to their
parent node in the binary tree. The details of this transfor-
mation can be found in the full version of the paper (Wu et
al. 2018). Overall, our construction is such that dam place-
ments and resulting objective values are in a one-to-one cor-
respondents with those of the original tree.
Transforming to binary tree representation allows us to ap-
ply early pruning and scale to large instances. If we apply
the DP approach to the original non-binary tree the calcula-
tion can quickly become infeasible. Consider a node u with
k children, where each child has l Pareto optimal partial
policies. In the worst case, when enumerating each group
of partial policies, we would have to consider lk2k new par-
tial policies, when considering building or not building each
dam. For example, the root node in the full Amazon basin
has k = 44; therefore, even for very small values of l, run-
ning DP becomes infeasible. Converting the original tree
into a binary tree ensures that at each node the partial poli-
cies of at most two children are considered for pruning. As
a result, the binary tree leads to a dramatic increase in effi-
ciency by allowing for earlier and more frequent pruning of
partial solutions, which is critical to try to ensure that the set
of Pareto optimal partial policies remains of reasonable size
throughout the computation. See table 1.
Exact Pareto frontier: The DP approach can compute the
exact Pareto Frontier (time permitting), which is infeasible
for the MIP approach. We were surprised to see that the DP
approach can compute the complete exact Pareto frontier, for



Figure 6: Compared to the MIP approximations (dashed
lines), the larger number of solutions produced by the DP
approximations (full lines) produce a more complete cover-
age of the exact Pareto frontier.

connectivity and energy, for the entire Amazon basin, which
contains 38459 solutions, in around 5 hours (17170 secs).
(See figure 5.)
Quality of the Pareto Frontier approximation: We ob-
serve that, for the same ε > 0, the accuracy of the DP ap-
proximation is in general better than the MIP approximation,
in practice. This is illustrated in figure 5.
Approximation Coverage of the Pareto Frontier: The DP
approximation has a substantially better coverage of the ex-
act Pareto frontier, compared to the MIP approximation,
which is reflected in the larger number of solutions that it
produces. See figures 5 and 6.

Evolutionary algorithms have been widely used to ap-
proximate (without approximation guarantees) Pareto fron-
tiers (see e.g, (Neumann 2007; Qian, Yu, and Zhou 2013;
2015; Qian, Tang, and Zhou 2016; Wiecek et al. 2008;
Märtens and Izzo 2013)). Here we include a comparison to
the Non-dominated Sorting Genetic Algorithm (NSGA-II).
From figure 5, we see that NSGA-II is comparable in accu-
racy to the DP approximations with ε = 0.1 but takes longer
to compute (and without approximation guarantees).
Scalability: The complementary strengths of our approx-
imation paradigms are captured in Figure 7 and Table2,
which includes a small sample of the runtimes and num-
ber of solutions for the DP and MIP approximations, for the
three different networks that we considered: Marañon; West-
ern Amazon; and entire Amazon basin. The MIP runtime
is largely determined by the number of cells in the hyper-
cube that need to be considered for feasibility, which is de-
termined by ε, the size of network, and number of criteria.
Somewhat surprisingly, the size of the network does not ap-
pear to affect significantly the MIP feasibility checks. This
phenomenon may be explained by the fact that most feasi-
bility checks are either in under or over constrained areas,
which are relatively easy to solve. Only a few cells are crit-

Figure 7: DP and MIP Complementary Strengths: The DP
samples the true frontier much more completely than the
MIP does (see num. solutions). As a result, the DP runtime
depends greatly on the number of true Pareto optimal solu-
tions and network size; in contrast, the MIP shows compa-
rable runtimes and number of solutions across different net-
works, despite its worst case complexity. The average solu-
tion time nicely captures this trade-off: each approach takes
different paths to produce a similar avg. time per solution.

ically constrained. Our DP approximation, provides a good
coverage of the solutions on the Pareto frontier. In contrast
to the MIP, the DP approximation is largely dependent on
the number of true Pareto optimal solutions, which gener-
ally scales with the size of the network and of course the
number of criteria. Interestingly, the DP scales better than
the MIP for the sediment objective, while the seismic objec-
tive is more challenging for DP than for MIP.
Visualization of the Pareto Frontier: For policy makers to
make informed decisions based on the approximate Pareto
frontier, we are developing a variety of analytical and visu-
alization tools that allow for an interactive exploration of the
frontier. The tools allow policy makers to explore the trade-
offs among the various solutions. See figure 2.

6 Conclusions
We introduced a DP-based fully polynomial-time approxi-
mation scheme for computing a polynomially succinct curve
that approximates the Pareto frontier to within an arbitrar-
ily small ε > 0 on tree-structured networks. Given a set
of objectives, our fully polynomial approximation scheme
runs in time polynomial in the size of the instance and
1/ε. We also introduced a MIP-based scheme to approxi-
mate the Pareto frontier. Our work is motivated by a prob-
lem in computational sustainability concerning the place-
ment of hydropower dams throughout the Amazon basin.
The DP and MIP Pareto frontier approximations have com-
plementary strengths and are surprisingly effective, scaling
up to the entire Amazon basin (500 potential dam sites).
For example, our DP can generate an approximate Pareto
frontier that is within 10% of optimal and contains 19955
non-dominated solutions in roughly 1.7 hours, when opti-
mizing for energy, connectivity, and seismic risk. A within
25% from optimal frontier can be generated in around 1 min-



utes and contains 1976 solutions. The MIP approach is even
faster (16 seconds, within 10% from optimal) but provides
less coverage of the frontier in terms of number of solutions
(257 non-dominated solutions). Our overall goal is to sup-
port decision-makers in evaluating impacted ecosystem ser-
vices on the full scale of the Amazon basin, which is un-
reachable for other methods. Moreover, our work is general
and can be applied to approximate the Pareto frontier of a
variety of multiobjective problems, e.g., those concerning
finite Markov Decision Processes.

7 Acknowledgements
The authors thank the anonymous reviewers. This research
was partially supported by Cornell University’s David R.
Atkinson Center for a Sustainable Future (ACSF) and by
the National Science Foundation (CCF- 1522054 and CNS-
1059284).

References
Dechter, R. 1998. Bucket elimination: A unifying framework for
probabilistic inference. In Learning in Graphical Models, 75–104.
Ehrgott, M., and Gandibleux, X. 2000. A survey and annotated bib-
liography of multiobjective combinatorial optimization. Or Spec-
trum 22(4):425–460.
Finer, M., and Jenkins, C. N. 2012. Proliferation of hydroelectric
dams in the Andean Amazon and implications for Andes-Amazon
connectivity. Plos one 7(4):e35126.
Gomes, C. P. 2009. Computational sustainability: Computational
methods for a sustainable environment, economy, and society. The
Bridge 39(4):5–13.
Kareiva, P. M. 2012. Dam choices: analyses for multiple needs.
Proceedings of the National Academy of Sciences 109(15):5553–
5554.
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