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Abstract—Continual learning requires the ability to reliably
transfer previously learned knowledge to new tasks without dis-
rupting established competencies. Methods such as Progressive
Neural Network [1] accomplish high-quality transfer learning
while nullifying the insidious problem of catastrophic forgetting.
However, most module-based continual learning systems require
task labels during operation – a constraint that limits their
application in many real-world conditions where task indicators
are opaque. This paper proposes a task detector neural algo-
rithm to acquire task information while maintaining immunity
to forgetting. Our proposed task detector allows progressive
neural networks (and many similar systems) to operate without
task labels during test time. Our task detector is built from
familiarity autoencoders which recognize the nature of the
required task from input data. We demonstrate the generality
and effectiveness of our approach through experiments in
video game playing and automated image repair. Our results
show near-perfect task recognition in all domains (> .99 F1),
rewards above published single-task scores in MinAtar, and
realistic image repairs on damaged human face pictures. The
performance of our integrated method is nearly identical to the
progressive systems equipped with ground-truth task labels1.

I. INTRODUCTION

Intelligent systems benefit greatly from the ability to learn
new tasks on-the-fly. For example, a game playing agent
with the option to add new games to its skillset without
re-training would be far more compelling than one without.
Extensibility of this sort is possible through the open problem
of continual learning — the ability to learn from and adapt
to the environment in a continuous fashion [2], [3]. The
key towards continual learning is the ability to transfer
knowledge learned from one task to new tasks, with little
or no fine-tuning. Moreover, continual learning needs to
overcome catastrophic forgetting [4], [5], a disrupting effect
that neural networks lose previously learned knowledge once
trained on a new task.

Progressive neural systems are a recent forward step
towards continual learning. Research along this line initiated
from the Progressive Neural Network [1] and has been fol-
lowed by Dynamically Expandable Networks [6], Improvised
Progressive Neural Network [7], PathNet [8], and a host of
other architectures. Progressive systems are a class of neural
network continual learners that dynamically grow new sub-
networks to accommodate new tasks. In progressive systems,
old parameters are frozen or otherwise controlled to prevent
catastrophic forgetting, and new parameters are transfer
learned from these old parameters without changing them. As
an example, the upper left panel of Fig. 1 shows a progressive
neural network, where new columns of neural net layers

1Code is available at: https://github.com/arcosin/Task Detector

are added for each new task, and lateral connections from
previous tasks are introduced to enable transfer learning.

Despite its great success, progressive neural systems (and
other continual learning approaches) require task labels to
work properly. This dependence is notable in Fig. 1 during
the output selection operation. Without a correct task label
during testing, the progressive net cannot know which sub-
network to choose in solving a task. Other architectures ca-
pable of continual learning such as mixture-of-experts (MoE)
[9] show the same property. This is a significant limitation
towards continual learning – in real-world scenarios, task
labels are often unavailable, unclear, or expensive to collect.
More often, the learning agent has to quickly identify the
task to make an accurate prediction.

Consider the example of a game playing robot. At any
time, the robot may be asked to enter a new training phase
to learn a new game. The robot is expected to continual
learn from previous games to the next game. A progressive
system that already performed well on games A, B, and C,
could learn D — training only on the new data from D
while extracting knowledge from networks associated with
A, B, and C. However, when playing a game after training,
the system would need to be told whether it was engaging
with game A, B, C, or D. It could not infer this information
without the risk of catastrophic forgetting.

The purpose of this paper is to introduce a method of
automatic task detection for continual learning systems,
thereby increasing their test-time autonomy. The primary
challenge here is to overcome catastrophic forgetting. A
naive idea would be the addition of a classifier network to
predict the task label from the input data. This approach is
flawed because the classifier itself would be susceptible to
catastrophic forgetting as it is not built progressively. While it
could be retrained on each new task, this would require a full
retraining involving both the current and all previous tasks.
Additionally, the training data from previous tasks would
need to be accessible for all new tasks – which may not
be possible when dealing with massive or volatile datasets.

Our task detector harnesses a growing array of Familiarity
AutoEncoders (FAEs) to discover the task label and is not
susceptible to any amount of catastrophic forgetting. The
high-level idea of the task detector is shown in the lower
panel of Fig. 1, where we add one FAE for each new task.
The FAE is trained to reconstruct input data from the task it
is associated with. This process is conducted simultaneously
alongside the progressive system. For example, in a continual
learning setting where the AI agent must learn to play a
variety of video games, each familiarity autoencoder would
be trained to reconstruct frames from the game they are
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Fig. 1: Framework of our proposed task detector and progressive system. (Top Left) A 3-column progressive network (with
rows and columns transposed for clarity). Each row network is trained on one task and the input is fed to all three rows.
Intermediate representations are passed through lateral connections (dashed lines) to allow transfer learning between tasks.
Lateral connections let layers “mix-&-match” representations from previous layers across new tasks. The final output is
selected using the task label — a vital function that is sometimes non-trivial when the label is difficult to acquire. (Top
Right) A mixture-of-experts (MoE) using finetuned copies to grow progressively. This scheme has weaker transfer learning
than the progressive net, but slower parameter growth and more flexibility for things like optional re-training. (Bottom)
Our task detector architecture when added on to a progressive system such as the progressive network or an MoE. The
task detector runs each FAE to generate a recognition score — the argmax of which is a prediction of the task label and
can be used to select the desired sub-network in downstream progressive systems. Because the FAEs are independently and
sequentially trained, no catastrophic forgetting occurs. Adding a new task only requires training a new FAE for that task.

assigned. During test-time, the input data of a task is sent to
all of the FAEs. The task label prediction is then the index
of the FAE which produces the best reconstruction. Our task
detector is not susceptible to catastrophic forgetting because
each FAE is trained independently with only the data from its
assigned task. Besides vanilla autoencoders, this paper also
implements FAEs with variational autoencoders (VAEs) and
adversarial autoencoders (AAEs). We found that both lead
to more stable task predictions in noisy environments.

In the game-playing robot scenario, the robot can expect
task labels during a training phase (as it is only training on
one game at a time) but it cannot expect them after that – it
must infer the game it is playing based on sensor input. Our
FAE task detector would allow the robot to do precisely this
without storing old data or risking catastrophic forgetting.

We demonstrate the efficacy of the task detector in the
Atari, MinAtar, and CelebA Image Repair domains. Our
experimental results show that:

• Our task detector leads to accurate task predictions.
In each domain, it performs a near-perfect classification
(> 99% accuracy / F1 score) — a result that is
maintained even when inputs are injected with unex-
pected test-time noise. In contrast, a simple classifier
invariably deteriorates from catastrophic forgetting and
yields much lower scores.

• Our task detector combines well with downstream
tasks when integrated into a progressive system. Apply-
ing our method to the domain of automatic image repair,
the error over 7 restorations are nearly identical to those
made from progressive systems equipped with ground-
truth task labels. When applying our method to a set of 5
MinAtar games, we again show nearly identical results
compared to an optimal progressive neural network
with access to ground-truth task labels. The combined
system in both experiments outperforms other continual
learning methods including elastic weight consolidation
and task replay.

II. PRELIMINARIES

A. Continual Learning & Progressive Systems

Continual learning is a high-level goal in the journey
toward general artificial intelligence [10]. Essentially, a con-
tinual learning system is capable of constantly improving
while remaining stable on previous tasks. Significant work
has taken place examining machine learning in evolving
environments across many algorithms and settings [11]–
[13]. Variables like task length, task repetition, whether
task transitions are gradual or discrete, and whether tasks
themselves are discrete or continuous can greatly affect the
method required to learn a domain of tasks. In addition, the



type of machine learning applied to the task (unsupervised,
supervised, reinforcement, etc), the complexity of the task,
and the requirements for remembering old knowledge are
also important factors.

Related to continual learning, transfer learning is the pro-
cess of transferring competence from one machine learning
system learning a task to another system learning a related
task [14]. It is deeply entangled with the concept of continual
learning in that a powerful method of transfer learning would
be a possible basis toward a full continual learning system.
Many solutions to transfer learning exist, the simplest being
finetuning, in which a trained model is retrained on a new
task, often with additional parameters. While finetuning is
suitable for basic transfers, it manifests behaviors that make it
unsuitable for continual learning. Chiefly, a deleterious effect
known as catastrophic forgetting [4], [5], which occurs when
important parameters within the network are changed to fit
the new data, compromising the network’s ability to handle
previously-learned operations.

A summary of modern continual learning can be found
in [15]–[17]. The most popular overarching methods for
continual learning include modulation of gradients [18]–[21],
knowledge distillation/replay [22]–[24], and modularity-
based approaches [1], [6]–[8], [25], [26]. The last class of
approaches is particularly relevant to progressive systems – a
class of neural network continual learners that dynamically
grows new sub-networks to accommodate new tasks. Old
parameters are frozen or otherwise controlled to prevent
catastrophic forgetting, and new parameters are transfer
learned from these old parameters without changing them.

B. Progressive Neural Networks

The first progressive system was introduced in [1], describ-
ing progressive transfer learning in neural networks through
the creation of connected sub-networks. Unlike conventional
finetuning which does transfer learning only at initialization,
progressive nets keep a collection of sub-networks — often
referred to as columns — which share information through
lateral connection. These lateral connections are layers be-
longing to a column and taking as input the hidden repre-
sentations from previous columns. Lateral connections allow
information computed in the current column and all previous
columns to be combined in service to the current task, with-
out disrupting the parameters in the previous columns. To
summarize the full algorithm in terms of continual learning,
progressive neural networks maintain one column per task
with lateral layers connecting them. As more tasks are added,
old columns — along with their incoming laterals — are
frozen to maintain their parameters, with transfer learning
occurring only through new laterals. Refer to the upper left
panel of Fig. 1 for a closer look at the progressive network
architecture.

While progressive neural networks and other progressive
systems sometimes underperform compared to other meth-
ods, they are among the most effective when true forgetting
immunity must be guaranteed. Progressive nets prove to be
a powerful model for many task sets. In Progressive Neural
Networks, experiments demonstrate that the system performs
well in various reinforcement learning tasks including maze,
Atari, and pong variant games. Further, [27], [28] demon-

strate the breadth of application for this form of transfer
learning. However, progressive networks are not without
limitations – for example, the rate of parameter growth
and the inefficient information density of new parameters.
Another limitation is the necessity of task labels, even after
training is complete.

The necessity of task labels in progressive neural nets
originates from the structure of the interconnected columns
in the network. When the model forward propagates, it runs
the input through all columns laterally connected to the task
column — allowing finetuned representations of the input
to be accessed by new columns of the network. Though
many columns may be executed, only the column associated
with the current task generates useful output. The important
job of task identification is then to select which column
actually represents the function associated with the current
task. This is a property shared by many progressive systems
and continual learners more generally.

C. Autoencoders & Novelty Detection

Autoencoders [29] are a robust class of architectures
operating under the premise of restricting the bandwidth of
the information to a small latent vector, thus assimilating
abstract features of the learned data. One important use case
of autoencoders is as an anomaly detection tool. Anomaly
detection — also sometimes called novelty detection — is
the task of identifying anomalies, outliers, or unusual data
records among a class [30]. This task is similar to one-class
classification, in which ML systems must decide whether
a data record is part of a single class or not. Anomaly
detection autoencoders [31] accomplish this through learning
reconstruction. An autoencoder trained to reconstruct data
from a certain class will perform poorly in reconstructing
data sufficiently different from what it knows. The poor
performance can be measured by a novelty criterion —
usually an error function like mean squared error or cross-
entropy loss. After selecting an upper bound and lower bound
of error, the autoencoder will be able to determine the unique
status of a data record by yielding an error value outside
the selected threshold. As autoencoder novelty detectors
intrinsically learn an approximation of the input’s distribution
instead of a hard boundary, they do not require any examples
of anomalies during training. Notably, this novelty detection
strategy can be easily reversed. By negating the novelty
criterion, a measure of familiarity detection can be found,
with higher scores corresponding to a greater likelihood that
tested data is similar to previously learned training data.

III. METHODOLOGY

A. Motivations

Without the ability to recognize tasks from input data,
many continual learning systems are forced to rely on task
labels, which are not always feasible to obtain in real-
world applications. However, predicting a task label from
input data is more difficult than it may appear. A naive
approach may be the implementation of a simple classifier
with each class corresponding to a task label. This approach
is flawed because the classifier itself would be susceptible
to catastrophic forgetting whenever new classes are added.
While it could be retrained on each new task, this would



require a full retraining involving both the current and all
previous tasks. All of that data would need to be continually
accessible for all new tasks, something that may be difficult
when dealing with massive or volatile datasets. Another
option is an array of probabilistic binary classifiers indexed to
each task. The probability of the positive class calculated by
each classifier would act as a recognition for that classifier’s
task. This solution is better, but still insufficient as no
negative examples would be available from future tasks. This
elucidates an important point: the key to good continual task
detection is not to “draw a line” separating the appearance
of each task, but to measure the essential closeness of an
input to previously seen inputs of the same task.
Assumptions. Our solution to task recognition relies on one
important assumption: the task must be recognizable based
only on input data from that task. Learning two tasks that
require different outputs but receive the same input would
break this assumption. Many situations like this can be
circumvented with a more appropriate input representation
— for example, two video games that appear the same but
exhibit different mechanics can be represented recursively or
as a list of trajectories instead of as single frames.

B. Task Detector

Big Picture. Our method uses an array of small neural nets
— one for each task — that each produces a score for a
given input. The score is a measure of how close the data
record is to previously seen data from the indexed task. For
our prediction, we select the task indexed to the neural net
with the highest reward.

Anomaly detection autoencoders produce a positive score
representing how novel a piece of data is compared to
previously learned data. By negating this score, we can
ascertain a quantification of how familiar a piece of data is
instead. Essentially, by simply negating the novelty criterion,
we can create a familiarity autoencoder (FAE).

Consider a task detector containing an array of FAEs
and a progressive neural network for task learning. Upon
initialization, the task detector is composed of just one FAE
indexed to a progressive network’s first column. The initial
FAE can be trained on the same data as the progressive
network column — though a separate pre-processing step
may be necessary to achieve optimal results. The FAEs
are trained using self-supervised learning to deconstruct and
reconstruct inputs through the latent vector. Once the column
network has finished training, its parameters are frozen, as
are the parameters of the FAE.

As new tasks are learned, more FAEs are added alongside
progressive net columns. Each FAE remains indexed to
just one column net, and is only trained on data from the
task associated with that column. Immunity to catastrophic
forgetting is preserved because the FAEs are only trained on
data from a single task.

During test time, the FAEs begin their familiarity mea-
surement role. So long as a sufficiently low-capacity latent
vector has been selected, the network will do one of two
things. If the unlabeled input does not belong to the task
associated with the FAE it will reconstruct the data incor-
rectly — either transforming it into a false version of itself
more similar to the associated task, or transforming it into

incomprehensible garbage data. However, if the input does
belong to the associated task, the FAE will reconstruct it
more effectively. Therefore, the detector with the smallest
reconstruction error is most likely to be indexed to the correct
task. The familiarity score from each FAE can be calculated
as the negative error — defined by the novelty criterion —
between the input and the reconstruction. Some candidates
for this function include mean squared error, mean absolute
error, and cross-entropy. Finally, the predicted column is
selected as the argmax of all the negative novelty scores.
The task detector classification can be formally defined as:

k̂ = argmaxi∈{0,...,K} − ζ(x, di(x)) (1)

where k̂ is the predicted task label, ζ is a novelty criterion —
a simple measure of error between inputs (e.g. MSE, MAE,
etc), and di is the FAE at index i.

Similar task detection schemes using autoencoders for
recognition have been implemented in other concurrently de-
veloped works [32], [33]. However, their application domains
were not in sequential continual learning and had major
differences in their training and testing procedures. Our task
detector is the first sequential continual learning module that
is immune to forgetting and allows intrinsic task awareness
by integrating familiarity detectors into a progressive system.
Variants. A useful variant of the task detector is one
implemented with a variational autoencoder (VAE) [34] or
an adversarial autoencoder (AAE) [35]. By modeling the
distribution of inputs within the latent space and factoring
this into the network’s objective as a sort of divergence loss,
VAE possesses limited generative capabilities. As a famil-
iarity detector, a VAE would be capable of reconstruction
with much finer detail, distinguishing between tasks that are
similar but for a few important distinctions. AAE also have
generative capabilities, but in these networks they stem from
the use of a discriminator network similar to those used in
GANs [36]. Finally, in cases where tasks produce different
score distributions, a normalization step can be added to
standardize the score range, though this was not found to
be necessary in our experiments.

C. Limitations & Mitigation Techniques

The primary limitation of our task detector is its memory-
intensive nature. Alongside an already cumbersome progres-
sive network, the whole system is likely to have a much
greater memory footprint than is necessary to solve the tasks.
This parameter overhead can also increase training time.
Thankfully, mitigation of this issue is straightforward: the
FAEs in the detector are natural candidates for compression
and trimming. As they are fully distinct networks, compres-
sion can be carried out in a separate process even as new
tasks are learned. Even if compression leads to a reduction in
reconstruction quality, it is unlikely to cause enough damage
to change the final classification. Furthermore, unused FAEs
can be expelled to less expensive disk space to free up
memory until they are needed again.

IV. EXPERIMENTS

Our FAE-based task detector was evaluated on four ex-
periments. In the MinAtar experiment and the image re-
pair experiments, we implemented full progressive systems



Avg. F1 Asterix Breakout Freeway Seaquest Space Invader Data usage per task
Reward Reward Reward Reward Reward (# experiences)

With Task Labels
Prognet + Task labels N/A 24.7 18.3 35.7 10.6 11.8 0

Without Task Labels
Prognet + Task Detector (ours) 99.3 26.1 17.0 32.6 10.9 11.6 0
Task Replay [3] N/A 0.6 0.6 0.2 0.0 26.7 100000
EWC [20] N/A ∗ ∗ ∗ ∗ ∗ 256

Without Continual Learning
Published DQN [37] N/A ∼ 13 ∼ 8 ∼ 48 ∼ 15 ∼ 40 N/A

(a) MinAtar Game Playing. Recognition F1 and Average Reward over 300 Episodes in 5 MinAtar Games. F1 score shows the quality
of task prediction, while episode reward shows the quality of the whole agent in playing the games. Data storage shows how many
experiences need to be stored between tasks. Our progressive DQN + task detector performed very well in the MinAtar games, even
beating some of the published results. These results show that the progressive system maintained competency across all games while task
replay resulted in weaker transfer and less forgetting resistance. EWC failed to converge. Other methods also required extra experiences
to be stored across tasks, while our method did not.

Recognition Denoise Colorize Inpaint PF V2H I2V E2DF Total
Accuracy MSE MSE MSE MSE MSE MSE MSE MSE

With Task Labels
Prognet [1] N/A 99.1 113.5 55.7 92.3 105.6 111.0 11.5 588.7
MoE [9] N/A 242.7 226.4 38.0 85.8 31.1 52.0 9.2 685.2

Without Task Labels
Prognet + Task Detector (ours) 99.6 99.1 113.7 55.5 91.9 105.4 111.0 11.4 588.0
Prognet + Classifier 14.3 241.4 261.5 157.0 169.3 214.5 520.7 11.5 1575.9
MoE + Task Detector (ours) 99.6 242.6 226.4 38.0 86.9 31.3 52.2 9.2 686.6
EWC [20] N/A 336.2 338.0 314.0 271.0 326.4 356.1 9.8. 1951.5

(b) Image Repair. Recognition Accuracy and Total Mean Square Error (MSE) across 7 image Repair Tasks. Overall accuracy and total
MSE over the whole testing set (900 images) for each task are shown. The task detector’s excellent classification accuracy alongside the
progressive neural net and the mixture-of-experts translated to a similar average error measurement when compared with ground-truth.
Both of these progressive systems outperformed elastic weight consolidation. The baseline classifier is only tested with the prognet as it
is sufficient to show the effects of catastrophic forgetting on the upstream classifier.

Accuracy Averaged F1-Score

Task Detector (ours) 99.96 99.96
Classifier 77.58 70.23

(c) Atari Game Recognition. Recognition across 9 Atari Games.
The Task Detector achieves near perfect classification (99.96% F1
score), which attains more than 20% improvement than the baseline.
This is compared to the baseline classifier with no catastrophic
forgetting mitigation.

Accuracy Averaged F1-Score

Task Detector (ours) 89.44 86.31
VAE Task Detector 99.89 99.89
AAE Task Detector 93.19 93.56

Classifier 37.67 25.39

(d) Noisy Atari Recognition. Atari frame classification with test-
time Gaussian noise infusion. The standard autoencoder FAE is
compared with a variational autoencoder variant and an adversarial
autoencoder variant. The Task Detector displays remarkable noise
resistance, especially when implemented with VAEs — the results
are still nearly perfect even with the added noise.

TABLE I: Results for all experiments. Methods including “+ Task Labels” are supplied with ground-truth task labels, while
all others operate only on input data. Across all experiments, our task detector nearly matches the performance of models
with ground-truth task labels and – when matched with a downstream progressive system – outperforms all baselines.

integrating our task detector to play arcade-style games
and operate on damaged images respectively. In the Atari
and noisy Atari experiments, we exclusively implement the
task detector. For all experiments, sub-tasks were trained
sequentially with no direct access to data from previous tasks.
These training sessions involved training the task model and
the task detector on the same data but independently. All
code for this paper was written in Pytorch [38] and used the
Doric library2 for implementing progressive neural networks.

A. MinAtar Games

Setup. MinAtar [37] is a pixelated and minimalized version
of classic Atari games. Five games were available: Asterix,

2https://github.com/arcosin/Doric

Breakout, Freeway, Seaquest, and Space Invaders3. Each
game frame is represented as a 10 × 10 × 10 matrix with
different game elements split into 10 channels. All game
elements are single pixels. The player in each game has 6
possible actions available.

A progressive network was used to implement the Q-
network and target network in a DQN [39] — the code for
this being directly adapted from the exemplar MinAtar DQN
to ensure compatibility with other works. For comparison,
two other agents were also trained on each game: a replay
agent that preserved its buffer across games and ensured
equal representation in the buffer at the start of each training
session, and an elastic weight consolidation (EWC) DQN

3https://github.com/kenjyoung/MinAtar



Fig. 2: Example frames from the MinAtar experiment. Our method was able to distinguish frames and respond in real-time
with better results than with task replay. This means frames can even be randomly interlaced between games during testing
with the same results as clearly separated games. Results can also be viewed here: https://youtu.be/YRkzThwXRSI.

with penalty updated after each training session. The network
architecture was a single ReLU-activated convolutional layer
(16 channels, 3 × 3 kernel, stride 1), followed by a ReLU-
activated fully connected section with 128 neurons. The
progressive network version of the task model was the same,
except with the addition of lateral connections mirroring the
architecture of their parent layers. Each FAE included one
ReLU-activated convolutional layer (8 channels, 3×3 kernel,
stride 1), followed by two ReLU-activated fully connected
layers with 32 then 800 neurons, and then a transpose con-
volutional layer (10 channels, 3×3 kernel, stride 1, padding
1). Mean squared error was used as a training criterion and
for familiarity detection. While the expanding nature of the
algorithm can be memory intensive, this experiment required
only 170KB of parameters for each FAE.
Results. Our FAE-based task detector combined with a
progressive neural net outperformed all competing baselines
significantly. With an average F1 score of ∼ 99.3%, it was
able to perform near-perfect task recognition. Further, the
progressive net integrated with our task detector plays each
MinAtar game comparably well with the same progressive
net using task labels. Notably, the baseline algorithms per-
formed poorly in each game except for the final one. The task
replay agent received low average rewards on these games,
and the EWC agent failed to converge during the second
training session and was unable to recover. Additionally, both
EWC and task replay required storing extra state data for
each task. For EWC, this was a modest 256 records per
task, but the replay agent required a more intensive 100,000
records per task to sample from during later training. The
quantitative results for this test are shown in Table I (a).

B. Image Repair

Setup. While the MinAtar experiment is a necessary test of
the task detector, the distinction between input from tasks
is clear. In this experiment, face images are “damaged” in
one of several ways and must be repaired. The boundaries
between different types of damage are notably fuzzy, and are
harder to distinguish compared to game frames. The task set
is extended from the exemplar code packaged with the Doric
library. The task detector was trained to recognize which set
of image processing tasks needed to be applied on a dataset
of human faces to uncover a target image. Combined with a
progressive system learning the image transformations, this
system allows for autonomous image repair.

Two continual learning methods were used alongside the
task detector: a progressive neural network and a MoE. The
progressive net transfer learns through lateral connections
while MoE does so by using the last expert’s parameters
upon initialization. Additionally, a network was trained with
elastic weight consolidation. To act as a baseline continual
learner. A baseline classifier was also constructed and trained
to evaluate the effects of catastrophic forgetting that would
be present without the use of our method alongside the
progressive network. It was given the same architecture as
the task detector FAEs except with the decoder replaced with
a classification head. No measures to reduce catastrophic
forgetting were implemented. The classifier also lacked the
ability to add new tasks and could not grow progressively,
so it was initialized with outputs for each task.

For each image repairer tested, the core network archi-
tecture was a convolutional VAE. A subset of the celebA
dataset [40] was used for training and testing. Six repair tasks
were learned sequentially: denoising; colorizing; inpainting;
perspective shift; vertical flip to horizontal flip; invert & flip;
and edge image to double flip. A pre-processing step was
included for transforming each image to fit the given task
— simulating the types of image damage. The testing set
consisted of 900 images. Mean squared error was used as a
training criterion and for familiarity detection. Image repair
task models in this experiment all took the form of VAEs.
Dropout and batch normalization were important factors in
properly training the networks. Dropout particularly with a
drop rate of 0.2 greatly reduced the symptoms of over-fitting.
Only a part of the CelebA dataset was used in this work.
Images 1 to 30,000 were used to train the networks. Image
30,001 to 30,900 were used for testing and 30,901 to 31,000
were saved for validation.
Results. The task detector show a high level of accuracy
operating alongside a progressive neural network and MoE
(∼99.6% Accuracy). Combined with downstream tasks, the
results were decisive. The EWC repair system performed the
worst, and generated strange combinations of facial elements
scrambled by catastrophic forgetting. MoE performed much
better and in some cases scored the lowest error. However,
by inspecting the result images, it is clear that the outputs of
this algorithm were fairly low-definition whether paired with
task labels or our task detector. The most visually successful
repair results came from the progressive neural net and its
more-sophisticated transfer learning method. Error was also
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Fig. 3: Selected outputs from the image repair experiment. The first row shows the “damaged” input for each of the 7 tasks.
The second row shows the target image that the system should transform the input into. Subsequent rows display the output
of each algorithm tested. Training was done in the left-to-right order of the columns (Denoise first, Edge-to-DFlip last).
Our “Prognet + TD” creates outputs reasonably close to target for all tasks, indicating that it does not suffer from forgetting
even after learning 7 tasks. EWC is able to remember the previous 2 tasks well, while the “Prognet + Classifier” fails on
all previous tasks because the classifier succumbs to forgetting.

very consistent between task detector and task label equipped
algorithms. Sample image repairs are examined in Fig. 3. The
quantitative results for this test are shown in Table I (b).

C. Atari Games

Setup. In [1], the authors train a progressive net to play a
set of Atari games to showcase the algorithm’s ability to
sequentially learn complex reinforcement learning tasks. As
a supporting experiment, we ran the task detector alongside
a random agent to recognize Atari games from simulated
screen frames [41]. Nine games were selected: Breakout,
Pong, Space Invaders, Ms Pacman, Assault, Asteroids, Box-
ing, Phoenix, and Alien. These games can be further clas-
sified by type of game (paddle games, ship games, maze
games, and fighting games) or by the color of screen assets
(i.e. mostly black, mostly colorful). The selected distribution
of games serves to test the task detector against similar
looking games and similarly colored games, ensuring that
the autoencoders utilize both color and content. A baseline
classifier like that used in the image repair experiment was
used to measure the effects of catastrophic forgetting.
Results. The results of this experiment show that our FAE-
based task detector can recognize Atari games at a near-
optimal level (∼ 99.96% F1 score). Conversely, the baseline
classifier was severely impacted by catastrophic forgetting
and lost the ability to recognize previously learned tasks, only
earning an average F1 score of ∼ 70.23%. While it is difficult
to reconstruct an Atari frame perfectly, it is only necessary
that the correct FAE has a closer reconstruction than all of
the others — networks that were trained on entirely different
data. The quantitative results for this are in Table I (c).

D. Noisy Atari Games

Setup. One desirable property of FAEs as task detectors is
their inherent resilience to unexpected noise during oper-

ation. This trait is particularly useful in robotic or cyber-
physical environments where unexpected noise is a fact of
life. To simulate and evaluate these conditions, the task
detector was tested again on the Atari environments of
the previous experiment. However, this time Gaussian noise
was injected into the image during test-time. Three FAE
models were tested on the noisy game frames: the standard
autoencoder; a variational autoencoder; and an adversarial
autoencoder. All models were trained on non-noisy data, and
tested on 100 frames of noisy data to determine the noise
resistance of these models in relation to the task detector’s
classification efficacy.
Results. While all task detector architectures outperform the
forgetting-sensitive baseline significantly, the default FAE
does appear to suffer when encountering unexpected noise.
Fortunately, this potential limitation is nullified by the VAE-
based FAE, which performs another near-perfect classifica-
tion even with severe noise present in the input. The noise
resilience shown here is a good sign of the task detector’s
ability to perform in real-world scenarios. The quantitative
results for this test are shown in Table I (d).

V. CONCLUSION

In this paper, we introduced a task detection system using
familiarity autoencoders to predict task information from
input patterns while maintaining immunity to catastrophic
forgetting. The results of our experiments with MinAtar,
Atari, and image repair demonstrate that our task detector
is capable of recognizing tasks with great accuracy and
combines well with downstream task models like progressive
neural networks. The concept behind the task detector could
be applied more widely, as it is essentially a special type of
classifier with built-in forgetting immunity.



For the future of progressive systems in continual learning
to be a rich one, adding greater autonomy during training
and operation will be paramount. One future avenue of
exploration is the potential of learning not only the task
labels, but also the task boundaries during training. This
could potentially be done with a heuristic that predicts the
behavior of an FAE when it detects a new task, without
skipping the early stages of a current task. Even a training
step counter and threshold could be used to attempt this,
though more-intelligent solutions yet to be developed would
likely be more effective.
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