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Abstract— Many real-world time-sensitive and high-stake ap-
plications (e.g., surgical, rescue, and recovery robotics) exhibit
sequential nature; thus, applying Recurrent Neural Network
(RNN)-based sequential models is an attractive approach to
detect robotic activity. One limitation of such approaches
is data scarcity. As a result, limited training samples may
lead to over-fitting, producing incorrect predictions during
deployment. Nevertheless, abundant domain knowledge may
still be available, which may help formulate logic constraints.
In this paper, we propose a novel way to integrate domain
knowledge into RNN-based sequential prediction. We build
a Markov Logic Network (MLN)-based classifier that auto-
matically learns constraint weights from data. We propose
two methods to incorporate this MLN-based prediction: (i)
PriorLayer, in which the values of the hidden layer of the RNN
are combined with weights learned from logic constraints in an
additional neural network layer, and (ii) Conflation, in which
class probabilities from RNN predictions and constraint weights
are combined based on the conflation of class probabilities. We
evaluate robotic activity classification methods on a simulated
OpenAI Gym environment and a real-world DESK dataset for
surgical robotics. We observe that our proposed MLN-based
approaches boost the performance of LSTM-based networks.
In particular, MLN boosts the accuracy of LSTM from 71%
to 84% on the Gym dataset and from 68% to 72% on the
Taurus robot dataset. Furthermore, MLN (i.e., PriorLayer)
shows regularization capability where it improves accuracy
in initial LSTM training while avoiding over-fitting early,
thus improves the final classification accuracy on unseen data.
The code is available at https://github.com/masud99r/
prediction-with-logic-constraints.

I. INTRODUCTION

Reliable sequential prediction is crucial in developing suc-
cessful robotic systems in real-world time-sensitive and high-
stake applications, such as in surgical, rescue, and recovery
robots. Recurrent Neural Networks (RNN) for sequential
prediction is an attractive approach [1], [2], [3], [4], [5], [6],
[7]. The major advantage of such approaches is that it does
not require handcrafted rules and careful feature engineering.
RNNs are often trained with multiple epochs, which go over
training data in multiple iterations. For a large amount of
data, this process might take a long time. However, it is
desirable to achieve reasonable prediction results with limited
training data and within a quick turn-around (fewer training
epochs).

In addition to that, the effectiveness of the learned model
heavily depends on the quantity and the quality of the
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Fig. 1: Framework overview. The data from the austere robotic
surgery environment is fed to the sequential model, which also takes
input from domain experts in the form of logic constraints. Our ap-
proach is to leverage this information and make accurate predictions
of the robotic surgical activity in limited data availability.

training data. Lack of annotated instance and lack of quality
might heavily hamper models performance. In this case,
limited training data [8] in many real-world safety-critical
applications (e.g., medical surgery) poses a challenge in
applying sequential prediction models in these domains.

On the other hand, there is abundant domain knowledge
in these real-world safety-critical applications [9], [10]. Hu-
man experts are usually trained for a long time in those
domains. Consider medical surgery, for example, surgeons
are extensively trained for a long time, and over time, they
acquire essential knowledge about the critical tasks [11],
[12]. Such domain knowledge can be expressed in the form
of logic constraints. Unlike hard constraints, domain experts
may introduce different importance values, which are often
referred to as soft constraints. Such constraints/formulas
can be expressed in the form of propositional logic. In
many cases, assigning a proper weight to these formulae
might be difficult for domain experts. In cases where the
weights are not available, we propose to leverage Markov
Logic Networks (MLN) [13] to learn weights associated with
propositional logic formulae from data. Figure 1 shows an
overview of our framework.

In this paper, we propose a novel way to integrate do-
main knowledge, represents as first-order logic (FOL), into
RNN-based sequential prediction. We build a Markov Logic
Network (MLN)-based classifier which learns FOL formula
weights (soft-constraint) automatically from data. Then we
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integrate knowledge into RNN using two methods: (i) Prior-
Layer, in which the values of the hidden layer of the RNN are
combined with weights learned from logic constraints in an
additional neural network layer, and (ii) Conflation, in which
class probabilities from RNN predictions and constraints
weights are combined based on conflation [14] of class
probabilities.

In the first method, we introduce an additional linear
layer in between hidden states and the final softmax layer.
In this layer, we concatenate the constraints weights with
learned hidden unit weights and allow the network to train
this layer. Intuitively, this layer transfers the past learn-
ing (prior/domain/background knowledge, thus named Prior-
Layer) and history information (hidden state) into prediction.

In the second method, we propose to combine RNN class
probabilities with constraints weights. We compute class
probabilities using the learned constraints weights (MLN).
Then we combine these class probabilities with the RNN
generated probabilities with conflation of probability distri-
butions [14]. Intuitively, the conflation is the distribution
determined by the normalized product of the probability
densities that minimizes Shannon Information’s loss in in-
corporating the combined information.

We demonstrate the performance of our approaches on
robotic activity classification on simulated data (Gym) as
well as in real-world robotic surgery tasks (Taurus robot
data) [15]. In particular, we focus on learning primitive surgi-
cal operations, the so-called surgemes [16], in the sequential
demonstrations of basic laparoscopic surgical procedures. We
observe that our proposed methods boost the RNN-based
networks’ performance, which we implemented as Long
short-term memory (LSTM) [17].

In particular, MLN boosts the accuracy of LSTM from
71% to 84% on the Gym dataset and from 68% to 72% on the
Taurus robot dataset. Furthermore, MLN (i.e., PriorLayer)
shows regularization capability where it improves accuracy
in initial LSTM training while avoiding over-fitting early,
thus improves the final classification accuracy on unseen
data. We also observe that MLN has a considerable impact on
the LSTM prediction where the constraint weights (capturing
domain knowledge) are learned properly.

II. PRELIMINARIES

In this section we review machinery used in this paper for
the logic constraints.

Markov Networks. A Markov network is a model for the
joint distribution of a set of variables X = (X1, X2, ..., Xn)
[18] which is composed of an undirected graph G and a set
of potential functions φ. For each variable, the graph has
a node, and for each clique in the graph, the model has a
potential no-negative real-valued function.

First-order Logic. A formula consists of literals connected
by logical connectives (i.e., ∨ and ∧). A first-order knowl-
edge base (KB) is a set of sentences or formulas in first-order
logic [19]. A ∧ B ⇒ C is an example of an implication
formula. The left side literal(s) can be called implication
antecedents, and the literal on the right side can be called a

conclusion. For the classification task, the conclusion usually
consists of a class label. Note that many formulae may be
typically true in the real world, but they might not always
be true. It is a painstaking task to come up with formulae
which is always true, and they often capture a fraction of
relevant knowledge.

Markov Logic Network (MLN) is a set of first-order
formulas and associated weights [13] where each formula
represents some constraints. Unlike in pure first-order logic,
a constraint may be violated without causing unsatisfiability
of the entire system. We can consider a first-order knowledge
base as a set of hard constraints on the set of possible worlds:
if a world violates even one formula, its probability becomes
zero. In contrast, the idea in MLNs is to soften these con-
straints: if a world violates a formula in the KB, it becomes
less probable. A word become more probable if it violates
fewer formulas. The probability is given by the associated
weights of the formulas where the higher weights indicate
strong constraints. These weights are typically learned using
a supervised learning approach.

III. RNN FOR SEQUENTIAL PREDICTION

Given a sequence of observations,

X1:T = (X1, X2, ..., XT ) (1)

an RNN factorizes its joint distribution according to the chain
rule

P (X1:T ) = ΠT
t=1P (Xt|X1:t−1) (2)

To capture the contextual dependencies, RNN takes the
conditional probability as a function of a low dimensional
recurrent hidden state as follows,

P (Xt|X1:t−1) = P (Xt|ht) (3)

ht = fW (ht−1, xt)) (4)

where ht is the current state which is updated by a function
(fW ) of previous state ht−1 and current input xt. Depending
on the network variety (e.g., RNN, LSTM, GRU) this updat-
ing procedure (fW ) can be of various forms. For instance,
in RNN we can update the hidden state as in equation 5.

ht = tanh(Whhht−1 +Wxhxt) (5)

For a classification problem, the class weight is obtained
using a linear transformation on the hidden state ht as in
equation 6.

h2c = Wlht (6)

Then a softmax is applied to generate the class probabil-
ity (equation 7), and finally, the prediction is obtained by
applying argmax (equation 8).

Pclass = softmax(h2c) (7)

Predclass = argmax(Pclass) (8)



All the states share the same weights W at every time step.
Note that, we get a class prediction per input (xt) and thus
a sequence of length m would produce m predictions where
in each prediction the network leverages previous context
information of given input sequence which is carried over
hidden states (h).
Sequential Prediction Task. We consider a sequential predic-
tion task where a RNN network takes low-level data as input
and predicts the classes (C1:k) in each time-step. The input
is a fixed length vector (Xi) where each element contains
value of each feature. For a given sequence of observations
(X1:T ) of T time-steps, RNN predict labels y1:T for each
time-steps, where yi ∈ C1:k.

In this paper we consider the task of robotic activity or
surgical procedure classification. In the surgical setting, a
whole surgical procedure is breakdown into smaller steps
which often called “surgeme” [16]. A list of surgemes and
their visuals that we used in this paper are given in Figure
5, and 6 (details in experiment).

IV. LOGIC CONSTRAINTS FROM DOMAIN KNOWLEDGE

Models often work on the low-level data (sensor readings,
robots kinematic data, etc.) which might pose challenges to
incorporate domain knowledge. Firstly, the domain experts
might find it difficult to express their knowledge in the form
of low-level data. Secondly, we need a systematic way to
integrate the knowledge into RNN prediction.

A. Map Low-level data to High-level

To address the first challenge, we allow domain experts
to express their knowledge in a high-level language. We
propose to express constraints in the form of propositional
logic which can encode high-level human-understandable
language into a logical form. For example, in our task (DESK
data), “if two robot arms (left, right) getting closer toward
each other and one arm (right) has a surgical tool, the
activity is most likely an exchange operation”. We can easily
express this high-level sentence into a propositional logic as
D ∧ L ⇒ E, where D is the binary variable which is True
if two robot arms are getting closer and L is True when
left arm holds a surgical tool. Note that, this constraint not
necessarily true for all the cases and thus we call this as
soft constraints. Formulating such constraints required the
variables to be in the binary format that is not always the
case for input features (Xi). Thus, we binarized all variables
(discrete or continuous) with discretization. If the variable
is discrete-valued we assign a new name for each value
and thus create additional variables in binary format. On the
other hand, if xi is continuous-valued, we first discretize a
continuous value with a threshold and then apply the above
process to convert them to binary format.

B. Formulate Logic Constraints

The importance of the constraints might vary depending
on the constraints type and the underline problem. Thus a
natural way to quantify the importance is to assign a weight
to each such constraint. If domain experts have sufficient

knowledge about the problem, they can provide a weight
along with formulating a constraint. In many cases, assigning
such weight is very challenging. Thus, we propose to learn
these weights from training data. We leverage the Markov
Logic Network (MLN) to learn formula weights from the
data.

We now discuss two types of constraints that we consider
in this paper.

C1. Static Input Feature Constraints: Let’s assume Xt
i =

(x1, x2, ...xm) an input instance of length m at time-step t,
where xi is the value of feature i. Propositional logic expect
each feature variable to be in binary format. For any arbitrary
value variable xi, we first convert it to binary format (details
in previous section).

We can impose constraints of a single variable or com-
bining multiple variables. In the case of classification, we
formulate the constraints in the form of implication as
A∧B ⇒ C, where A and B are two feature variables and C
is the class label. Intuitively, the weight of this formula will
say how likely the prediction would be class C given both A
and B is true. Note that, there is no penalty of formulating a
large number of constraints from domain knowledge as we
can learn the weight from the training data.

C2. Sequential Input Feature Constraints: In sequential
prediction task, input also comes in sequence and thus a
feature might exhibit interesting properties over time-steps.
To capture such properties and leverage in the prediction
process we formulate this type of constraints. As an example,
gripper state of the robotic arms might provide useful
information about what the robot is doing. This feature value
often ranges between two numbers, let say, 0 to 100 where a
value of 0 means completely closed, 100 means completely
open, and any value (d) in between indicates how much the
gripper is close/open. Thus over the time if we see the value
of d is decreasing we can assume that the robot is trying to
grab the objects.

Formally, let’s consider a feature variable whose value at
time-step t is xti and at t−1 is xt−1i . The difference of value
between these two is calculated using equation 9.

∆t
i = xti − xt−1i (9)

Depending on the value of ∆t
i we generate three boolean

variables for xi: (i) xstatici which is True if ∆t
i = 0; (ii)

xincreasei which is True if ∆t
i > 0, and False otherwise; and

(iii) xdecreasei which is True if ∆t
i < 0, and False otherwise.

Note that, we can replace the zero (0) with a threshold value
(usually very small) which will ignore very tiny changes. All
the features are now augmented to binary format and we can
formulate constraints as of MLN requirements (propositional
logic).

C. Logic Learning Module (LLM)

An overview of the logic learning module is given in
Figure 2. Here, we discuss the process of weights and class
probability learning in details.
Learning MLN Formula Weights. The input to this process
is the formulas and annotated data (sample from correspond-



ing domain). This process assigns a weight for each formula
corresponding to each class label. The probability of the
world x specified by a grounded Markov network is given
by equation 10 [13].

P (Xworlds = xworld) =
1

Z
exp(

∑
i

wini(xworld))

=
1

Z

∏
i

φi(x
{i}
world)ni(xworld)

(10)

where ni(xworld) is the number of true groundings of
formula Fi in xworld, x{i}world is the truth values (state) of
the atoms appearing in Fi, and φi(x

{i}
world) = ewi .

As an illustration, let’s consider a variable grip-
per state (GS) with two possible groundings (open
= gsopen and close = gsclose), possible classes are
C = {C1, C2, C3, C4, C5, C6, C7}, and the formula
Has(GS) => Topic(C). In the formula, if all variables get
a value (i.e., grounding) we call that a world. For example,
Has(gsclose) => Topic(C3) is referred to as xworld.
We get these variables and groundings from annotated data
instance pair (Xt, yt) and learn weight using equation 10.
While combining with RNN, we first get the groundings
of variables (e.g., Has(GS = gsclose)) from input (Xt)
at timestamp t, then consider to get weights of possible
groundings. In this specific example, we generate a total of
7 groundings and their corresponding weights (Equation 11)

〈Has(GS = gsclose) => Topic(C = C1), w1〉
〈Has(GS = gsclose) => Topic(C = C2), w2〉

...

〈Has(GS = gsclose) => Topic(C = C7), w7〉

(11)

For the weight learning, we used a pseudo-log-likelihood
method [13]. Example of learned formula weights (on our
dataset) can be found in Table II.

Fig. 2: Logic Learning Module. Constraints formulated in the first-
order logic form (FOL) from feature variables whose weights (i.e.,
wi) can be learned from data using MLN approach.

Constraint Weights to Class Probability. This step works
with the learned formula weights. For a data point (frame or
activity unit) p, the weights of each class is calculated as in
Equation 12

wi =
1

|S|
∑
f∈S

Weight(f, Ci) (12)

where S is the set of True formulas in the data point p and
Weight(f, Ci) is the classweight of formula f for class Ci.

We convert these weights into probability by normalizing
and taking log as follows

ci = log(
1 + wi∑m

j=0(1 + wj)
) (13)

where m is total number of classes. Thus the class probability
vector is defined as C = [c0, c1, ..., cm]. We use this
probability for classification and combined with machine
learning based classification methods. The predicted class
for the data point p is identified by taking argmax across
all the classes as in Equation 14

classlabel = argmax([c0, c1, ..., cm]) (14)

V. RNN WITH LOGIC CONSTRAINTS

In this section we discuss how we regularize RNN models
with logic constraint weights using two proposed methods.
PriorLayer. This method takes into account the constraint
weights during the RNN training. An overview of the pro-
cess is depicted in Figure 3. Equation 6 represents a fully
connected linear layer which map RNN hidden state into
class weights of size |C|. Intuitively, this layer transfers the
previous learning and history information into prediction.
On the other hand, domain knowledge can be thought of
as already learned information which can be captured using
constraints weights learning by MLN. Thus the formula
weights (i.e., Constraints Class Weight) can be injected into
the class prediction by adding a linear layer after the layer
represented by Equation 6. We first concatenate the added
layer’s equation given in 15.

h2c′ = Wc1 ∗ h2c+Wc2 ∗ c2c, (15)

where c2c is the weights of classes given by the constraints
from the input data instance. The dimension of h2c and
c2c are equal to the number of class labels. We learn the
weights Wc1 and Wc2 along with other RNN parameters
during training.

Fig. 3: PriorLayer. The input Xt at timestamp t goes through Logic
Leaning Module which generate class weights. The class weight
then added (element-wise) into the RNN Linear (h2c) layer to
form PriorLayer(h2c′). After that softmax is used to generate final
class probability. Then argmax is applied on the class probabilities
to generate class label prediction (yp

t ). The parameters weights
of PriorLayer layer are learned along with other RNN parameters
during training process.

Conflation. An overview of this method is depicted in Figure
4. RNN and the Logic Learning Module (LLM) can be
be trained in isolation. For each testing input instance (Xt



at timestamp t) a trained-RNN produces class probabilities
(PL) and LLM produces class probabilities (PK) (equation
13). We propose to combine these class probabilities by
conflation of probability distributions [14] as in the equation
16.

Fig. 4: Conflation. The RNN unit trained in isolation. Each testing
input (Xt at timestamp t) goes through both trained-RNN and Logic
Learning Module which produces two sets of class probabilities.
These probabilities is then combined by conflation of probability
distributions [14] as in the equation 16. Then argmax is applied on
the Conflation Class Probabilities to generate class label prediction
(yc

t ).

PC =
PL × PK

PL × PK + (1− PL)× (1− PK)
(16)

where PC is the combined class probability of that class.
Intuitively, the conflation is the distribution determined by
the normalized product of the probability densities which
is shown to be the unique probability distribution that
minimizes the loss of Shannon Information in incorporating
the combined information from PL, and PK into a single
distribution PC [14]. Note that, this approach does not
require joined training with the RNN and thus can be applied
during testing time.

Note that, our proposed methods PriorLayer, and Con-
flation are agnostic to the hidden state update procedure
(applied after the hidden state is computed) and thus can be
integrated to network variation which applied different state
update techniques (e.g., LSTM, GRU). On the other hand,
the combined models performance depends on the quality
of formula weights learning that is domain knowledge. If
the weights capture more prior knowledge it can contributed
to the accuracy more efficiently. In contrast, a less accurate
weight estimation (manual or learning) might have less
impact on final performance of the combined models.

VI. EXPERIMENTS

We conduct experiments on two robotic environments: (i)
OpenAI Gym1 (simulation), and (ii) DESK - A Robotic
Activity Dataset for Dexterous Surgical Skill [15] (real
Taurus robot used for surgical task). A summary of the
datasets used in this paper is given in Table I. A fraction
of data (126 frames for Gym, and 1405 frames for Taurus)
was used for training MLN (formulae weight learning), and
LSTM and rest of data was used for testing.

1https://gym.openai.com/

TABLE I: Robotic activity dataset stats

Robot classes frames segments frames/segment
Gym 4 20,188 1,612 12.5

Taurus 7 18,734 644 29.1

(i) Gym - Pick and Place. We collect demonstrations from
the gym environment for the task of pick and place. The task
is to place a box (black color) to a target location (red color)
shown in Figure 5. For each demonstration, the box randomly
placed on the table and the target set to any location in the
three-dimensional space (x, y, z). We assign the four class
labels to break down the total activity of placing a box on the
target as shown in Figure 5. We collected robot kinematics
data which was used for the experiments. Note that, we
generate those demonstrations in the simulation along with
collecting the activity annotation (class label).

Fig. 5: Activity classes for the Pick and Place task for Gym
FetchPickAndPlace-v1.

(ii) DESK dataset contains a library of surgical motions for
the peg transfer task, one of the four basic laparoscopic
surgical procedures, using three robots. This dataset has
been used for robotic action recognition tasks [15], [20].
We conduct experiments on Taurus Dexterous Robot dataset.
The peg transfer procedure is present in the fundamentals of
laparoscopic surgery [21] which is often used to train sur-
geons [22], [23]. Figure 6 shows snippets of seven activities
of Taurus II robot from the dataset. We use the kinematic
data as features for the activity recognition task.

Fig. 6: Surgemes in the peg transfer task for the Taurus II robot.
The image on the lower right is the Taurus robot [15]

Data Processing: We leverage kinematic feature data for
the sequential classification task. We feed the kinematic
data in each time-step to an LSTM network as input which
predicts the class level corresponding to the input data. We
processed the data and convert the feature variables into
the binary format as described in section IV for constraints
formulation. We leveraged these binary variables to incor-
porate domain/prior knowledge in the form of propositional
logic. Note that these formulations of features help to easily



TABLE II: Sample from learned formula weights using MLN on
Taurus robot data (in Figure 6). The weight of formula no. 5 is
much higher for exchange class (S5) compared to other classes
which matches with the intuition.

No. Formula Weight
1 leftGsClosed ∧ rightGsClosed⇒ S1 2.37
2 leftGsClosed ∧ rightGsClosed⇒ S2 1.26
3 leftGsClosed ∧ rightGsClosed⇒ S3 -0.70
4 leftGsClosed ∧ rightGsClosed⇒ S4 -1.21
5 leftGsClosed ∧ rightGsClosed⇒ S5 30.81
6 leftGsClosed ∧ rightGsClosed⇒ S6 -0.95
7 leftGsClosed ∧ rightGsClosed⇒ S7 -1.00

embed human-intuitive constraints. For example, if two arms
of a robot are getting close to each other its most likely
“exchange” surgeme.
Constraints Formulation. To demonstrate the effectiveness
of our approach we generate several constraints on both
Gym and DESK dataset. We first used domain knowledge
to come up with the formula that we want to learn from
the data. Note that our approach allows domain expert to
give importance (weight) of constraints. In case the expert
unsure of the weights we leverage Markov logic network to
learn the importance of the formula constraints based on data.
This weighting process allows users to formulate as many
formulae as possible without worrying about specifying
importance.
Formula Weight Learning. After we formulate constraints
formula, we leverage the MLN to learn its weights. Table
II shows few sample constraints along with their learned
weights. For the classification task, we aim to learn the
weights of these constraint formulas corresponds to each
class type.

Interestingly, the formula leftGsClosed ∧
rightGsClosed ⇒ S5 weights much higher for class
S5 (exchange) compared to remaining classes. Intuitively,
when both arms gripper is closed it is most likely an
exchange activity in the DESK dataset and the learned
weights also indicate the same. Later, we use these weights
to classify activities and embed constraint in the machine
learning-based classification.

Settings. We leveraged a Python library pracmln2 to train
the MLN weights. We used pseudo-log-likelihood (fast con-
junction grounding) algorithm (BPLL CG) as the learning
method. We used the same training data as used for LSTM
training for weight learning. For the experiments, we used
a PyTorch3 implementation of the LSTM network with a
hidden layer dimension of 32. We used NLLLoss and SGD
for optimizer with a learning rate of 0.1. We used the same
network architecture for all the experiments for a fair com-
parison between methods. We recognized a surgeme segment
using half of its frames and report overall accuracy (%)
performance. We used the following machine configuration
to run our experiments: 20 core-CPU with 256 GB of RAM,
CPU Model: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz.

2http://www.pracmln.org/
3https://pytorch.org/

(a) Gym Robot (b) Taurus Robot

Fig. 7: Impact of MLN as LSTM training progresses. MLN
performance is not dependent on epoch thus remain fixed.
Overall, the combined method LSTM+MLN performs better
at different epochs.

A. Results

Impact of MLN on LSTM Performance. Table III shows
the best performance of different models on Gym and DESK
testing data. We see that LSTM perform better compared
to MLN. However, when combined with LSTM, MLN
improves the performance of LSTM. Both the methods,
PriorLayer and Conflation, improve the performance while
the combined approach performs the best. Figure 7 shows
the performance over the different training epoch. We see
that at different training epochs MLN consistently improves
the overall performance.

These results show that the domain knowledge incorpo-
rated through MLN is helping to improve overall sequential
classification. However, the constraints formulae might not
capture domain knowledge for all the classes (surgemes).
Thus, the impact might vary accross class labels. Table IV
shows the performance comparison of different models per
surgeme class. Results vary across surgeme class labels, in
some cases, MLN performs better than LSTM.

Note that MLN performance heavily depends on the
learned constraint weights. Thus, where the constraints for-
mula learned some meaningful weights, the association be-
tween formula and class label, from the domain knowledge
it performs better. MLN might complement LSTM learning
in some cases and thus improve combined classification ac-
curacy. Overall, the combined model LSTM+MLN performs
better which combines the best of both LSTM and MLN
models.
MLN as Regularizer. Figure 8 shows training and testing
accuracy for LSTM and LSTM+PriorLayer approach on
Gym data. In this experiment, we used only PriorLayer
modification and did not use Conflation.

In the initial stage of the training (i.e., early epoch) the
improvement is higher. Also, we see that the LSTM training
accuracy is higher than LSTM+PriorLayer training accuracy.
However, the testing accuracy of the LSTM+PriorLayer is
higher than LSTM only. This shows that without PriorLayer
LSTM tends to overfit the data. After around 3 epoch the
LSTM training accuracy reaches to 100% while testing accu-
racy remains the same. On the other hand, LSTM+PriorLayer
training accuracy shows a less over-fitting trend while pro-
ducing higher testing accuracy.

http://www.pracmln.org/
https://pytorch.org/


TABLE III: Test Accuracy (%) Comparison.

Dataset LSTM MLN LSTM+PriorLayer LSTM+Conflation LSTM+MLN (Combined)
Gym 71 50 83 77 84

Taurus 68 49 71 69 72

TABLE IV: Per class Test Accuracy (%) Comparison

Dataset Class LSTM MLN LSTM+MLN

Gym

S1 98 100 99
S2 99 100 100
S3 63 0 76
S4 35 0 33

Taurus

S1 87 91 91
S2 80 30 78
S3 87 0 88
S4 58 83 76
S5 100 84 94
S6 48 35 54
S7 63 20 62

Note that, we tested regularization capability only for the
PriorLayer method. The Conflation is applied only at the
testing time and the training is done in the same way as the
regular LSTM in this scenario. Thus we did not report the
training accuracy of the Conflation.

Fig. 8: Training and testing accuracy for LSTM with and without
PriorLayer approach on Gym dataset. The LSTM model over-
fit early (epoch=3) while LSTM+PriorLayer model overfit later
(epoch=20) thus achieves higher testing accuracy.

VII. RELATED WORK

Incorporating problem structures and domain knowledge
in machine learning approaches have been studied and ap-
plied extensively in literature [24], [25], [26], [27], [28],
[29] because of its potential to improve learning and gener-
alization while improving interpretability. Posterior regular-
ization and related frameworks [24] have been successfully
used to incorporate structured constraints (logic rules) on
probabilistic models. In recent time, constraints have been
applied through extended posterior regularization on deep

generative models [26], and through decision diagrams on
generative adversarial network (GAN) [30] in various con-
text. A most common form of these logic constraints is the
first-order logic (FOL). The constraints weights can be set
manually [31], [32], [33] from domain expert or can be
learned [13], [26] from data in more practical settings. In
contrast to these works, our approach learns the weight of
the constraints in isolation to the RNN module and applied
to RNN during training and testing. While our approach is
adaptable to any weight learning mechanism, in this paper
we leverage Markov Logic Network (MLN) [13]. Different
forms of regularization have been proposed by modifying
network architectures [34], [35], [36], [37]. In contrast, we
leverage domain knowledge (logic constraints) as additional
information to regularize RNN.

Our proposed method is agnostic to task design and
dataset. Thus our approach can be applied to other simi-
lar surgical classification datasets, such as JIGSAWS [38].
Moreover, it can be integrated into surgical systems where
the surgeme classification is used as sub-modules such as in
SARTRES [39], and DESERTS [40].

VIII. CONCLUSION

We propose a systematic approach to regularize RNN-
based sequential prediction by incorporating domain knowl-
edge with logic constraints. We apply two methods - adding a
layer after the hidden unit, and combining class probabilities.
We evaluate these methods for robotic activity classification
on simulation (Gym) and real-world robotic (DESK - Taurus)
dataset. We observe that the logic constraint-based model
helps to improve LSTM performance. Furthermore, MLN
shows regularization capability where it improves accuracy
in initial LSTM training while avoiding over-fitting early
and thus improves the final classification accuracy on unseen
data. Additionally, we observe that MLN has a considerable
impact on the LSTM prediction where the constraint weights
(capturing domain knowledge) are learned properly.
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