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Abstract— In austere environments, teleoperated surgical
robots could save the lives of critically injured patients if
they can perform complex surgical maneuvers under limited
communication bandwidth. The bandwidth requirement is re-
duced by transferring atomic surgical actions (referred to as
“surgemes”) instead of the low-level kinematic information.
While such a policy reduces the bandwidth requirement, it
requires accurate recognition of the surgemes. In this paper,
we demonstrate that transfer learning across surgical tasks
can boost the performance of surgeme recognition. This is
demonstrated by using a network pre-trained with peg-transfer
data from Yumi robot to learn classification on debridement on
data from Taurus robot. Using a pre-trained network improves
the classification accuracy achieves a classification accuracy of
76% with only 8 sequences in target domain, which is 22.5%
better than no-transfer scenario. Additionally, ablations on
transfer learning indicate that transfer learning requires 40%
less data compared to no-transfer to achieve same classification
accuracy. Further, the convergence rate of the transfer learning
setup is significantly higher than the no-transfer setup trained
only on the target domain.

I. INTRODUCTION

Surgical debridement is a key surgical skill necessary
when burn injuries occur on the battlefield. The prime
surgical task is to remove dead tissues from the skin and
allow healthy tissue to heal (Figure 1). Timely interventions
to patients can help provide initial treatment before the
patients can be evacuated to more and better equipped
surgical centers. To achieve this timely intervention, there
is an increasing interest in using teleoperated surgical robots
[1], [2] to support such tasks. Yet, so far the performance
of teleoperated robotic systems is susceptible to bandwidth
and latency of the underlying communication network [3].
Thus, there is a need for platforms with semi-autonomous
capabilities that can assist the surgeon (or the medic) when
communication is hindered.

Due to the vast amount of information involved in teleop-
eration, it is more efficient to use a high-level representation
of the environment, patient and robot, to accomplish this
task. These main pieces of information would be enough
to predict the action being performed by the teleoperating
surgeon and complete it autonomously by the robot. In
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order to effectively interpret the environment, it is neces-
sary to recognize the current and previous surgical actions,
referred to as ‘surgemes’ [4]. Nevertheless, surgical data
for austere environment procedures is scarce [5], hindering
the training networks that can automatically recognize these
surgical actions. Moreover, field medical robots are diverse,
holding different kinematic configurations, workspaces, and
operate under partially unknown constraints. Such domain
differences could hamper state-of-the-art approaches and
prevent models learned on one platform to generalize across
other platforms of disparate morphologies [9]. To tackle
these domain limitations, we propose a framework that can
leverage the existing abundant surgical laparoscopic datasets
and transfer it across different robots and tasks. Thus we
propose a framework for surgeme recognition that can be
trained in one domain (peg-transfer using the Yumi robot)
and successfully recognize surgemes in another domain
(debridement using the Taurus robot).

The framework aims to leverage the abundance of data
available from more accessible environments to find re-
current patterns and apply such insights to new scenarios
[6]–[8]. To transfer knowledge between surgical tasks, the
surgeme classes of the laparoscopic peg-transfer are mapped
to the surgeme classes of the surgical debridement. Then
an LSTM-based architecture is trained using sequences of
kinematic features from a peg-transfer task. Once the classi-
fier learns to recognize surgemes in the source domain (peg-
transfer task), it is not required to be trained from scratch
in the target domain (debridement task) but initialized with
source domain parameters. Reusing the knowledge learned
from the source domain features significantly reduces the
amount of training required from the target domain.

To assess the performance of the framework, the surgeme
classification accuracy was obtained in two different setups.
The first one is a no-transfer baseline, where the model is
trained solely on the target domain (the debridement dataset).
This setup produced a frame-wise classification accuracy
of 83%. Then, the recognition was tested on the transfer
learning setup, producing a classification accuracy of 85%.
Lastly, an ablation study was conducted, showing that the
transfer-learning setup’s convergence rates are faster than the
baseline (no-transfer setup).

The contribution of this paper can be summarized as
follows:

1) A dataset for training classifiers for the debridement



(a) Dead Tissue (b) Cut Skin (c) Healthy Tissue

Fig. 1: Human performing debridement task on a burnt skin model. The task involves manipulating the dead skin, cutting
it, and discarding the dead skin. The healthy tissue is exposed after the cut surgeme.

task using the Taurus robot1.
2) A transfer learning framework to learn surgemes for a

debridement task using a small sized dataset. We show
that using a transfer learning setup allows to reduce
data requirement by 32% to obtain similar performance
on test setup. Further, for smaller datasets, transfer
learning works with upto 15% higher classification
accuracy.

3) An ablation study which helps in understanding which
layers contribute the most to the learning tasks. We
show that simply re-training the softmax layer is not
sufficient, indicating that retraining the layers which
capture the temporal abstractions of the input data is
required.

The rest of this paper is presented as follows: Section II
discusses the prior work. Section III gives an overview of the
robotic dataset used. Section IV describes the methods used
for surgeme classification using LSTM. Section V describes
the tranfer learning setup using peg transfer. Section VI
shows the experimental setup, ablation studies, results, and
discussion. Finally, Section VII concludes the paper with a
discussion on future work.

II. BACKGROUND AND RELATED WORK

Datasets play a crucial role in developing automated
detection tools for surgical robotic activity [6], [7]. The
advantage of these datasets is that they allow elucidating
patterns associated with skill learning where surgical tasks
are decomposed into a finite set of maneuvers [6]. In this
decomposition, each surgical skill is represented as a se-
quence of atomic units referred to as surgemes. This process
of decomposition is known as surgical skill modeling [9].

In the past, various methods have been proposed for
surgeme recognition including using Hidden Markov Models
[10]–[13], structured prediction [14], [15], and recurrent
neural networks [8]. All of these use the JIGSAWS dataset
[6] which consists of three surgical procedures: suturing,
knot tying, and needle passing, performed with the da Vinci
Surgical System. However, JIGSAWS is recorded on a single
robotic platform, whereas the DESK dataset [7] has data

1https://bit.ly/3fJzklC

from different robotic platforms. In DESK, the peg-transfer
task was performed on various robotic platforms, including
simulators (Taurus, da Vinci, Yumi). This dataset serves as
a testbed for surgeme prediction, including transfer learning
in surgical activity recognition [7], [16]–[19]. These works
focus on transfer learning across different robotic platforms,
but the data is from the same domain (peg transfer).

Transfer learning is a method in machine learning, where
the training data and the testing data may not be identically
distributed [20]. For transfer learning, the classifier for the
target domain is not required to be trained from scratch but
initialized with the parameters trained for another domain
(known as source domain). A known method of achieving
transfer learning between domains, is to train a network in
the source domain and then retrain the last layers of this
network in the target domain [21], [22]. This procedure
often allows boosting the classification accuracy in the target
domain with less data, since the network can benefit from
the learnt low-level statistics and does not have to start
training from scratch [23], [24]. This methodology has been
successfully used in computer vision and natural language
processing tasks [25]–[27]

In the field of surgical robotics, similar method for re-
training has been used to leverage the information from
known datasets. Zhang et al. [28] uses the JIGSAWS dataset
to pre-train a network for skill assessment. The authors
present a model of 1D-CNNs that is trained using samples
from JIGSAWS. This process accumulates feature informa-
tion in the first two layers, and the last few layers are re-
trained on the Robot-Assisted Microsurgery (RAMS) dataset.
The work of Tsai et al [29] proposes another transfer
learning architecture for surgeme segmentation that leverages
the JIGSAWS dataset. Their method uses a Self Similarity
Matrix (SSM) as a feature extractor, that is in turn fed as the
state input to train a policy on the source domain.

As surgemes are examples of sequential data, re-training
only the last few layers might be ineffective. Thus, we
analyze the effect of retraining the entire network or only
few layers.

https://bit.ly/3fJzklC


(a) Lifting Tissue (b) Cutting Dead Tissue (c) Dropping bio-waste in tray

Fig. 2: The debridement task performed inside the CopelliaSim simulator using a Taurus robot. The tool tips of the Taurus
robot is modified to lift or cut the dead skin by acting like dissection scissors.

III. THE DEBRIDEMENT TASK

The debridement task requires removal of dead tissue or
dead tissue fragments to allow the underneath healthy tissue
to heal [30]. This requires manipulating the robotic arms such
that it grasps the diseased tissue, incise it, and then safely
discard the bio-waste. In light of these task, we divide a
debridement task robotic maneuver into 7 surgemes (labelled
as Si, i ∈ {1, · · · ,7} as follows:
• S1: Approach Skin requires to move the robot arm

towards the dead skin.
• S2: Align and Grasp requires to hold the dead skin in

the most appropriate way.
• S3: Lift requires to life the dead tissue to allow to cut

it.
• S4: Approach Blade requires to bring the surgical blade

close to the lifted tissue.
• S5: Cut requires to ensure slice the dead tissue to

detach it from the rest of the body. Depending upon the
requirements, there might be multiple slices required to
properly cut the dead tissue.

• S6: Approach Bin requires to move the arm holding
the removed dead tissue towards the tray.

• S7: Drop tissue requires to safely and completely drop
the dead tissue in the tray.

Figure 1 shows the dead removed and the healthy tissue
exposed by the debridement task on artificial skin.

A. Dataset

We note that it is extremely difficult to obtain or produce
a real-world dataset of a debridement task as the one would
require to create skin modes as shows in Figure 1. Hence, we
developed a simulator to perform a debridement task using
CopelliaSim.

To model the elasticity of skin in the debridement task,
we use springs within the simulated skin. In the simulation
we have 3 patches of dead skin which must be removed
to successfully complete the surgical task. Further, after
removing the necrosed tissue, it must be deposited over a
surgical tray. We use a Taurus robot as our execution robot
inside the simulator. We used the Taurus robot with tool
tips in the form dissection scissors to cut through the dead

Fig. 3: Interface for robot control

skin. The robot is controlled using Razer Hydra sensing
controller which allows a natural movement for operator’s
hand throughout the task, as shown in figure 3.

The collected kinematics includes the robot end-effector
position in Cartesian coordinates from the robot’s frame of
reference and orientation angles for both, the left and the
right arms. Additionally, it also includes the state of the
gripper to include whether the gripper is in open or in closed
position. This schema results a kinematic sequence where the
kinematic vectors consists of 3+4+1 elements for each arm
resulting in 16 elements for both arms.

We collected and annotated data from 3 subjects. Each
subject completed 12 trials of a debridement task and each
debridement task requires removing all 3 dead tissue patches
from the skin. Each subject conducted 6 trials. In each trial,
it is required to grasp the necrosed tissue from the left robot
arm and cut the skin from the right robot arm. Similarly,
they also completed 6 trials where the roles of the arms were
inverted to allow the model to learn ambidexterity.

IV. CLASSIFICATION OF SURGEMES FOR DEBRIDEMENT
TASK

The operator interacting with the simulator generates a
sequence of kinematics corresponding to a surgeme. To
classify the kinematic sequence, we use an LSTM based
neural network [31] was used in combination with the neural



network proposed in [32].
We use the simulated robot kinematics as the input to

the classifier. Let {xt}1≤t≤T be the input kinematic sequence
where xt is the simulated robot kinematics at time t, and T
is the length of the surgical task. Note that a human operator
generates the sequence data in an online manner instead of
generating complete sequence. This requires to make the
surgeme classification task to be causal as it cannot depend
on future kinematics to predict the current surgeme. To make
the neural network classifier causal, we pass the kinematics
xt as the input to the LSTM at time t. Further, as the length
of each each surgeme is variable, we cannot use methods for
fixed length sequences such as 3D-CNN [7], [16], [33].

In our network architecture, the LSTM layer is followed
by a dense network to compute logit values. We used softmax
activation on logits to classify the input sequence into the 7
surgemes. Let the true labels be {yt}T

t=1 where yt ∈ ∆K and
∆K is a probability simplex in K dimensions for K classes
(for 7 surgemes K = 7). The LSTM is used to predict the
class probability ŷt ∈ ∆K at time t. We use a cross entropy
loss defined defined in Equation (1) to train the LSTM
network.

L(y, ŷ) =
T

∑
t=1

7

∑
k=1

yt,i log(ŷt,i) (1)

To implement the described network, we configured the
LSTM network with a hidden state size of 32 followed by a
fully connected layer of size 32×7. The final softmax layer
returns the probabilities distribution of the current surgeme
given the current kinematic input. The surgeme that will be
eventually executed is the one with the highest probability
given the input kinematic xt .

V. TRANSFER LEARNING FOR SURGEME RECOGNITION

We used a pre-trained network for classifying the surgemes
in a peg transfer task to use as initial weights for the network
described in previous section. We use the classifier model of
[32] use for surgeme identification in the peg and pole task.
The network structures for the two tasks are explained in
Figure 5.

The peg transfer task and the debridement task involve
similar surgemes such as approach skin or approach peg
and align and grasp, however, the kinematic sequences may
be drastically different. For example, the peg-and-pole task
requires the peg manipulation using both robotic arms one
after the other. However, in the debridement task, one arm
only acts as the blade and the other arms holds the object for
the entire duration of debridement. To demonstrate that the
two sequences are different, we use dynamic time warping
(DTW) distance [34]. Table I shows the average DTW
distance between any two sequence for the two surgical tasks.

Peg Transfer Debridement
Peg Transfer 96.25 112.69
Debridement 112.69 106.24

TABLE I: Average Dynamic Time Warp distances between
the sequences of the two surgical task.

Using pre-trained networks allows for not only training
with less amount of data, but it also allows for an instanta-
neous use of the pre-trained network with few runs (< 50)
of back-propagation steps. We also note that the temporal
information is extracted by the LSTM layer, and the two
sequences for the debridement task and the peg and pole
task are different sequences, we must retrain the LSTM layer.
In the next section we present the effect of re-training and
freezing the layers of the surgeme classification network,
impact of increasing the training data of the debridement
task, and the rate to convergence of the transfer learning.

VI. RESULTS AND DISCUSSION

First the results without transfer learning is presented,
followed by the results from the different transfer learning
setups. The proposed framework in Fig. IV is evaluated on
a dataset of 88 surgeme sequences from 3 subjects with 12
trials each. The dataset is separated with a test-train split of
70% and 30% respectively. The surgeme recognition results
are presented in Table II.

Accuracy S1 S2 S3 S4 S5 S6 S7 Average
Testing 97 48 76 84 83 85 87 83.7
Training 97 59 83 93 88 88 89 90.4

TABLE II: Surgeme classification accuracy of the baseline
with non-transfer learning.

As the proposed network few parameters to learn, 88
sequences are sufficient to achieve good classification. How-
ever, transfer learning achieves a similar performance with
even lesser training sequences as shown in the following
section.

A. Transfer learning results

First, a direct transfer learning approach is adopted. The
network is trained with data from peg-transfer task. The peg-
transfer dataset was collected using 5 subjects with 12 trails
per subject resulting in a total of 185 sequences. After a
70%−30% train-test split and training the network with the
resulting 130 sequences, an average accuracy of 77% was
obtained. This network was re-trained on the debridement
data with the same split as the no-transfer scenario. The
resulting surgeme classification accuracy is shown in Table
III.

Accuracy S1 S2 S3 S4 S5 S6 S7 Mean
Baseline 97 48 76 84 83 85 87 83.7

Transfer Learning 94 63 74 86 84 79 91 85.8

TABLE III: Surgeme classification accuracy on the test
dataset for the baseline (no-transfer learning) and transfer
learning methods.

When the entire dataset is used to train the proposed
model, the transfer learning setup performed marginally bet-
ter than the no-transfer setup. However, the transfer learning
setup performed significantly better than the no-transfer setup
as shown in the following section.



(a) Approach Peg (b) Transfer Peg (c) Drop Peg

Fig. 4: The peg transfer task used for transferring skills to the surgeme classification for the debridement task.

(a) Surgeme classfication network for the peg and pole transfer task

(b) Surgeme classfication network for the debridement task

Fig. 5: The fundamental structure of the networks is kept
same to allows for transfer of the knowledge between the two
classifiers. First the network is trained on the Peg and Pole
task where both the arms are used extensively. Pre-trained
network is then used to transfer to the new debridement task.
Since the number of classes are the same, we do not modify
the structure of the last layer.

B. Transfer Learning Analysis

The get more insight into the transfer learning setup, three
different aspects of the method are analyzed in the following
sub-sections,

1) Impact of Amount of Training Data: The debridement
dataset has 88 sequences of the task out of which 61
sequences were separated as training set. The remaining 17
sequences are used as the test set. To study the impact of
the amount of training data a fraction of the 61 sequences
is used for training and tested with the same 17 sequences.
Different fractions starting from 10% to 70% (61 sequences)
in steps of 10% were used. For the transfer learning, the

Fig. 6: Impact of increasing size of target dataset. The slow
increase in accuracy of the transfer learning suggests that
the network carries significant momentum from the weights
trained using the peg transfer task.

network was retrained on this training set starting from the
peg-transfer weights.

The impact of having more training data in the target
domain is presented in Figure 6. The comparison is against
the baseline of no-transfer learning. As shown, even with
as little as 8 training sequences the classification accuracy
of the transfer learning setup is 76% which is 22.6% better
than the baseline. This suggests that the amount of training
data required in the new surgical domain is reduced using a
transfer learning setup.

2) Use of each layer in classification: For object recog-
nition networks, transfer learning is usually achieved by
re-training the last few layers [35]. This is because the
object specific discriminating features are learnt in the last
few layers, whereas the initial layers produce low level
image features such as edges, shapes, or textures. To analyze
the proposed network similarly, the effect of retraining the
different layers is evaluated. Our model comprises of an
LSTM layer which can infer using the hidden states based on
the history. Following this is a series of fully connected dense
layers which use the outputs of LSTM layer to generate
features for classification.

Figure 7 presents the impact of re-training the different



Fig. 7: Impact of re-training specific layers for transfer learn-
ing. Re-training dense layer only performs worse than the
baseline, which suggests that most of the surgeme specific
knowledge is capture by the LSTM layer.

Fig. 8: Impact of transfer learning on the convergence of
the neural network. The transfer learning setup converges
after about 50 training steps as compared to the non-transfer
learning setup which requires about 3 times more training
steps.

layers of the classification network. We observe that the re-
training only LSTM layer achieves the same effect as re-
training the entire network. This implies that the LSTM layer
captures the domain-specific discriminating features required
for surgeme classification. Further, retraining only the dense
layers performs worse than the baseline. This signifies that
re-training the LSTM layer is essential for transfer learning
across sequential data such as surgemes.

3) Learning Rate of the transfer learning: All the net-
works are trained using stochastic gradient descent optimizer
with a constant learning rate of 0.005. The transfer learning
allows the model to train faster as compared to the baseline
without transfer learning. To establish this fact, we com-
pared the classification accuracy after each training step. We
present the result for the networks are trained with 61 training
sequences.

Figure 8 shows the effect of transfer learning on the

convergence rates. The networks initialized with pre-trained
weights already obtain an initial push to move towards the
optima resulting in a faster convergence rate. The analysis
of convergence rates shows that the transfer learning setup
can not only provide advantages when there is little data
in the target domain but also when the training time is
limited. This is specially useful in cases where an emergency
situation may allow only few hours for training the robot
before deployment.

VII. CONCLUSIONS

In austere environments, such as battlefields, even per-
forming the debridement task using a tele-surgical robotic
systems can be life saving in the absence of a medic. To
eliminate severe impact of limited or no connectivity on
the implementation of tele-surgery robotic systems execution
using surgemes is considered. In this paper we considered
developing a classifier for surgeme recognition for semi-
autonomous performance of the debridement task. We devel-
oped a simulator where a Taurus robot performs debridement
task. Kinematic data for debridement task was collected and
used to train an LSTM classifier. Such a classifier is then used
to infer the current surgeme being performed. We showed
that proposed LSTM framework can classify surgemes with
an accuracy of 84.4%.

To reduce the data requirements and allow faster de-
ployement, transfer learning is used. Data collected from
peg transfer task was used to pre-train the network for
transfer learning. By transferring the weights from surgeme
recognition on the peg transfer task, the performance of the
classifier increases by 10% when only 50% of the training
data is available. It was shown that the non-transfer learning
setup requires 50% more data to achieve the performance of
the transfer learning setup. Ablation studies were conducted
to understand the role of each layer in the transfer learning
task. It was found that it is necessary to retrain the LSTM
layer as the temporal structure of the kinematic sequences
vary between the peg transfer task and the debridement task.
Further, we found that the transfer learning models converges
to the solution faster than the non-transfer learning method.
We conclude that the proposed transfer learning allows the
surgical system to be easily transferable to other surgical
tasks.
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