
XOR-CD: Linearly Convergent Constrained Structure Generation

Fan Ding 1 Jianzhu Ma 2 Jinbo Xu 3 Yexiang Xue 1

Abstract
We propose XOR-Contrastive Divergence learn-
ing (XOR-CD), a provable approach for con-
strained structure generation, which remains dif-
ficult for state-of-the-art neural network and con-
straint reasoning approaches. XOR-CD harnesses
XOR-Sampling to generate samples from the
model distribution in CD learning and is guar-
anteed to generate valid structures. In addition,
XOR-CD has a linear convergence rate towards
the global maximum of the likelihood function
within a vanishing constant in learning exponen-
tial family models. Constraint satisfaction en-
abled by XOR-CD also boosts its learning per-
formance. Our real-world experiments on data-
driven experimental design, dispatching route gen-
eration, and sequence-based protein homology
detection demonstrate the superior performance
of XOR-CD compared to baseline approaches in
generating valid structures as well as capturing
the inductive bias in the training set.

1. Introduction
Generative modeling has received tremendous success in
recent years. Notable examples include image synthesis
(Goodfellow et al., 2014; Radford et al., 2015; Isola et al.,
2017; Brock et al., 2018), music composition (Briot et al.,
2017; Engel et al., 2017; Prenger et al., 2019), molecule
synthesis, drug discovery (Liu et al., 2018; Kusner et al.,
2017; Jin et al., 2018) and more.

Nevertheless, learning generative models over a constrained
space still remains a major research challenge. Take the
example of protein homology detection, an important bi-
ological application considered in this paper, to align two
protein sequences, where each amino acid in one sequence
can be aligned either to another amino acid in the other

1Department of Computer Science, Purdue University, West
Lafayette, USA 2Institute for Artificial Intelligence, Peking
University, Beijing, China 3Toyota Technological Institute
at Chicago, Illinois, USA. Correspondence to: Fan Ding
<ding274@purdue.edu>, Yexiang Xue <yexiang@purdue.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Origin L R P S E

S

L

A

L

Q

M I2

M

I1

M

M

𝒮2 𝒮1
L S
R -
P L
- A
S L
E Q

Insertion at 𝒮2 (I2)

Insertion at 𝒮1 (I1)

Match (M)

Figure 1. An illustration of sequence-based protein homology de-
tection problem. (Left) The problem is to predict the alignment
two amino acids sequences S1 and S2, where one amino acid
from one sequence can be aligned to either one amino acid from
the other sequence (match), or to a gap (insertion, marked by −).
(Right) Biological constraint: such an alignment must form a path
from the top-left to the bottom-right corner in the alignment matrix,
where a diagonal transition represents a match, a horizontal or a
vertical transition represents an insertion.

sequence or a gap. Biological constraints require such an
alignment forms a continuous path from the top-left cor-
ner to the bottom-right corner in the alignment matrix (see
Figure 1). Given two protein sequences, the learning prob-
lem is to predict which alignment is more likely based on
samples from the training set. Previous constrained satis-
faction approaches (Rychlewski et al., 2000) identify an
alignment satisfying all constraints, yet are optimal only
regarding a rigid expert-defined objective, which may fail
to include essential biological factors. Learning-based ap-
proaches (Söding, 2005; Ma et al., 2014) harness highly
flexible neural models for alignment prediction. However,
the predictions often violate constraints (i.e., they do not
form paths). Similar challenges are present in many real-
world problems: it is difficult to generate structures which
simultaneously (i) satisfy constraints, and (ii) effectively
capture the inductive bias present in the training set.

We present XOR-CD, a constrained generative model based
on contrastive divergence and XOR-Sampling, which con-
verges to the global optimum of the likelihood function of
an exponential family model within a vanishing constant in
linear number of steps. Rather than using Markov Chain
Monte Carlo (MCMC) to sample from the current model
distribution as in the classical case of contrastive divergence,
XOR-CD generates samples using XOR-Sampling, a recent

XOR-CD: Linearly Convergent Constrained Structure Generation

approach with provable guarantees. XOR-Sampling reduces
the sampling problem into queries to NP oracles subject
to randomized XOR constraints. The empirical probability
of getting one sample can be bounded within a constant
multiplicative factor of the true probability. Our main con-
tribution is to embed XOR sampling into contrastive di-
vergence learning, which yields a learning approach with
provable guarantees. XOR-CD advances the state-of-the-art
in constrained structure generation in the following way:

1. Constraint Satisfaction: Because XOR-CD reduces
the sample generation problem into constraint satisfac-
tion subject to randomized constraints, the structures
generated from XOR-CD are guaranteed to satisfy con-
straints, addressing a key limitation of many neural
network based structure generation approaches.

2. Linear Convergence Speed to the Global Optimum:
We are able to prove that XOR-CD has a linear conver-
gence rate towards the global maximum of the likeli-
hood function within a vanishing constant when learn-
ing exponential family models.

3. Constraint Satisfaction Improves Learning Perfor-
mance: We observe empirically that XOR-CD learns
faster and better than state-of-the-art neural-based ap-
proaches in constrained generation domains. We hy-
pothesize that the improvement in learning perfor-
mance is due to better constraint satisfaction offered
by XOR-CD. Because the samples generated from the
model distribution always satisfy constraints, XOR-
CD can focus on learning the structural differences of
the samples generated from the model distribution and
from data. Baseline approaches, contrarily, spend most
of their time struggling in generating valid structures.

We demonstrate the power of XOR-CD on three real-world
applications. Aside from the protein homology detection
problem, our second application is on the optimal experi-
ment design, which tests n crops in a n-by-n field. Agri-
culturalists require very crop to be planted exactly once in
every row and column, forming a so-called Latin square.
Yet, other implicit criteria can only be learned from a dataset
of good designs, therefore making it a learning problem. Our
third application is on dispatching route generation, in which
we suggest routes for delivery drivers. The routes have to
form a Hamilton cycle, visiting each requested location once
and only once. Aside from this hard requirement, they also
need to be similar to historical routes, satisfying drivers’
implicit preferences. In all 3 applications, our method gen-
erates structures that not only have higher likelihood than
competing approaches, but also 100% satisfy constraints,
while the validity rate of competing approaches are less
than 20%. In addition, the distributions of the valid struc-
tures generated by XOR-CD closely resemble those in the

training set, demonstrating that XOR-CD can successfully
capture the inductive bias in the training set. Furthermore,
the learned XOR-CD model can be used to complete par-
tially filled structures. These completed structures 100%
satisfy constraints and are close to those in the training set.

2. Preliminaries
2.1. Exponential Family Models

We consider discrete exponential family models over ran-
dom variables X ∈ X ⊆ {0, 1}n with parameters θ ∈ Rd:

Pθ(X) = c(X)eθ
Tφ(X)−Λ(θ), (1)

where c(X) is the carrier measure, φ : X → Rd is the
sufficient statistics and Λ(θ) is the log partition function:

Λ(θ) = log
∑
x∈X

c(x)eθ
Tφ(x). (2)

Notice that Λ(θ) contains a discrete integral over a con-
strained structure space X , which makes the entire problem
computationally intractable. For example, in the protein
homology detection application, X represents the space of
all alignments that form valid paths. Given x1, x2, . . . , xN
from the training set, the learning problem is to find the
optimal parameters θ which maximize the log likelihood
l(θ) = 1

N

∑N
i=1 logPθ(xi):

max
θ

l(θ) =
1

N

N∑
i=1

θTφ(xi)− Λ(θ) + constant. (3)

Given the learned model, the inference problem is to com-
plete a partial structure to maximize the joint probability:

(xp, x
∗) = arg max

(xp,x)∈X
Pθ(xp, x).

Here, xp represents a partially filled structure, and x∗ are the
assignment to the remaining variables. Back to the protein
homology detection example, the learning problem is to
identify which types of alignments are more likely in the
training dataset, while the inference problem is to predict an
alignment given the amino acid sequences of two proteins.
Λ(θ) is a convex function of θ. Denote∇Λ(θ) the gradient
vector of Λ(θ). We can prove ∇Λ(θ) is the expectation of
the sufficient statistics φ(x) under Pθ. That is,

∇Λ(θ) = EPθ [φ(x)] =
∑
x∈X

φ(x)Pθ(x). (4)

2.2. Contrastive Divergence Learning

Contrastive Divergence (CD) (Hinton, 2002b) applies
stochastic gradient ascent to maximize the log likelihood of

XOR-CD: Linearly Convergent Constrained Structure Generation

an exponential family model. From Equations 3 and 4, the
gradient of the log likelihood can be written as:

∇l(θ) = ED[φ(X)]− EPθ [φ(X)]. (5)

Here, ED denotes the expectation over the data distribution,
and EPθ denotes the expectation over the current model dis-
tribution Pθ. Let {x1, . . . , xM} be a mini-batch of training
data, CD uses the sample mean 1

M

∑M
i=1 φ(xi) to approxi-

mate ED[φ(X)]. Denote x(k)
i as the sample after taking k

Markov Chain Monte-Carlo (MCMC) steps following the
current model distribution Pθ(x) starting from data xi. CD
uses 1

M

∑M
i=1 φ(x

(k)
i) to approximate EPθ [φ(X)]. Overall,

the gradient of the log likelihood is approximated by

gcd(θ) ≈
1

M

M∑
i=1

φ(xi)−
1

M

M∑
i=1

φ(x
(k)
i). (6)

CD hence iterates the following update θt+1 = θt+ηgcd(θt)
until convergence, where η is the learning rate.

2.3. XOR Sampling

Our method leverages recent advancements in XOR sam-
pling (Ermon et al., 2013b), which reduces the sampling
problem into queries to NP oracles subject to XOR con-
straints. XOR sampling guarantees that the probability of
drawing a sample is sandwiched between a multiplicative
constant of the true probability. We only present the gen-
eral idea of XOR-Sampling on unweighted functions here
and refer the readers to the paper (Ermon et al., 2013b)
for the weighted case. For the unweighted case, assuming
w(x) takes binary values, we need to draw samples from
the set W = {x : w(x) = 1} uniformly at random; i.e.,
suppose |W| = 2l, then each member in W should have
2−l probability to be sampled. XOR proceeds by adding k
randomized XOR constraints XORk(x) = 1 to the original
problem and returns an element uniformly at random from
the constrained setWk = {x : w(x) = 1, XORk(x) = 1}
when |Wk| is small enough and can be sampled by an exact
sampler. k is increased from 1 until |Wk| becomes small.
Because the k-th XOR constraint removes at random half
of the elements from the previous setWk−1, one can prove
a constant bound on the probabilities of getting one sample
from XOR sampling (Gomes et al., 2007a;b).

For the weighted case, one needs to draw samples from an
unnormalized function w(x), i.e., the probability of getting
a sample x0, P (x0) is proportional to w(x). The idea is to
discretize w(x) and transform the weighted problem into
an unweighted one with additional variables. Our paper
uses the constant approximation bounds of XOR sampling
on weighted functions through the following theorem. The
details on the discretization scheme and the choice of the
parameters of the original algorithm to reach the bound in
Theorem 1 are in the supplementary materials.

Theorem 1. (Ermon et al., 2013b) Let 1 < δ ≤
√

2,
0 < γ < 1, w : {0, 1}n → R+ be an unnormalized prob-
ability density function. P (x) ∝ w(x) is the normalized
distribution. Then, with probability at least 1 − γ, XOR-
Sampling(w, δ, γ) succeeds and outputs a sample x0 by
querying O(n ln(nγ)) NP oracles. Upon success, each x0 is
produced with probability P ′(x0). We must have

1/δP (x0) ≤ P ′(x0) ≤ δP (x0).

Moreover, let φ : {0, 1}n → R+ be one non-negative func-
tion, then the expectation of one sampled φ(x) satisfies,

1

δ
EP (x)[φ(x)] ≤ EP ′(x)[φ(x)] ≤ δEP (x)[φ(x)]. (7)

3. XOR-Contrastive Divergence
We propose XOR-CD, a new contrastive divergence method
for constrained structure generation on exponential fam-
ily models, which is guaranteed to converge to the global
maximum of the likelihood function within a vanishing con-
stant in linear number of CD iterations. XOR-CD breaks
down the gradient of the log likelihood function into the
divergence of the expectations of the sufficient statistics
over the training data and over the current model distribu-
tion, following the CD framework. However, XOR-CD
leverages XOR-sampling to generate samples in estimating
EPθ [φ(X)].

The detailed procedure of XOR-CD is shown in Algorithm 1.
XOR-CD takes the exponential family model Pθ(X) with
sufficient statistics φ(X), carrier measure c(X), training
data {xi}Ni=1, initial model parameter θ0, the learning rate
η, the number of CD iterations T , XOR-Sampling parame-
ters (δ, γ), and batch sizes M , K as input, and outputs the
learned parameter θT . To approximate EPθt [φ(X)] at step t,
XOR-CD draws K samples x′1, . . . , x

′
K from Pθt(X) using

XOR-Sampling, where K is a user-determined sample size.
Because XOR-Sampling has a failure rate, XOR-CD repeat-
edly call XOR-Sampling until all K samples are obtained
successfully (line 2 – 6). Then, XOR-CD also drawsM sam-
ples from the training set {xi}Ni=1 uniformly at random to
approximate ED[φ(X)]. Once all the samples are obtained,
XOR-CD uses gt = 1

M

∑M
j=1 φ(xj) − 1

K

∑K
j=1 φ(x′j) as

an approximation for the gradient of the log likelihood. θ is
updated following the rule θt+1 = θt + ηgt for T steps, and
η is the learning rate. Finally, the average θT = 1

T

∑T
t=1 θt

is the final output of the algorithm.

3.1. Linear Convergence to the Global Optimum

We can show that XOR-CD converges to the global optimum
of the log likelihood function in addition to a vanishing
term. Moreover, the speed of the convergence is linear
with respect to the number of contrastive divergence steps.

XOR-CD: Linearly Convergent Constrained Structure Generation

Denote V arD(φ(x)) = ED[||φ(x)||22]− ||ED[φ(x)]||22 and
V arPθ (φ(x)) = EPθ [||φ(x)||22]−||EPθ [φ(x)]||22 as the total
variations of φ(x) w.r.t. the data distribution PD and model
distribution Pθ. The precise mathematical theorem states:

Theorem 2. (main) Let Pθ(X) : X → R+ be the exponen-
tial family model denoted in Equation 1. Given data points
{xi}Ni=1, the log likelihood l(θ) = 1

N

∑N
i=1 logPθ(xi).

Denote OPT = maxθ l(θ). Let V arD(φ(x)) ≤ σ2
1 ,

maxθ V arPθ (φ(x)) ≤ σ2
2 and ||EPθ [φ(x)]||22 ≤ ε2. Sup-

pose 1 ≤ δ ≤
√

2 is used in XOR-sampling, the learning
rate η ≤ 2−δ2

σ2
2δ

, and θT is the output of XOR-CD. We have:

OPT − E[l(θT)] ≤ δ||θ0 − θ∗||22
2ηT

+
η(σ2

2 + ε2)

K
+
ησ2

1

δM
.

XOR-CD is the first provable algorithm which converges
to the global maximum of the likelihood function and a
tail term for exponential family models. Moreover, the rate
of the convergence is linear in the number of SGD itera-
tions T . Previous approaches do not have such tight bounds.
Variational inference approaches such as the Variational
Auto-encoders (VAEs) (Kingma & Welling, 2013) optimize
the Evidence Lower Bound (ELBO). However, the gap be-
tween the lower bound and the true likelihood can become
arbitrarily large. Expectation Propagation (EP) methods
(Minka, 2013; Dehaene & Barthelmé, 2015) computes an
upper bound of the likelihood, which can be arbitrarily
loose as well. Various Generative Adversarial Nets (GANs)
(Goodfellow et al., 2014; Radford et al., 2015; Isola et al.,
2017) and flow models (Kingma & Dhariwal, 2018; Prenger
et al., 2019) do not have theoretic bounds.

The main challenge to prove Theorem 2 lies in the fact that
we cannot ensure the unbiasedness of the gradient. Because
the partition function Λ(θ) is convex with respect to θ in
exponential family models, a gradient descent algorithm can
be proven to be linearly convergent towards the maximum
of the likelihood function, if the expectation of the estimated
gradient is unbiased, ie, E[gt] = ∇l(θt). However, even
though we apply XOR-sampling, we still cannot guarantee
the unbiasedness of gt. Instead, using Theorem 1, our bound
for gt is in the following form:

1

δ
[∇l(θt)]+ ≤ E[gt

+] ≤ δ[∇l(θt)]+, (8)

δ[∇l(θt)]− ≤ E[gt
−] ≤ 1

δ
[∇l(θt)]−. (9)

Here, [f]+ means the positive part of f , ie, [f]+ =
max{f,0}, and [f]− means the negative part of f , ie,
[f]− = min{f,0}. The bound in Equation 8 and 9 can
be proven following the fact that ∇l(θ) = ED[φ(X)] −
EPθ [φ(X)] and applying Equation 7. The proof of Theo-
rem 2 relies on our following new result (Theorem 3) on
Stochastic Gradient Descent (SGD) algorithms which only

Algorithm 1 XOR-CD
Input: θ0, c(X), φ(X), T, η, δ, γ,M,K, {xi}Ni=1.

1 for t = 0 to T do
2 j ← 1

while j ≤ K do
3 x′ ← XOR-Sampling

(
c(X)eθt

Tφ(X), δ, γ
)

if x′ 6= Failure then
4 x′j ← x′; j ← j + 1

5 end
6 end
7 Sample {xj}Mj=1 uniformly from {xi}Ni=1.

gt = 1
M

∑M
j=1 φ(xj)− 1

K

∑K
j=1 φ(x′j)

θt+1 = θt + ηgt
8 end
9 return θT = 1

T

∑T
t=1 θt.

have access to constant approximate gradient vectors. As
far as we know, previous SGD convergence analysis largely
requires the unbiasedness of the gradient. We are the first to
extend SGD convergence bounds to biased cases. Theorem
3 requires function f to be L-smooth. f(θ) is L-smooth if
and only if ||f(θ1)− f(θ2)||2 ≤ L||θ1 − θ2||2. Notice that
the conditions of Theorem 2 automatically guarantee the
L-smoothness of the log likelihood.

Theorem 3. Let f : Rd → R be a L-smooth convex func-
tion and θ∗ = argminθf(θ). In iteration t of SGD, gt is the
estimated gradient, i.e., θt+1 = θt − ηgt. If V ar(gt) ≤ σ2,
and there exists 1 ≤ c ≤

√
2 s.t. 1

c [∇f(θt)]
+ ≤ E[g+

t] ≤
c[∇f(θt)]

+ and c[∇f(θt)]
− ≤ E[g−t] ≤ 1

c [∇f(θt)]
−, then

for any T > 1 and step size η ≤ 2−c2
Lc , let θT = 1

T

∑T
t=1 θt,

we have

E[f(θT)]− f(θ∗) ≤ c||θ0 − θ∗||22
2ηT

+
ησ2

c
. (10)

The proofs of Theorems 2 and 3 are left to the supplementary
materials. Here we outline the sketch to prove Theorem 3.

Proof. (sketch for Theorem 3) One can show under the
conditions of Theorem 3, we must have (via Lemma 2,
stated and proved in supplementary materials):

1

c
||E[gt]||22 ≤ 〈∇f(θt),E[gt]〉 ≤ c||E[gt]||22.

1

c
〈E[gt], θt − θ∗〉 ≤ 〈∇f(θt), θt − θ∗〉 ≤ c〈E[gt], θt − θ∗〉.

By the L-smoothness of f , for the t-th iteration,

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
||θt+1 − θt||22,

XOR-CD: Linearly Convergent Constrained Structure Generation

P(X)

X

Data distribution
Model distribution
Training set
Samples from model
Update Direction

(a) Updating steps of traditional CD

P(X)

X

Data distribution
Model distribution
Training set
Samples from model
Update Direction

(b) Updating steps of XOR-CD

Figure 2. An intuitive explanation of why constraint satisfaction enabled by XOR-CD improves the overall learning performance. In
training data, valid structures are scattered across several isolated regions due to combinatorial constraints (green curves in both plots
denote the training data distribution and green dots denote the training samples). Many negative samples generated by traditional CD do
not satisfy constraints (blue triangles in the left plot). Therefore, traditional CD spends many iterations minimizing the likelihood of
invalid structures (blue arrows in the left plot). XOR-CD converges faster to the ground-truth data distribution because all its updates are
used to match the data distribution within the regions that satisfy constraints (orange arrows in the right plot).

= f(θt)− η〈∇f(θt), gt〉+
Lt2

2
||gt||2. (11)

By the convexity of f , we have

f(θt) ≤ f(θ∗) + 〈∇f(θt), θt − θ∗〉. (12)

The following inequalities can be shown, combining Lemma
2, Equation 11 and 12:

E[f(θt+1)] ≤ f(θ∗) + cE
[
〈gt, θt − θ∗〉 −

η

2
||gt||22

]
+
η

c
σ2.

which implies E[f(θt+1)] − f(θ∗) ≤ c
2ηE[(||θt − θ∗||22 −

||θt+1 − θ∗||22)] + η
cσ

2. Sum this inequality for t =
0, . . . , T − 1, we get

T−1∑
t=0

E[f(θt+1)− f(θ∗)]

≤ c

2η
(||θ0 − θ∗||22 − E[||θT − θ∗||22]) +

Tη

c
σ2

≤ c||θ0 − θ∗||22
2η

+
Tη

c
σ2.

Finally, by Jensen’s inequality, tf(θT) ≤
∑T
t=1 f(θt),

T−1∑
t=0

E[f(θt+1)− f(θ∗)] = E[

T∑
t=1

f(θt)]− Tf(θ∗)

≥ TE[f(θT)]− Tf(θ∗).

Combining the above equations we get

E[f(θT)] ≤ f(θ∗) +
c||θ0 − θ∗||22

2ηT
+
η

c
σ2.

This completes the proof.

The proof of Theorem 2 is to apply Theorem 3 on the log
likelihood function and noticing that l(θ) is L-smooth when
the total variation V ar(φ(x)) is bounded (proved by a sepa-
rate lemma). The lemmas and the proofs are left to section
B.4 in supplementary materials. Theorem 2 states that in
expectation, the difference between the output of XOR-CD
algorithm θT and the true optimum OPT is bounded by a
term that is inversely proportional to the number of itera-
tions T and a tail term η(σ2

2+ε2)
K +

ησ2
1

δM . To reduce the tail
term with fixed steps η, we can generate more samples at
each iteration to reduce the variance (increase M and K).
In addition, to quantify the computational complexity of
XOR-CD, we prove the following theorem in the supple-
mentary materials detailing the number of queries to NP
oracles needed for XOR-CD.

Theorem 4. XOR-CD in Algorithm 1 uses O(Tn ln n
γ +

TK) queries to NP oracles.

3.2. Constraint Satisfaction Improves Learning

In the previous section we prove the theoretic convergence
of XOR-CD towards the global optimum of the likelihood
function. Despite XOR-CD has to query NP oracles, which
are significantly more expensive than e.g., MCMC sam-
pling, we notice that XOR-CD converges to the global op-
timum faster than classical CD approaches in real-world
experiments, especially on constrained structure generation
problems (see the experiment section). Notice that our ob-
servation is different from that of (Hinton, 2002a), where
they observe CD works reasonably well even if the number
of the MCMC steps k is kept far less than that required for
well mixing. We attribute the observational difference to
the types of problems we consider, which are mainly con-

XOR-CD: Linearly Convergent Constrained Structure Generation

strained structure generation problems. The capability to
generate negative samples that satisfy constraints becomes
important for likelihood learning in this setting.

We use Figure 2 as an intuitive explanation of why the con-
straint satisfaction enabled by XOR-CD leads to improve-
ment in the learning performance. Figure 2(a) depicts one
iteration of a traditional CD process. Here, CD tries to match
the current model distribution (shown in the blue dashed
line) with the data distribution (shown in the green line),
by increasing the likelihood of the training samples and
decreasing the likelihood of the negative samples generated
typically by MCMC (denoted by the pulling of blue arrows).
Because MCMC does not guarantee the constraint satisfac-
tion of the negative samples, traditional CD spends much
time pulling down the model likelihood in regions which
violate constraints. On the contrary, Figure 2(b) depicts
one iteration of XOR-CD. Because the negative samples
are generated provably from XOR-sampling, they satisfy
constraints. This allows XOR-CD to focus on matching the
likelihood within the region that satisfy constraints; hence
leading towards faster matching to the data distribution.

4. Related Work
There is a fruitful line of work for generative machine learn-
ing. Energy-based models (Hinton & Salakhutdinov, 2006;
Bengio & Delalleau, 2009; Carreira-Perpinan & Hinton,
2005) take advantage of either exponential families (Hinton,
2002b; Jiang et al., 2018; Durkan et al., 2020) or neural
networks (Belanger & McCallum, 2016; Belanger et al.,
2017) for structure modelling. Qiu et al. (2019) leverages
coupling of Markov chains to get unbiased samples in Con-
trastive Divergence framework, which however is hard to
reach in practice. Score matching based methods (Bao
et al., 2020; Song & Ermon, 2020; Pang et al., 2020) try
to estimate the score function in order to get rid of the in-
tractable partition function. Deep generative models like
graph neural networks (Grover et al., 2019; Zhou et al.,
2018) and normalizing flow models (Kingma & Dhariwal,
2018; Prenger et al., 2019) are widely used recently. Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014; Radford et al., 2015; Isola et al., 2017) learn the
structure in a likelihood-free manner. While learning the
evidence lower bound, soft constraints were embedded to
Variational Auto-Encoder (VAE) (Kingma & Welling, 2013)
for molecule design (Kusner et al., 2017; Jin et al., 2018).
However, these deep generative methods can hardly deal
with hard combinatorial constraints.

Previous approaches embed machine learning models into
the optimization by, e.g., integrating neural networks and
decision trees with constraint programming (Lallouet &
Legtchenko, 2007), or introducing a Neuron global con-
straint that represents a pre-trained neural network (Lom-

10 15 20 25 30
#variables

5.0

4.5

4.0

3.5

3.0

2.5

Lo
g

Lik
el

ih
oo

d

Gibbs-CD
BP-CD
BPChain-CD
XOR-CD

Figure 3. Averaged log likelihood of 100 structures generated by
different learning algorithms on a discrete exponential family
model varying the number of variables. The structures generated
by XOR-CD have the highest average log-likelihoods.

bardi & Gualandi, 2016; Lombardi et al., 2017). Machine
learning approaches have also been used to solve constraint
reasoning and optimization problems (Galassi et al., 2018;
Vinyals et al., 2015; Khalil et al., 2017). Graves et al. (2016)
employs neural networks for discrete structure generation,
while Wang et al. (2019); Amos & Kolter (2017); Agrawal
et al. (2019) and de Avila Belbute-Peres et al. (2020) inte-
grate logical reasoning and differentiable optimization prob-
lems within deep learning architectures. Parity constraints
are proposed for both sampling (Gomes et al., 2007a; Er-
mon et al., 2013b) and counting problems (Ermon et al.,
2013a; Chakraborty et al., 2014; Achlioptas & Theodor-
opoulos, 2017; Achlioptas et al., 2018; Ding et al., 2019) in
probabilistic inference. These approaches provide constant
approximation guarantees on either the probability of the
samples or the estimated values of discrete integration.

5. Experiments
In this section we show the superior performance of XOR-
CD on 4 structure generation experiments, one on synthetic
data generated by a known model and the other three are
dispatching route generation, optimal experimental design,
and sequence-based protein homology detection. One base-
line is Contrastive Divergence CD100, denoted as Gibbs-CD,
which uses Gibbs Sampling (Carreira-Perpinan & Hinton,
2005) of 100 steps to obtain the samples from the model dis-
tribution. We also compare with Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014), belief propagation-
based CD approaches, BP-CD, and the recent BPChain-CD
(Fan & Xue, 2020). Various experiment settings are left to
the supplementary materials. In Figure 3, we show XOR-
CD learns the highest log likelihood on a synthetic dataset
(details in the supplementary materials).

5.1. Dispatching Route Generation

We consider the problem of generating dispatching routes
for delivery drivers. The delivery routes need to form Hamil-
tonian cycles, where each location is visited once and ex-

XOR-CD: Linearly Convergent Constrained Structure Generation

5 6 7 8 9 10
number of nodes in the graph

0%

20%

40%

60%

80%

100%

va
lid

 d
el

iv
er

y
ro

ut
e

(%
) Gibbs-CD

GAN
XOR-CD

KL=0.265
KL=0.127

KL=0.026 KL=0

KL=0.136
KL=0.355

KL=0.075 KL=0

Figure 4. XOR-CD outperforms competing approaches by producing 100% valid delivery routes and experiment designs while capturing
the inductive bias in training data. (Left) The percentage of valid routes generated by different algorithms, varying the number of locations.
(Middle) The dashed line shows the percentage of valid routes generated from different algorithms when the number of locations is 10.
The bars show the distributions of these valid routes grouped by the traveling distances d. The distribution of XOR-CD closely matches
that of the training data with the smallest KL divergence 0.026. (Right) The dashed line shows the percentage of valid experiment
designs generated from different algorithms on 5× 5 grids. The bars show the distributions of these valid structures grouped by variance.
XOR-CD generates 100% valid designs, and has the minimal KL divergence 0.075 towards the training data distribution.

actly once. For this experiment, we assume the number of
delivery locations n is fixed, although it is not difficult to
extend our approach to the cases where n varies. In the learn-
ing phase, we are given a dataset of historical trips, where
each trip is represented with a permutation of n locations, de-
noting the order of in which these locations are visited. We
learn an exponential family model to capture the likelihood
of different permutations. Specifically, denote xi,j as a bi-
nary indication variable, which is 1 if and only if the i-th lo-
cation to visit is location j. The exponential family model is
Pr(x) ∝ exp(θ0 +

∑
i,j θi,jxi,j +

∑
i,j,k θi,j,kxi,jxi+1,k)

and the θ’s are the parameters to learn. Learning rate is fixed
as 0.1 and total number of epochs T is 500. There is also a
timeout of 10 hours for all algorithms. We also set both M
and K to be 100, and parameters for XOR-Sampling were
kept the same as in (Ermon et al., 2013b). We leave the data
generation process, and how we add the Hamilton cycle
constraint into XOR-CD to the supplementary materials. In
solving the inference problem during testing, we have a se-
ries of additional constraints detailing the requirement of a
new day delivery. Such constraints include e.g., certain loca-
tions must be visited first, and one location must be visited
after another location, etc. Therefore, the inference problem
is to find variable assignments to all xi,j variables, which
maximizes the likelihood, while satisfies the Hamilton cycle
and the additional constraints.

We first examine the validity of the routes generated. The
left figure in Figure 4 shows the percentage of valid Hamil-
ton cycles generated from different algorithms, varying the
numbers of delivery locations from 5 to 10. We can see
that XOR-CD can generate 100% valid Hamilton structures
while the competing methods at best generate 40% valid
routes. The red dashed line in the middle figure shows the
percentage of valid Hamilton cycles generated from differ-
ent algorithms when the number of locations is 10. We then

examine whether the generated routes resemble those in the
training data. To validate this, we evaluate the distribution of
the total lengths of the routes generated. Without imposing
additional constraints, the lengths distribution of the gener-
ated routes should closely resembles that of the training set
for a successful learning algorithm. The bars in Figure 4
(middle) demonstrate such distributions of the valid routes
generated by each algorithm. The last column shows the
distribution of the training data. We can see the distribution
from XOR-CD closely matches the data distribution, with
KL divergence of 0.026. Other approaches are worse. This
indicates that XOR-CD is able to capture the inductive bias
of the training set better than competing approaches.

5.2. Optimal Experiment Design

We further consider the optimal experiment design prob-
lem. Here, we generate an experiment design in the
form of a Latin square, which is a n by n matrix and
each entry can be planted with crop 1 to n. Each
crop needs to be planted exactly once in each row and
column. Let xi,j,k be an indicator variable which is
1 if and only if crop k is planted at the i, j-th entry.
The exponential family model is: Pr(x) ∝ exp(θ0 +∑

i,j,k θi,j,kxi,j,k +
∑
i,j,m,l θ

1
i,j,m,lφ(xi,j,m, xi+1,j,l) +

θ2
i,j,m,lφ(xi,j,m, xi,j+1,l)). The learning parameters are set

the same as in the previous task. The learning problem is
to identify the values of θ’s. During testing, the inference
problem is to generate experiment designs from partially
filled matrices satisfying the Latin square requirement while
closely resemble those in the training set.

We first examine the validity of experiment designs. Here
we consider generating 5× 5 Latin squares. The percentage
of valid Latin squares are shown in the red dashed curve
of Figure 4 (right). Again, XOR-CD generates 100% valid

XOR-CD: Linearly Convergent Constrained Structure Generation

Partially filled
Latin Square XOR-CDGANGibbs-CD

Figure 5. XOR-CD (column 4) generates valid Latin squares from
partially filled structures (column 1), which all have variance 4,
the most frequent variance in the training dataset. Gibbs-CD (col-
umn 2) and GAN (column 3) cannot generate valid Latin squares
(constraints violation shown in red boxes).

experiment designs while competing approaches at best gen-
erate 20%. To judge how well the generated Latin squares
resemble those in the training set, we evaluate the distribu-
tion of the spatial variance of the generated Latin squares.
This metric was used as an additional criterion for good
experiment designs (see, e.g., (Gomes et al., 2004; Smith
et al.; Le Bras et al., 2012)). Without partially filled cells,
the generated Latin squares should be close in spatial vari-
ance as those in the training set. The bars in Figure 4 shows
that the distribution of the spatial variance of Latin squares
generated by XOR-CD matches that of the training set most
with KL divergence of 0.075. In addition, Figure 5 shows
that XOR-CD is able to complete a partially-filled Latin
square resembling those in the training set while Gibbs-CD
and GAN cannot generate valid structures.

5.3. Sequence-based Protein Homology Detection

We also consider a real-world task, sequence-based protein
homology detection. Our approach is based upon com-
paring protein sequence profiles, which are derived from
multiple sequence alignment (MSA) of homologies in a pro-
tein family. Let S1 and S2 be two sequences of amino acids.
Our goal is to align the two sequences. Our tasks are: (1)
(learning) given a dataset of aligned pairs of amino acid se-
quences, learn the likelihoods of different alignments of the
two sequences; (2) (inference) given a new pair of amino
acid sequences, determine their most likely alignment.

The exponential family model for protein alignment is simi-
lar to the one used in (Ma et al., 2014), where we use flow
constraints to guarantee the solution to form a valid path
in the alignment matrix. The details are left to the supple-
mentary materials. We constructed the training set from the

Dynamic
Program Gibbs-CD XOR-CD

valid align. 100% 0% 100%
Precision Recall

exact
match 4-offset

exact
match 4-offset

Dynamic
Program 28.7% 39.5% 33.5% 41.2%

Gibbs-CD 39.6% 47.8% 37.9% 45.4%
XOR-CD 48.8% 54.3% 45.3% 52.1%

Table 1. (Upper) XOR-CD and dynamic programming generate
100% valid alignments for protein homology detection, while
Gibbs-CD cannot. (Lower) Precision and recall of the alignments
found by different approaches. XOR-CD outperforms two base-
lines by a large margin, even when both metrics are calculated
taking into account both valid and invalid alignments. 4-offset is a
relaxed measure.

PDB40 dataset (Wu & Xu, 2020). Following the practice of
(Ma et al., 2014), the reference alignment (groundtruth) is
generated by DeepAlign (Wang et al., 2013). Our experi-
ment data include those whose groundtruth alignment has
fewer than 50 gap positions (excluding the gap in the begin-
ning and end) and the total length is up to 200. The test set
is made up with 50 randomly sampled sequences from the
PDB40 dataset separated from the training set. Following
common practice, we use precision and recall as evaluation
metrics. Precision is the fraction of correctly aligned amino
acid pairs within all predicted ones, and recall is the fraction
of correctly aligned pairs within all ground-truth ones. No-
tice these two metrics are local, and can be computed even
when the global alignment is invalid (does not form a path in
the alignment matrix). We compare XOR-CD with dynamic
programming and Gibbs-CD. Dynamic programming uses
an expert-defined objective (Rychlewski et al., 2000) with a
few learned terms. It always produces valid alignments.

As shown in Table 1 (Upper), both dynamic programming
and XOR-CD have the ability to generate 100% valid align-
ments, while Gibbs-CD cannot. XOR-CD outperforms both
baselines in precision and recall in Table 1 (Lower). 4-
position off is a relaxed metric that considers a alignment
correct if it is off by at most 4 positions. Using this relaxed
metric, XOR-CD still outperforms both baselines by 7%
in precision and 14% in recall. Notice these metrics are
computed taking into both valid and invalid alignments. In
summary, XOR-CD outperforms baselines in all learning
metrics while also generating 100% valid alignments.

6. Conclusion
We proposed XOR-CD, a novel algorithm for constrained
structure generation. We showed theoretically that XOR-CD
has a linear convergence rate to the global optimum for ex-
ponential family models. Empirically, we demonstrated the
superior performance of XOR-CD on three real-world con-

XOR-CD: Linearly Convergent Constrained Structure Generation

strained structure generation tasks. In all tasks, XOR-CD
generates 100% valid structures and these generated struc-
tures closely match those in the training set. Future work
includes extending XOR-CD to deep generative models.

Acknowledgements
This research was supported by NSF grants IIS-1850243,
CCF-1918327. We thank anonymous reviewers for their
comments and suggestions.

References
Achlioptas, D. and Theodoropoulos, P. Probabilistic model

counting with short xors. In International Conference
on Theory and Applications of Satisfiability Testing, pp.
3–19. Springer, 2017.

Achlioptas, D., Hammoudeh, Z., and Theodoropoulos, P.
Fast and flexible probabilistic model counting. In In-
ternational Conference on Theory and Applications of
Satisfiability Testing, 2018.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,
S., and Kolter, J. Z. Differentiable convex optimization
layers. In Advances in neural information processing
systems, pp. 9562–9574, 2019.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. arXiv preprint
arXiv:1703.00443, 2017.

Bao, F., Li, C., Xu, T., Su, H., Zhu, J., and Zhang, B. Bi-
level score matching for learning energy-based latent vari-
able models. Advances in Neural Information Processing
Systems, 33, 2020.

Barton, J. P., De Leonardis, E., Coucke, A., and Cocco, S.
Ace: adaptive cluster expansion for maximum entropy
graphical model inference. Bioinformatics, 32(20):3089–
3097, 2016.

Belanger, D. and McCallum, A. Structured prediction en-
ergy networks. In International Conference on Machine
Learning, pp. 983–992, 2016.

Belanger, D., Yang, B., and McCallum, A. End-to-end
learning for structured prediction energy networks. arXiv
preprint arXiv:1703.05667, 2017.

Bengio, Y. and Delalleau, O. Justifying and generalizing
contrastive divergence. Neural computation, 21(6):1601–
1621, 2009.

Briot, J.-P., Hadjeres, G., and Pachet, F.-D. Deep learning
techniques for music generation–a survey. arXiv preprint
arXiv:1709.01620, 2017.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Carreira-Perpinan, M. A. and Hinton, G. E. On contrastive
divergence learning. In Aistats, volume 10, pp. 33–40.
Citeseer, 2005.

Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia,
S. A., and Vardi, M. Y. Distribution-aware sampling
and weighted model counting for sat. In AAAI, 2014.

de Avila Belbute-Peres, F., Economon, T. D., and Kolter,
J. Z. Combining differentiable pde solvers and graph
neural networks for fluid flow prediction. 2020.

Dehaene, G. P. and Barthelmé, S. Bounding errors of
expectation-propagation. In Advances in Neural Informa-
tion Processing Systems, pp. 244–252, 2015.

Ding, F., Wang, H., Sabharwal, A., and Xue, Y. Towards
efficient discrete integration via adaptive quantile queries.
arXiv preprint arXiv:1910.05811, 2019.

Durkan, C., Murray, I., and Papamakarios, G. On contrastive
learning for likelihood-free inference. arXiv preprint
arXiv:2002.03712, 2020.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi,
M., Eck, D., and Simonyan, K. Neural audio synthesis
of musical notes with wavenet autoencoders. In Interna-
tional Conference on Machine Learning, pp. 1068–1077.
PMLR, 2017.

Ermon, S., Gomes, C. P., Sabharwal, A., and Selman, B.
Taming the curse of dimensionality: Discrete integration
by hashing and optimization. In Proceedings of the 30th
International Conference on Machine Learning, ICML,
2013a.

Ermon, S., Gomes, C. P., Sabharwal, A., and Selman, B.
Embed and project: Discrete sampling with universal
hashing. In Advances in Neural Information Processing
Systems (NIPS), 2013b.

Fan, D. and Xue, Y. Contrastive divergence learning with
chained belief propagation. In International Conference
on Probabilistic Graphical Models, 2020.

Galassi, A., Lombardi, M., Mello, P., and Milano, M. Model
Agnostic Solution of CSPs via Deep Learning: A Prelim-
inary Study. In Proceedings of CPAIOR, volume 10848
of LNCS, pp. 254–262. Springer, 2018.

Gomes, C., Sellmann, M., Van Es, C., and Van Es, H. The
challenge of generating spatially balanced scientific ex-
periment designs. In International Conference on In-
tegration of Artificial Intelligence (AI) and Operations

XOR-CD: Linearly Convergent Constrained Structure Generation

Research (OR) Techniques in Constraint Programming,
pp. 387–394. Springer, 2004.

Gomes, C. P., Sabharwal, A., and Selman, B. Near-uniform
sampling of combinatorial spaces using xor constraints.
In Schölkopf, B., Platt, J. C., and Hoffman, T. (eds.),
Advances in Neural Information Processing Systems 19,
pp. 481–488. MIT Press, 2007a.

Gomes, C. P., Van Hoeve, W.-J., Sabharwal, A., and Selman,
B. Counting csp solutions using generalized xor con-
straints. In Proceedings of the 22nd National Conference
on Artificial Intelligence, 2007b.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwinska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A.,
King, H., Summerfield, C., Blunsom, P., Kavukcuoglu,
K., and Hassabis, D. Hybrid computing using a neural
network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

Grover, A., Zweig, A., and Ermon, S. Graphite: Iterative
generative modeling of graphs. In International confer-
ence on machine learning, pp. 2434–2444. PMLR, 2019.

Hinton, G. and Salakhutdinov, R. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):
504 – 507, 2006.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural Comput., pp. 1771–1800,
2002a.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–
1800, 2002b.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1125–1134, 2017.

Jiang, B., Wu, T.-Y., Jin, Y., Wong, W. H., et al. Conver-
gence of contrastive divergence algorithm in exponen-
tial family. The Annals of Statistics, 46(6A):3067–3098,
2018.

Jin, W., Barzilay, R., and Jaakkola, T. S. Junction tree
variational autoencoder for molecular graph generation.
In ICML, 2018.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems, pp. 6348–6358. 2017.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in neural
information processing systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70, pp. 1945–1954, 2017.

Lallouet, A. and Legtchenko, A. Building Consistencies
for Partially Defined Constraints with Decision Trees and
Neural Networks. International Journal on Artificial
Intelligence Tools, 16(4):683–706, 2007.

Le Bras, R., Gomes, C., and Selman, B. From streamlined
combinatorial search to efficient constructive procedures.
In Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, 2012.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A.
Constrained graph variational autoencoders for molecule
design. In Advances in neural information processing
systems, pp. 7795–7804, 2018.

Lombardi, M. and Gualandi, S. A lagrangian propagator
for artificial neural networks in constraint programming.
Constraints, 21(4):435–462, 2016.

Lombardi, M., Milano, M., and Bartolini, A. Empirical de-
cision model learning. Artif. Intell., 244:343–367, 2017.

Ma, J., Wang, S., Wang, Z., and Xu, J. Mrfalign: protein
homology detection through alignment of markov random
fields. PLoS Comput Biol, 10(3):e1003500, 2014.

Minka, T. P. Expectation propagation for approximate
bayesian inference. arXiv preprint arXiv:1301.2294,
2013.

Pang, T., Xu, K., Li, C., Song, Y., Ermon, S., and Zhu, J. Ef-
ficient learning of generative models via finite-difference
score matching. arXiv preprint arXiv:2007.03317, 2020.

Ping, W. and Ihler, A. Belief propagation in condi-
tional rbms for structured prediction. arXiv preprint
arXiv:1703.00986, 2017.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A
flow-based generative network for speech synthesis. In
ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
3617–3621. IEEE, 2019.

XOR-CD: Linearly Convergent Constrained Structure Generation

Qiu, Y., Zhang, L., and Wang, X. Unbiased contrastive diver-
gence algorithm for training energy-based latent variable
models. In International Conference on Learning Repre-
sentations, 2019.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Rychlewski, L., Li, W., Jaroszewski, L., and Godzik, A.
Comparison of sequence profiles. strategies for structural
predictions using sequence information. Protein Science,
9(2):232–241, 2000.

Smith, C., Gomes, C., and Fernandez, C. Streamlining local
search for spatially balanced latin squares.

Söding, J. Protein homology detection by hmm–hmm com-
parison. Bioinformatics, 21(7):951–960, 2005.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. Advances in Neural
Information Processing Systems, 33, 2020.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, pp. 2692–2700. 2015.

Wang, P.-W., Donti, P. L., Wilder, B., and Kolter, Z. Sat-
net: Bridging deep learning and logical reasoning us-
ing a differentiable satisfiability solver. arXiv preprint
arXiv:1905.12149, 2019.

Wang, S., Ma, J., Peng, J., and Xu, J. Protein structure
alignment beyond spatial proximity. Scientific reports, 3:
1448, 2013.

Wu, F. and Xu, J. Deep template-based protein structure
prediction. bioRxiv, 2020.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A
review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

XOR-CD: Linearly Convergent Constrained Structure Generation

Supplementary Materials

A. XOR-Sampling for the Weighted Case
The text here provides a synopsis for the approach in (Ermon
et al., 2013b). We still encourage the readers to read the orig-
inal text for a better explanation. Letw(x) as defined before,
Z =

∑
x∈X w(x) and P (x) = w(x)/Z, the high-level idea

of XOR-Sampling is to first dicretize w(x) to w′(x) as in
Definition 1, followed by embedding the weighted w′(x)
to the unweighted space ∆w. Finally, XOR-sampling uses
hashing and randomization to sample uniformly from ∆w.
Definition 1. Assume w(x) has both upper and lower
bound, namely,M = maxx w(x) andm = minx w(x). Let
b ≥ 1, ε > 0, r = 2b/(2b − 1) and l = dlogr(2

n/ε)e. Par-
tition the configurations into the following weight based dis-
joint buckets: Bi = {x|w(x) ∈ (M

ri+1 ,
M
ri]}, i = 0, . . . , l−1

and Bl = {x|w(x) ∈ (0, M
rl

]}. The discretized weight func-
tion w′ : {0, 1}n → R+ is defined as follows: w′(x) =
M
ri+1 if x ∈ Bi, i = 0, . . . , l − 1 and w′(x) = 0 if x ∈ Bl.
This leads to the corresponding discretized probability dis-
tribution p′(x) = w′(x)/Z ′ where Z ′ is the normalization
constant of w′(x).

For the weighted case, the goal of XOR-sampling is to guar-
antee that the probability of sampling one x is proportional
to the unnormalized density (up to a multiplicative con-
stant). Using the discretization in Definition 1, we obtain a
distribution p′(x) which satisfying 1

ρp(x) ≤ p′(x) ≤ ρp(x)

where ρ = r2

1−ε . Then, XOR-sampling implements a hor-
izontal slice technique to transform a weighted problem
into an unweighted one. For the easiness of illustration,
we denote M ′ = maxx w

′(x) and m′ as the smallest non-
zero value of w′(x). Then consider a simple case where
b = 1 and r = 2. In this case we have M ′ = 2l−1m′.
Let y = (y0, . . . , yl−2)T ∈ {0, 1}l−1 be a binary vector of
length l − 1, XOR-sampling samples (x, y) uniformly at
random from the following set ∆w using the unweighted
version of XOR-sampling based on hashing and randomiza-
tion:

∆w = {(x, y) : w′(x) ≤ 2i+1m′ ⇒ yi = 0}. (13)

Upon obtaining one sample (x, y) uniformly at random from
∆w, we only return x. It can be proved that the probability
of sampling x from w′(x) is proportional to m′2i−1 when
w′(x) is sandwiched between m′2i−1 and m′2i. Therefore,
this technique leads to the constant approximation guarantee
of XOR-Sampling, which states formally as Theorem 5:
Theorem 5. (Ermon et al., 2013b) Let ε > 0, b > 1, P ≥ 2,
0 < δ0 < 1, and γ0 = log((P+2

√
P + 1+2)/P). For any

α ∈ Z, α > γ0, let c(α, P) = 1−2γ0−α/(1− 1
P −2γ0−α)2.

Let r = 2b/(2b−1), l = dlogr(2
n/ε)e, ρ = r2/(1−ε), κ =

1/c(α, P) and bucket Bl as in Definition 1 in the supple-
mentary materials. Denote Pr′s(x) as distribution of the

samples generated by XOR-Sampling(w, l, b, δ, P, α) and
let φ : {0, 1}n → R+ be one non-negative function. Then,
with probability at least (1 − δ0)c(α, P)2−(γ0+α+1) P

P−1 ,
XOR-Sampling succeeds and outputs a sample x0. Upon
success, each x0 is output with probability P ′(x0), which is
within a constant factor of the true P (x0). Furthermore, the
expectation of a non-negative function φ(x), EP (x)[φ(x)]
can be bounded by:

1

ρκ
EP ′(x)[φ(x)]− εηφ ≤ EP (θ)[φ(x)]

≤ ρκEP ′(x)[φ(x)] + εηφ.

(14)

Theorem 1 is a simplified representation of the previous
Theorem. Our new theoretic results can be stated simpler
and clearer building upon the statement in Theorem 1. As-
suming all the parameters of Theorem 5, we set δ = ρκ, and
γ = 1 − (1 − δ0)c(α, P)2−(γ0+α+1) P

P−1 and can obtain
the corresponding guarantee stated in Theorem 1.

B. Proofs
Theorem 2 states that the function value of the output of
XOR-CD, in expectation converges to the true optimum
within a small constant distance at a linear speed w.r.t. the
number of iterations T . To prove Theorem 2, we first prove
two lemmas.

Lemma 1. If the total variation maxθ V arPθ (φ(X)) ≤ σ2
2 ,

then l(θ) is σ2
2-smooth w.r.t. θ.

B.1. Proof of Lemma 1

Proof. Since l(θ) = − 1
N

∑N
i=1 logPθ(xi), L-smoothness

requires that

||∇l(θ1)−∇l(θ2)||2 ≤ L||θ1 − θ2||2, ∀θ1, θ2 ∈ dom f,

where L is a constant. Because of the mean value theorem,
there exists a point θ̃ ∈ (θ1, θ2) such that

∇l(θ1)−∇l(θ2) = ∇(∇l(θ̃))(θ1 − θ2).

Taking the L2 norm for both sides, we have

||∇l(θ1)−∇l(θ2)||2 =||∇(∇l(θ̃))(θ1 − θ2)||2
≤||∇(∇l(θ̃))||2 ||θ1 − θ2||2 (15)

Then, the problem is to bound the matrix 2-norm
||∇(∇l(θ̃))||2. Since we know the explicit form of l(θ),
we know

∇l(θ) = ∇Λ(θ)− 1

N

N∑
i=1

φ(xi),

∇(∇l(θ)) =
∑
x∈X

[φ(x)−∇Λ(θ)][φ(x)−∇Λ(θ)]TPθ(x),

(16)

XOR-CD: Linearly Convergent Constrained Structure Generation

where ∇(∇l(θ)) is the co-variance matrix. Denote
Covθ[φ(X)] = ∇(∇l(θ)), which is both symmetric and
positive semi-definite. We have

||∇(∇l(θ̃))||2 = ||Covθ[φ(X)]||2 = λmax,

where λmax is the maximum eigenvalue of the ma-
trix Covθ[φ(X)]. Then, because of the positive semi-
definiteness of the co-variance matrix, all the eigenvalues
are non-negative, and we can bound λmax as

λmax ≤
∑
i

λi = Tr(Covθ[φ(X)]),

where Tr(Covθ[φ(X)]) is the trace of matrix Covθ[φ(X)].
Using the definition in Equation 16, Tr(Covθ[φ(X)]) can
be further derived as:

Tr(Covθ[φ(X)]) = EPθ [||φ(X)||22]− ||EPθ [φ(X)]||22,

which is equal to the total variation V arPθ (φ(X)). There-
fore, we have

||∇(∇l(θ̃))||2 ≤ V arPθ (φ(X)) ≤ σ2
2 .

Combining this with Equation 15, we know

||∇l(θ1)−∇l(θ2)||2 ≤ σ2
2 ||θ1 − θ2||2.

This completes the proof.

In addition, based on the constant approximation of
ED,P ′

θ
[gt], we can bound another two important terms

shown in Lemma 2.

Lemma 2. Let f : Rd → R be a convex function and θ∗ =
argminθf(θ). In iteration t, gt is the estimated gradient. If
there exists a constant c ≥ 1 s.t. 1

c [∇f(θt)]
+ ≤ E[g+

t] ≤
c[∇f(θt)]

+ and c[∇f(θt)]
− ≤ E[g−t] ≤ 1

c [∇f(θt)]
−, then

we have

1

c
||E[gt]||22 ≤ 〈∇f(θt),E[gt]〉 ≤ c||E[gt]||22.

1

c
〈E[gt], θt − θ∗〉 ≤ 〈∇f(θt), θt − θ∗〉 ≤ c〈E[gt], θt − θ∗〉.

B.2. Proof of Lemma 2

Proof. (Lemma 2) Since we have the constant bound that

1

c
∇f(θt)

+ ≤ E[g+
t] ≤ c∇f(θt)

+. (17)

c∇f(θt)
− ≤ E[g−t] ≤ 1

c
∇f(θt)

−. (18)

and because of g+
t ≥ 0 and g−t ≤ 0 we can obtain

1

c
||E[g+

t]||22 =
1

c
〈E[g+

t],E[g+
t]〉 ≤ 〈∇f(θt)

+,E[g+
t]〉

≤ c〈E[g+
t],E[g+

t]〉 = c||E[g+
t]||22.

1

c
||E[g−t]||22 =

1

c
〈E[g−t],E[g−t]〉 ≤ 〈∇f(θt)

−,E[g−t]〉

≤ c〈E[g−t],E[g−t]〉 = c||E[g−t]||22.

which exactly means

1

c
||E[gt]||22 ≤ 〈∇f(θt),E[gt]〉 ≤ c||E[gt]||22.

To prove the second inequality, we need to take advantage of
the convexity of f . Denote [θt − θ∗]+ = max{θt − θ∗, 0}
and [θt − θ∗]− = min{θt − θ∗, 0}, we know θt − θ∗ =
[θt − θ∗]+ + [θt − θ∗]−. In addition, because f is convex,
the index set of non-zero entries of [θt − θ∗]+ and∇f(θt)

+

is the same. The index set of non-zero entries of [θt −
θ∗]− and ∇f(θt)

− is also the same. In addition, because
of Equation 17 and 18, the index set of non-zero entries
of E[g+

t] (E[g−t]) is the same with ∇f(θt)
+ (∇f(θt)

−).
Combining these facts with Equations 17 and 18, we have

1

c
〈E[g+

t], [θt − θ∗]+〉 ≤ 〈∇f(θt)
+, [θt − θ∗]+〉

≤ c〈E[g+
t], [θt − θ∗]+〉.

1

c
〈E[g−t], [θt − θ∗]−〉 ≤ 〈∇f(θt)

−, [θt − θ∗]−〉

≤ c〈E[g−t], [θt − θ∗]−〉.

Combining these two equations, we have

1

c
〈E[gt], θt − θ∗〉 ≤ 〈∇f(θt), θt − θ∗〉 ≤ c〈E[gt], θt − θ∗〉.

This completes the proof.

Lemma 2 gives the new bounds of two terms assuming the
constant bound on the gradient, which are essential to the
proof of convergence rate. Based on Lemma 2, we can prove
Theorem 3, which bounds the error of Stochastic Gradient
Descent (SGD) on a convex optimization problem when the
estimated gradient gt in the t-th step resides in a constant
bound of ∇f(θt).

B.3. Proof of Theorem 3

Theorem 3 indicates that even the expectation of gradients
in each iteration only have a constant approximation, SGD
is still able to converge to the optimal solution within a
small constant gap at linear speed. The complete proof of
Theorem 3 is as follows:

Proof. (Theorem 3) By L-smooth of f , for the t-th iteration,

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
||θt+1 − θt||22,

= f(θt)− η〈∇f(θt), gt〉+
Lt2

2
||gt||2.

XOR-CD: Linearly Convergent Constrained Structure Generation

Because of the constant bound on gradient and ||E[gt]||22 =
E[||gt||22] − V ar(gt), by taking expectation on both sides
w.r.t gt we get from Lemma 2 that

E[f(θt+1)] ≤ f(θt)−
η

c
||E[gt]||22 +

Lη2

2
E[||gt||22],

= f(θt)−
η

c
(E[||gt||22]− V ar(gt)) +

Lη2

2
E[||gt||22],

≤ f(θt)−
η(2− Lηc)

2c
E[||gt||22] +

η

c
σ2,

≤ f(θt)−
ηc

2
E[||gt||22] +

η

c
σ2,

where the last inequality follows as Lηc ≤ 2− c2. Because
f is convex, still from Lemma 2 we get

E[f(θt+1)]

≤ f(θ∗) + 〈∇f(θt), θt − θ∗〉 −
ηc

2
E[||gt||22] +

η

c
σ2,

≤ f(θ∗) + c〈E[gt], θt − θ∗〉 −
ηc

2
E[||gt||22] +

η

c
σ2,

= f(θ∗) + cE[〈gt, θt − θ∗〉 −
η

2
||gt||22] +

η

c
σ2.

We now repeat the calculations by completing the square
for the middle two terms to get

E[f(θt+1)]

≤ f(θ∗) +
c

2η
E[2η〈gt, θt − θ∗〉 − η2||gt||22] +

η

c
σ2,

≤ f(θ∗) +
c

2η
E[||θt − θ∗||22 − ||θt − θ∗ − ηgt||22] +

η

c
σ2,

= f(θ∗) +
c

2η
E[(||θt − θ∗||22 − ||θt+1 − θ∗||22)] +

η

c
σ2.

Summing the above equations for t = 0, . . . , T − 1, we get

T−1∑
t=0

E[f(θt+1)− f(θ∗)]

≤ c

2η
(||θ0 − θ∗||22 − E[||θT − θ∗||22]) +

Tη

c
σ2

≤ c||θ0 − θ∗||22
2η

+
Tη

c
σ2.

Finally, by Jensen’s inequality, tf(θT) ≤
∑T
t=1 f(θt),

T−1∑
t=0

E[f(θt+1)− f(θ∗)] = E[

T∑
t=1

f(θt)]− Tf(θ∗)

≥ TE[f(θT)]− Tf(θ∗).

Combining the above equations we get

E[f(θT)] ≤ f(θ∗) +
c||θ0 − θ∗||22

2ηT
+
η

c
σ2.

This completes the proof.

B.4. Proof of Theorem 2

Finally, we give the full proof of Theorem 2 as follows:

Proof. (Theorem 2) Since we useM samples from the train-
ing set {xi}Ni=1 and K samples x′1, . . . , x

′
K from Pθt(X)

using XOR-Sampling at each iteration, we have

gt =
1

M

M∑
j=1

φ(xj)−
1

K

K∑
i=1

φ(x′i).

Denote git = 1
M

∑M
j=1 φ(xj)− φ(x′i), we have the expecta-

tion of gt as

ED,P ′
θ
[gt] = EP ′

θ
[ED[φ(x)]− φ(x′)] = ED,P ′

θ
[git].

In each iteration t we can adjust the parameters in XOR-
Sampling to make the tail εηφ zero, then for each git we can
obtain from Theorem 1 that

1

δ
[g(θt)]

+ ≤ ED,P ′
θ
[gi+t] ≤ δ[g(θt)]

+. (19)

δ[g(θt)]
− ≤ ED,P ′

θ
[gi−t] ≤ 1

δ
[g(θt)]

−. (20)

where g(θt) is the true gradient at t-th iteration. De-
note gt+ = max{gt, 0} and gt− = min{gt, 0}. Clearly,
gi+t ≥ 0 and gi−t ≤ 0. Moreover, for a given dimen-
sion, either gi+t = 0 for that dimension or gi−t = 0.
Evaluating gt dimension by dimension, we can see that
gt

+ = 1
K

∑K
i=1 g

i+
t and gt− = 1

K

∑K
i=1 g

i−
t . Combined

with Equation 19 and 20, we know

1

δ
[g(θt)]

+ ≤ ED,P ′
θ
[gt

+] ≤ δ[g(θt)]
+.

δ[g(θt)]
− ≤ ED,P ′

θ
[gt
−] ≤ 1

δ
[g(θt)]

−.

In terms of variance, the variance of each φ(x′i) can be
bounded by

V arP ′
θ
(φ(x′i)) = EP ′

θ
[||φ(xi)||22]− ||EP ′

θ
[φ(xi)]||22,

≤ δEPθ [||φ(xi)||22],

= δ(V arPθ (φ(xi)) + ||EPθ [φ(xi)]||22),

≤ δ(σ2
2 + ε2).

Because ED,P ′
θ
[gt] = ED,P ′

θ
[git], the variance of gt, denoted

as V arD,P ′
θ
(gt), can then be bounded as

V arD,P ′
θ
(gt)

= V arD(
1

M

M∑
j=1

φ(Xj)) + V arP ′
θ
(

1

K

K∑
i=1

φ(x′i))

=
1

M
V arD(φ(Xj)) +

1

K
V arP ′

θ
(φ(x′i))

XOR-CD: Linearly Convergent Constrained Structure Generation

≤ 1

M
σ2

1 +
δ

K
(σ2

2 + ε2)

Therefore, since l(θ) is convex and σ2
2−smooth from

Lemma 1, we can then apply Theorem 3 to get the result in
Theorem 2.

OPT − E[l(θT)]

≤ δ||θ0 − θ∗||22
2ηT

+
ηmaxθt{V arD,P ′

θ
(gt)}

δ

≤ δ||θ0 − θ∗||22
2ηT

+
η(σ2

2 + ε2)

K
+
ησ2

1

δM
.

This completes the proof.

B.5. Proof of Theorem 4

Proof. (Theorem 4) From Theorem 1 we know that in each
iteration of XOR-CD, we need to access O(n ln n

γ) queries
of NP oracles in order to generate one sample. However, as
specified also in Ermon et al. (2013b), only the first sample
needs those many queries. Once we have the first sample,
the number of XOR constraints to add (depends on the sizes
of the set ∆w stated in supplementary materials section A)
can be known in generating future samples for this SGD
iteration. Therefore, we fix the number of XOR constraints
added starting the generation of the second sample. As a
result, we only need one NP oracle query in generating each
of the following K − 1 samples. Therefore, total queries
in each iteration will be O(n ln n

γ + K). To complete all
T SGD iterations, XOR-CD needs O(Tn ln n

γ + TK) NP
oracle queries in total.

C. Additional Experimental Details
Here we show some additional experiments we have done
for this paper and additional details of the experiments dis-
cussed in the main text.

C.1. Maximum Likelihood Learning

Here we show XOR-CD is able to learn exponential fam-
ily models with higher likelihood compared to compet-
ing approaches. We consider a discrete exponential fam-
ily model with n binary variables x = (x1, . . . , xn)T ,
where each xi ∈ {0, 1} for i ∈ {1, . . . , n}. The expo-
nential family model we consider is in the form: Pr(x) ∝
exp(

∑K
k=1 θ

T
k φ(xk)). Here, each xk is a subset of all n

variables, and is often referred to as a clique. Suppose xk is
of size lk, φ is the Cartesian product, i.e., it maps a vector of
lk binary variables to a vector of size 2lk , where each entry
in the vector evaluates to 1 if and only if xk takes a particu-
lar assignment (There are 2lk different value assignments to
lk binary variables).

We synthetically generate a few exponential family models
and test if learning algorithms can rediscover these mod-
els. In generating one model, we first draw the number of
cliques uniformly from [n, 2n]. The size of each clique is
chosen from the range of [1, 6] at random. Then, to generate
θk = (θk,1, . . . , θk,2lk)T , each θk,i is generated in the form
of θk,i = vki1 + vki2vki3, where vki1 is uniformly drawn
from (0, 1), vki3 uniformly from (10, 1000) and binary vari-
able vki2 uniformly randomly drawn from {0, 1}. In the
experiment, we vary n from 10 to 31 in intervals of 3, and
generate 10 models for each n. For each model, we generate
1000 training data points from the ground-truth probabil-
ity distribution (possibly overlapping) and see if learning
algorithms can rediscover the exponential family models.

In learning exponential family models, we keep the structure
of the exponential family model to be learned the same
as the one that generates training data, and initialize all θ
parameters to be the absolute values of samples drawn from
a Gaussian distribution N (10, 10). Learning rate is fixed
as 0.1 and parameters in XOR-Sampling are the same as in
(Ermon et al., 2013b). For comparison, in addition to Gibbs-
CD, we also compare with Belief Propagation equipped
Contrastive Divergence (Ping & Ihler, 2017), denoted as
BP-CD, and BPChain-CD (Fan & Xue, 2020). We allow the
competing methods to draw 10000 samples from the model
distribution while XOR-CD only draws 100 samples for a
fair comparison (because it takes less time to draw samples
using e.g., MCMC). When testing, we use ACE (Barton
et al., 2016) to sample exactly from a target distribution. We
implement XOR-CD using IBM ILOG CPLEX Optimizer
12.63 for queries to NP oracles. Experiments are carried
out on a cluster, where each node has 24 cores and 96GB
memory.

Likelihood Comparison Figure 3 shows the results of the
four algorithms. The x-axis is exponential family model
with different numbers of variables, and y-axis is the average
log-likelihood of 1000 randomly generated samples from
models learned by each of the learning algorithm. Here
we use ACE (Barton et al., 2016) to compute the exact log-
likelihood. We can see XOR-CD learns models that generate
samples with higher average log-likelihood compared to
competing approaches.

Time complexity We test the time complexity of different
methods and find XOR-CD runs faster than Gibbs-CD. In
particular, XOR-CD with 100 samples takes 1 minute 50
seconds per XOR iteration, while Gibbs-CD with 10,000
MCMC samples needs 2.5 minutes when learning models
with dimension n = 31. Notice that XOR-CD outperforms
Gibbs-CD in likelihood values also.

XOR-CD: Linearly Convergent Constrained Structure Generation

1 4 3 0 2
…
…
… xij
…

Binarized Latin square

…
 …

 …
 …

Latin square

Figure 6. This figure shows how to binarize a Latin square. For
each entry xi,j ∈ {1, 2, ..., n} in the i−th row and j−th column
of a Latin square, we use n binary variables xi,j,k ∈ {0, 1} to
represent its value where k ∈ {1, 2, ..., n}. If the value of xi,j is
k, then only xi,j,k is equal to 1 and the other n− 1 variables are
equal to 0.

C.2. Dispatching Route Generation

Here is additional information regarding the dispatching
route generation experiment.

Models and experimental settings We learn an expo-
nential family model to capture the likelihood of different
permutations. Specifically, the exponential family model is
Pr(x) ∝ exp(θ0 +

∑
i,j θi,jxi,j +

∑
i,j,k θi,j,kxi,jxi+1,k)

and the θ’s are the parameters to learn. In generating train-
ing data, we assume the n locations are fully-connected, i.e.,
there is an edge between every two locations. Assuming
the locations are labeled from 1 to n, we assume the dis-
tance between two locations is the difference between its
two indices. For example, the distance between 1 and 3
is 2 (=3-1). The total travel distance d of a delivery route
is the sum of the distances of each edge traveled in a trip.
We randomly sample delivery routes according to the travel
distance distribution shown in the rightmost column of the
middle figure of Figure 4 to form the training dataset.

In learning the exponential family model, we initialize
each model parameter (e.g., θ0, θi,j , θi,j,k) to be the ab-
solute value of samples drawn from a Gaussian distribution
N (10, 10). For XOR-CD, we set T = 500 and a time limit
of 10 hours. M = K = 100, and learning rate is 0.1. Pa-
rameters of XOR-Sampling are set the same as in Ermon
et al. (2013b) in order to ensure δ =

√
2. For Gibbs-CD, we

let K = 10000 and the others are set the same as XOR-CD.
As for the structure of GAN, the generator takes the input of
random noise vector of dimension n (n is the number of lo-
cations), and has the structure fc{2n}− fc{5n}− fc{n2}.
Here, fc{.} denotes a fully connected layer of output di-
mension {.}. For example, the first fully connected layer
fc{2n} maps an input of dimension n to an output of di-
mension 2n. The output of the generator is of the shape
n2 which represent variables xij . The discriminator has a

structure fc{n2}−fc{5n}−fc{2n}−fc{2}−softmax.
We use ReLU as the activation function between fc layers.
Number of training epochs is 1000, and the wall-time limit
is also 10 hours.

Hamilton Cycle Constraints In sampling from current
model distribution, XOR-CD has to sample the assignments
to variables xi,j which form valid Hamilton cycles; ie, the
locations to visit in a route form a permutation. We include
the following two constraints in the mixed integer program
of XOR-sampling to enforce this contraint:

n∑
j=1

xi,j = 1, ∀i ∈ {1, ..., n}; (21)

n∑
i=1

xi,j = 1, ∀j ∈ {1, ..., n}. (22)

C.3. Optimal Experiment Design

Models and experimental settings Let xi,j,k be
an indicator variable which is 1 if and only if
crop k is planted at the i, j-th entry. The ex-
ponential family model is: Pr(x) ∝ exp(θ0 +∑
i,j,k θi,j,kxi,j,k +

∑
i,j,m,l θ

1
i,j,m,lφ(xi,j,m, xi+1,j,l) +

θ2
i,j,m,lφ(xi,j,m, xi,j+1,l), in which θi,j,k, θ

1
i,j,m,l, θ

2
i,j,m,l

are the parameters to learn. We define di(j, k) as the dis-
tance between symbols j and k in row i. This distance is
calculated as the absolute difference of the column indices
of where symbols j and k appear in row i. The total distance
d(j, k) is defined as d(j, k) =

∑n
i=1 di(j, k). The spatial

variance of a Latin square is defined as the variance of all
the total distances d(i, j),∀i 6= j. This spatial variance
is an important metric determining whether an experiment
design is good (Gomes et al., 2004; Smith et al.; Le Bras
et al., 2012). Notice that we can prove there are only three
possible variances for a 5x5 Latin square. In generating
training data, we randomly sample 5-by-5 Latin squares to
form a training set, the distribution of the spatial variance of
which is shown in the rightmost column of the right figure
of Figure 4.

We set hyper-parameters of both XOR-CD and Gibbs-CD
the same as in the dispatching route generation task. As
for the structure of GAN, the generator takes the input of
random noise vector of dimension n, and has the structure
fc{2n} − fc{n2} − fc{n3/2} − fc{n3}. The output of
the generator is of the shape n3 which represent the assign-
ments to variables xijk. The discriminator has a structure
fc{n3/2} − fc{n2} − fc{n} − fc{2} − softmax. Here
fc denotes fully connected layer and the number denotes
the dimension of output of this layer. We use ReLU as the
activation function between each two fc layers. Number of
epochs is 1000, and the wall-time limit is also 10 hours.

Latin Square Constraints We can enforce the following

XOR-CD: Linearly Convergent Constrained Structure Generation

set of constraints to ensure the output forms a Latin square
in XOR-CD:

n∑
k=1

xi,j,k = 1, ∀i, j ∈ {1, ..., n}; (23)

n∑
j=1

xi,j,k = 1, ∀i, k ∈ {1, ..., n}; (24)

n∑
i=1

xi,j,k = 1, ∀j, k ∈ {1, ..., n}. (25)

Constraints (23) indicate each cell in the Latin square must
be a valid integer between 1 and n. Constraints (24) indicate
cells in each row must be different, and constraints (25)
indicate cells in each column must be different.

C.4. Sequence-based Protein Homology Detection

As shown in Figure 1, the alignment matrix of sequence
S1 of size N1 and sequence S2 of size N2 is of size (N1 +
1)× (N2 + 1). In the matrix, the rows represent the amino
acids in S1 and the columns represent the ones in S2. Each
alignment forms a path from the upper-left node to the
bottom-right node as shown in the right panel of Figure
1, where each transition in the path is either horizontal,
representing an insertion in S2, vertical, representing an
insertion in S1, or diagonal, representing a match. We use
symbolM, I1 and I2 to represent a match, an insertion in S1,
and an insertion in S2, respectively. The (i, j)-th node in the
alignment matrix is associated with three binary variables:
zui,j , where u ∈ {M, I1, I2}. zui,j is 1 if and only if the path
passes the (i, j)-th node with type u. Let Ap = {zui,j =

z
u(p)
i,j , 1 ≤ i ≤ N1 + 1, 1 ≤ j ≤ N2 + 1, u ∈ {M, I1, I2}}

be one value assignment to all zui,j variables that form path p.
Notice Ap also represents one alignment between sequence
S1 and S2. Hence we will refer a path and an alignment
interchangeably. Let A = {Ap | p is a valid path} be the set
of all alignments. Our exponential family model formulation
estimates the probability of having the alignment Ap to be:

Pθ(A
p|S1,S2) =

e
∑
i,j,u θ

u
i,jz

u(p)
i,j +

∑
i,j,u,k,l,v θ

uv
i,j,k,lz

u(p)
i,j z

v(p)
k,l

Z(S1,S2)
,

where Z(S1,S2) =
∑
Ap∈A e

∑
θui,jz

u(p)
i,j +

∑
θuvi,j,k,lz

u(p)
i,j z

v(p)
k,l

is the normalization factor. Here, θ = {θui,j , θuvi,j,k,l} are the
set of variables to learn. In practice, we further parame-
terize θui,j to be θui,j = rTΦi,j(S1i,S2j , u), and parameter-
ize θuvi,j,k,l to be θuvi,j,k,l = sTΞi,j(S1i,S2j , u,S1k,S2l, v),
where both Φ and Ξ are features extracted from data, and
we instead focus on learning parameters r and s. Features
are extracted based on profile conservation, secondary struc-
ture, and solvent accessibility of each protein.

Learning. Given a training set of (Apk,Sk1,k,S2,k)Nk=1,
where S1,k,S2,k are a pair of sequences, and Apk is the

observed alignment between the two sequences. We want
to learn the exponential family model via maximizing the
likelihood, which translates to the following problem:

max
r,s

N∏
k=1

Pr,s(A
p
k|S1,k,S2,k).

Inference. After learning P (Ap|S1,S2), we can use the
model to find the best alignment between two new sequences
by solving the following linear programming problem:

Ap∗ = arg max
Ap∈A

P (Ap|S1,S2)

= arg max
Ap∈A

∑
i,j,u

θui,jz
u(p)
i,j +

∑
i,j,k,l,u,v

θuvi,j,k,lz
u(p)
i,j z

v(p)
k,l .

Sequence Alignment Constraints In the task of sequence
alignment, each alignment must be a valid path in the align-
ment matrix as shown in Figure 1. Consider the alignment
matrix of size (N1 + 1) × (N2 + 1), and 3N1N2 binary
variables zui,j , where 1 ≤ i ≤ N1 + 1, 1 ≤ j ≤ N2 + 1, and
u ∈ {M, I1, I2}. If we consider the alignment matrix as a
directed graph and each node (i, j) has three income edges,
i.e., zI2ij denotes the edge from node (i, j − 1), zI1ij denotes
the edge from node (i − 1, j) and zMij denotes the edge
from node (i− 1, j − 1). zui,j = 1 means the corresponding
edge exists and zui,j = 0 otherwise. Then, to form a valid
path (alignment), the following set of constraints C must be
satisfied:

zM1,1 = 1, zI11,1 = 0, zI21,1 = 0; (26)∑
u

zuN1+1,N2+1 = 1; (27)

for ∀i ∈ {1, ..., N1}, j ∈ {1, ..., N2} :∑
u

zui,j − z
I1
i+1,j − z

I2
i,j+1 − z

M
i+1,j+1 = 0; (28)

for ∀i = N1 + 1, j ∈ {1, ..., N2} :∑
u

zui,j − z
I2
i,j+1 = 0; (29)

for ∀i ∈ {1, ..., N1}, j = N2 + 1, :∑
u

zui,j − z
I1
i+1,j = 0; (30)

for ∀i = 1, j ∈ {2, ..., N2 + 1} :

zMi,j + zI1i,j = 0; (31)

for ∀i ∈ {2, ..., N1 + 1}, j = 1, :

zMi,j + zI2i,j = 0. (32)

Experiment Setup. To run XOR-CD in this experiment,
we set T = 500 and force each query of NP oracle in XOR-
CD to stop in 15 minutes. As a result, not all the queries to

XOR-CD: Linearly Convergent Constrained Structure Generation

NP oracles are solved up to optimality. We also enforce a
timeout of 10 hours for all algorithms. The learning rate is
0.1 for the first 100 epochs and 0.01 for the next 400 epochs
for both XOR-CD and Gibbs-CD. Both M and K are set
to 100 in XOR-CD and parameters in XOR-Sampling are
set the same as in (Ermon et al., 2013b). For Gibbs-CD,
we change K to 10000 for a fair comparison, which takes
approximately the same amount of time compared with
XOR-CD for each SGD iteration.

