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Abstract

High-throughput materials discovery involves the rapid syn-
thesis, measurement, and characterization of many different
but structurally related materials. A central problem in ma-
terials discovery, the phase map identification problem, in-
volves the determination of the crystal structure of materials
from materials composition and structural characterization
data. We present Phase-Mapper, a novel solution platform
that allows humans to interact with both the data and prod-
ucts of AI algorithms, including the incorporation of human
feedback to constrain or initialize solutions. Phase-Mapper
is compatible with any spectral demixing algorithm, includ-
ing our novel solver, AgileFD, which is based on convolutive
non-negative matrix factorization. AgileFD allows materials
scientists to rapidly interpret XRD patterns, and can incorpo-
rate constraints to capture the physics of the materials as well
as human feedback. We compare three solver variants with
previously proposed methods in a large-scale experiment in-
volving 20 synthetic systems, demonstrating the efficacy of
imposing physical constraints using AgileFD. Since the de-
ployment of Phase-Mapper at the Department of Energy’s
Joint Center for Artificial Photosynthesis (JCAP), thousands
of X-ray diffraction patterns have been processed and the re-
sults are yielding discovery of new materials for energy ap-
plications, as exemplified by the discovery of a new family of
metal oxide solar light absorbers, among the previously un-
solved Nb-Mn-V oxide system, which is provided here as an
illustrative example. Phase-Mapper is also being deployed at
the Stanford Synchrotron Radiation Lightsource (SSRL) to
enable phase mapping on datasets in real time.

1 Introduction
The wonders of modern technology can largely be attributed
to advances in materials science that enable innovations
from semiconductors to renewable energy. High-throughput
materials discovery comprises a suite of emerging method-
ologies to rapidly identify new materials, especially un-
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Figure 1: The Phase-Mapper platform integrates experimen-
tation, AI solvers, and human feedback into a platform for
high throughput materials discovery for discovering new
materials.

discovered materials that are critical for next-generation
technologies (Green, Takeuchi, and Hattrick-Simpers 2013).
Specifically, high-throughput materials discovery involves
rapidly synthesizing 102-103 unique materials comprising a
“library” and rapidly screening them for properties of inter-
est.

To analyze the vast amount of data that are generated in
high throughput experiments, automatic analysis becomes
imperative. The traditional analysis workflow relies on it-
erative manual analysis and heuristics, resulting in months
or years of analysis for a single library. This quickly be-
comes a bottleneck as humans are unable to keep up with the
rate at which data are generated. The need for automatic and
scalable tools provides unique opportunities to apply cutting
edge techniques in computer science, AI, and data science
to accelerate the materials discovery process.

In this paper we address the phase mapping problem,



a central problem in high-throughput materials discovery,
which has critically lacked an efficient solution method. A
material’s phase describes a range of elemental composition
and other conditions over which its properties and structure,
the arrangement of the constituent atoms, change little. X-
ray diffraction (XRD) is a ubiquitous technique to charac-
terize crystal phases, as it produces a signal containing a
series of peaks that serve as a “fingerprint” of the under-
lying atomic arrangement or crystal structure. Using tra-
ditional methods, materials scientists can obtain and inter-
pret 1-10 XRD measurements per day, and with the recent
development of automated, synchrotron-based XRD exper-
iments, the measurement throughput has been accelerated
to 103-105 measurements per day (Gregoire et al. 2009;
2014). The creation of a phase mapping algorithm that gen-
erates phase diagrams from these data remains an unsolved
problem in materials science despite a series of advance-
ments over the past decade (Hattrick-simpers, Gregoire, and
Kusne 2016). The most pertinent need is to generate a phys-
ically meaningful phase diagram for the materials in a given
library, which relies on the spectral demixing of the 102-103

XRD patterns into a small set of basis patterns (typically less
than 10).

To address this substantial challenge, we developed
Phase-Mapper, a comprehensive platform that tightly in-
tegrates XRD experimentation, AI problem solving, and hu-
man intelligence for the phase mapping problem (See Fig-
ure 1). In this platform, within minutes, an AI solver pro-
vides approximate results for the phase mapping problem,
which are examined and further refined by materials scien-
tists interactively and in real time. In addition, the results of
Phase-Mapper can be used to further inform future exper-
imental designs. The demixing algorithm is a cornerstone
of the Phase-Mapper platform. We have developed a novel
solver called AgileFD, based on convolutive non-negative
matrix factorization (cNMF), a method that has been applied
to blind source separation of audio signals and speech recog-
nition (Smaragdis 2004; Mørup and Schmidt 2006).

AgileFD features lightweight iterative updates of can-
didate solutions, allowing it to complete many update it-
erations within a given time. In addition, we have devel-
oped a suite of adaptations that enable functionalities be-
yond cNMF. The extensions for AgileFD described here in-
clude incorporation of constraints to encode both human
input, that capitalizes on a researcher’s knowledge of a par-
ticular dataset, and a priori knowledge of the problem re-
lated to the underlying physics of phase diagrams. This, as
demonstrated below, can be critical in obtaining physically
meaningful solutions. In developing the Phase-Mapper plat-
form, careful attention has been given to delivering a rich
suite of capabilities while maintaining solver convergence
times within minutes, which enables researchers to interact
with the solver to refine the solution.

We compare three variants of AgileFD with previously
proposed solvers on an experiment involving 20 synthet-
ically generated systems. Our results show that AgileFD
outperforms previous solvers in terms of reconstruction er-
ror and model correctness, because the model represents
peak shifting in an efficient way. In addition, light weight

update rules allow AgileFD to converge more quickly than
previous solvers and with various extensions the solutions
tend to be more physically meaningful.
Application Use and Payoff Phase-Mapper has been de-
ployed at the Department of Energy’s Joint Center for Arti-
ficial Photosynthesis (JCAP), where it has been used to run
hundreds of phase mapping solutions on thousands of XRD
measurements in the JCAP materials discovery pipeline.

We first encountered the phase mapping problem six years
ago as part of our Computational Sustainability (Gomes
2009) effort to address pressing problems in renewable en-
ergy. Phase-Mapper is the culmination of our work since
then in close collaboration with top experts in materials
discovery. Over the course of this collaboration, we have
made important contributions to the formal characterization
of this problem, developed several synthetic instance gener-
ators, and developed several algorithms with theoretical and
practical guarantees. We have also continuously developed
tools to share experimental instance data, results, and so-
lution visualizations with our collaborators throughout (Le
Bras et al. 2011; Ermon et al. 2012; Le Bras et al. 2014;
Ermon et al. 2015; Xue et al. 2015). Phase-Mapper is our
most successful tool to date in this area; it removes many of
the practical barriers to the use of previous methods, includ-
ing better scalability, runtimes suitable for interactive use,
and ease of access.

Prior to Phase-Mapper, the difficulty of interpreting X-ray
diffraction data limited JCAP scientists’ ability to take full
advantage of resources to conduct high throughput experi-
ments. Since the deployment of Phase-Mapper, thousands
of X-ray diffraction patterns have been processed and
the results are yielding discovery of new materials for
energy applications. These are exemplified by the discov-
ery of a new family of metal oxide light absorbers in the
previously unsolved Nb-Mn-V oxide system, which is pro-
vided here as a case study and an illustrative example of the
importance of encoding physical constraints to obtain phys-
ically meaningful phase diagram solutions. In light of the
demonstrated computational efficiency and solution quality,
Phase-Mapper is also being deployed at the Stanford Syn-
chrotron Radiation Lightsource (SSRL) to enable phase
mapping on datasets in real time.

We believe Phase-Mapper will lead to further develop-
ments in high-throughput materials discovery by providing
rapid and critical insights into the phase behavior of new
materials.

2 Phase-Mapper: AI for Materials Discovery
High throughput materials discovery is an experimentation
pipeline for rapidly synthesizing, characterizing, and identi-
fying new materials. In this pipeline, a handful of elements
are deposited together on a two-dimensional substrate, so
that different locations on the substrate receive varying pro-
portions of the elements. This smooth variation in elemental
composition across the substrate gives rise to the forming
of a discrete set of materials, each of which is present on
particular regions of the substrate. After deposition, sam-
ple locations on the substrate are probed with high energy
X-rays, and because XRD patterns are indicative of crystal



structure, it is possible to characterize the discrete set of ma-
terials present.

A key challenge in solving the phase-mapping problem
results from the fact that the XRD patterns obtained in the
high throughput pipeline can be composed of a mixture of
the XRD patterns of several materials. Therefore, phase-
mapping is the problem of identifying the characteristic
XRD patterns of the materials (or basis patterns or crystal
structures of the materials) that demix the signal, and it lies
at the heart of the analysis of high throughput data.

Mathematically, the measured XRD pattern in the j-th
sample point can be characterized by a one dimensional
signal Aj(q). The “scattering vector magnitude” q is a
monotonic transformation of the diffraction angle, and is
directly related to the spacing of atoms in a crystal. The
phase-mapping problem is to find a small number of phases
W1(q), . . . ,WK(q), and activation coefficients hij , such
that the XRD patterns at each sample point can be explained
by a linear combination of phases:

Aj(q) ≈
K∑
i=1

hijWi(λijq). ∀j (1)

In the above definition, we write Wi(λijq) to allow for the
phases to scale slightly according to parameter λij at each
sample point. This is the result of a commonly observed
form of alloying, a process that can typically be approxi-
mated by a multiplicative scaling of the XRD pattern of a
specific phase in the q domain. We also call this process
“peak shifting”, because the effect appears to make XRD
patterns in the data shift to the left or to the right. In addition
to the complications introduced by peak shifting, there are a
number of other constraints on the solution of the phase-
mapping problem, arising from the fact that the solution
must describe a system constrained by the laws of physics.
The most prominent is the so called Gibbs phase rule, which
requires no more than three phases per sample point, in a
ternary system, i.e., no more than three coefficients among
hij for fixed j may be nonzero. Additionally, how the hij
may vary spatially on the substrate, as well as the shapes
that Wi may take, are constrained by physical laws.

Fundamentally novel techniques are required to solve the
phase mapping problem quickly and accurately. A num-
ber of automatic techniques have been developed in re-
cent years, which can be broadly grouped into clustering,
constraint reasoning, and factor decomposition approaches.
Proposed clustering methods such as hierarchical cluster-
ing (HCA) (Long et al. 2007), dynamic time warping ker-
nel clustering (Le Bras et al. 2011), and mean shift the-
ory (Kusne et al. 2014) produce maps of phase regions, but
fail to resolve mixtures or identify basis patterns, and do
not necessarily produce results consistent with physics. Con-
straint reasoning approaches, including satisfiability mod-
ulo theory (SMT) methods (Ermon et al. 2012), can provide
physically meaningful results, but depend heavily on effec-
tive pre-processing, such as peak identification, and are com-
putationally intensive. Approaches based on non-negative
matrix factorization (NMF) (Long et al. 2009) are computa-
tionally efficient, but generally perform poorly when peak-

shifting phenomena are present. CombiFD (Ermon et al.
2015) is another factor decomposition approach that uses
combinatorial constraints to simultaneously enforce physi-
cal rules and accommodate peak shifting, but requires solv-
ing a combinatorial problem in each descent step, and is
therefore computationally expensive.

Here we describe Phase-Mapper, an AI platform for
rapidly solving the phase-mapping problem, integrating
three key components: (i) cutting edge AI solvers; (ii) hu-
man intelligence and feedback; and (iii) high-throughput
physical experiments. These components form an integrated
process (see Figure 1):

• Phase-Mapper is supported by cutting edge AI solvers,
including non-negative matrix factorization (Lee and Se-
ung 2001) and CombiFD. We also highlight a new solver
called AgileFD as a key component of the platform. Mo-
tivated by convolutive NMF, AgileFD features a set of
light-weight updating rules and therefore a very fast gra-
dient descent process. AgileFD is also flexible, allowing
for the incorporation of additional physical constraints as
well as human feedback through refinement.

• Phase-Mapper also provides tools for data exploration,
visualization, and configuration that allows human ex-
perts as well as laypeople to analyze and improve solu-
tions.

• Phase-Mapper’s solutions, obtained by the interaction
between solvers and human users, can also shed light on
the development of new physical experiments, for exam-
ple by specifying regions of composition space to sample
at higher resolution (active learning).

3 AgileFD: A Novel Phase-Mapping Solver
AgileFD is a key component in the Phase-Mapper platform.
Compared with previously proposed methods for solving
the phase-mapping problem, AgileFD features quick itera-
tive updates of candidate solutions, which makes it possi-
ble for human experts to interact with the algorithm in real
time. The key behind this speed lies in the efficient problem
representation. Let the XRD patterns for all samples be rep-
resented by a matrix A where each column corresponds to
one sample point and each row corresponds to Aj(q) for a
particular value of q. Under the assumptions of no noise and
no shifting, i.e. for all i, j, λij = 1, describing A as a lin-
ear combination of a few basis patterns Wi(q) is equivalent
to factorizing A as a product of two low rank matrices W
and H . We enforce nonnegativity for W and H , which is
required for the solutions to be physically meaningful.

A ≈W ·H = R.

Here, R denotes the approximate reconstruction of A. In
this formulation, the columns of W form a set of basis pat-
terns Wi(q), while the columns of H corresponds to the
values hij in equation 1. Previous approaches to solve the
phase-mapping problem based on NMF have been unsuc-
cessful in handling peak shifting, i.e. λij 6= 1. The first con-
tribution of AgileFD is to circumvent the shifting problem
by a log space resampling. Under the variable substitution



q → log q our signal becomes Wi(log q). More importantly,
the shifted phase Wi(log λq) becomes Wi(log λ + log q),
which transforms the multiplicative shift in the q domain
into a constant additive offset. This allows the problem to be
formulated in terms of convolutive nonnegative matrix fac-
torization. After this variable substitution, we discretize the
values of allowed λ and interpolate the signals at the corre-
sponding geometric series q values. The problem can then
be written:

A ≈
∑
m

W ↓
m

·Hm = R. (2)

Here, the columns of W still represent basis patterns. W ↓m
is the result of shifting the rows of the W matrix down m
rows, and padding the shifted m rows with 0, representing
the basis patterns with a constant offset in the log q domain,
which is equivalent to the original multiplicative shift in the
q domain. The columns of Hm act as the activation of basis
patterns for the basis patterns shifted down m units. Note
that when M = 1, this formulation is equivalent to NMF
aside from the log transformation.

AgileFD is a family of algorithms, which can be adapted
to use different loss functions, regularization, and certain im-
posed constraints. Equation (2) is adapted from convolutive
NMF (cNMF), which was first proposed to analyze audio
signals (Smaragdis 2004). The phase-mapping problem dif-
fers from previous applications of cNMF for blind source
separation as the log q domain is substituted for the time do-
main, and each source (phase) is expected to appear at most
once per sample with a relatively small offset. As in cNMF,
AgileFD uses a gradient descent approach to fit W and H .
When the generalized Kullback-Leibler (KL) divergence is
used in the objective function, gradient updates can be writ-
ten multiplicatively, and are applied iteratively until conver-
gence. See (Xue et al. 2016) for further details.
Lightweight Update Rules AgileFD’s linear gradient up-
date rules results in very fast convergence, typically within
minutes. This is orders of magnitude faster than CombiFD,
which uses a similar problem formulation but with combina-
torial constraints explicitly enforced relying on a mixed in-
teger programming solver. This increased efficiency of Ag-
ileFD enables high throughput analysis and also makes it
possible for a human to interact with the system almost in
real time.

Further Extensions of AgileFD for Materials Discovery
Since the ultimate aim of the phase-mapping problem is to
find a physically meaningful decomposition of the signal, for
which the loss function is just a proxy, we must allow for ex-
perts to modify and inspect any candidate solution. It is not
feasible to encode all physical constraints or the knowledge
of a materials scientist within the solver a priori. Therefore,
in the next few sections, we provide a number of novel mod-
ifications to the basic AgileFD algorithm, in order to impose
prior knowledge or additional constraints derived from user
interpretation of a proposed solution.
AgileFD with Frozen Values In the Phase-Mapper plat-
form, the user is provided with the opportunity to freeze in-
dividual values in the W and H matrices. For example, a

user might specify a known pattern or part of a previous so-
lution as a basis pattern a priori, freezing the corresponding
row or part thereof in W . Or the user might specify that a
certain set of samples contain only a single material phase
and set the non-corresponding H vales to zero. The result is
an interactive, iterative matrix factorization.
Custom Initialization By initializing basis patterns or coef-
ficients to values close to the expected solution, rather than
random values, the user can direct the search to the correct
solution space. We allow the user to specify basis patterns
that can be taken from previous solutions, data samples, or
provided manually, to use as an initial value. Similarly, ini-
tial values for the activation matrix can be specified.
Sparsity Regularization Sparse solutions are usually more
easily interpreted, and in materials science they are more
likely to be consistent with the underlying physics. The Ag-
ileFD system provides the option to introduce a soft penalty
term for sparsity in H which can vary by index according to
a human expert’s preferences. Using L1-regularization for
H and sparsity weight matrices γm, the sparse generalized
KL-divergence objective function becomes:∑

i,j

(
Ai,j log

Ai,j

Ri,j
−Ri,j +Ai,j

)
+
∑
m

‖γm ◦Hm‖1.

In order to avoid the degenerate solution where H → 0,
each basis pattern ofW is L2-normalized at the beginning of
each update iteration. In (Xue et al. 2016) we provide further
details concerning the corresponding update rules for H .
The Gibbs Phase Rule In general, correct phase map so-
lutions should follow the Gibbs phase rule, which specifies
that the number of observed phases at a given chemical com-
position is no more than the number of chemical elements
Nel: ∑

i

Iij ≤ Nel. (3)

Here, Iij is an indicator of whether phase i is present at sam-
ple location j. Materials scientists might also know a priori,
or infer from previous proposed solutions, that certain re-
gions contain fewer phases than the usual limit.

Such combinatorial constraints cannot be encoded di-
rectly in the update rules of AgileFD. One way to enforce
these constraints, which has been used in previous methods
such as CombiFD, is to directly encode it as hard combi-
natorial constraints. However, this results in a slow update
process, as we have to solve a Mixed Integer Programming
(MIP) problem in each iteration. As a novel routine, we ap-
ply the Gibbs phase rule by first solving the relaxed prob-
lem, then choose the best values to set to zero inH to satisfy
Eq. 3, and then refine the solution by applying the update
rules until convergence. Because the update rules are multi-
plicative, the zeroed values will remain zero.

Choosing the values to zero in H is independent for each
sample point j. This can be solved greedily if a faster solu-
tion is desired, or using a MIP formulation, and/or succes-
sive rounds of constraints and refinement, if a more precise
solution is desired with a somewhat longer wait time. This



Figure 2: Two heatmaps of XRD patterns generated by tak-
ing slices in the visualizer.

extension is particularly useful when the unconstrained al-
gorithm recovers a solution that is nearly correct except for
relatively small violations of phase limits.

4 Phase Mapper: A Human-Machine
Integrated Platform

We provide an integrated workflow with the Phase-Mapper
platform, which includes visualizing and analyzing an in-
stance file, setting the solver framework, analyzing the solu-
tion, and using that analysis to update the solver framework.
The design objectives were simple: create a practical appli-
cation that seamlessly connects a visualization system with
a powerful solver that allows for interactive and large scale
use. The main features of Phase-Mapper are the visualiza-
tion tools and the solver interface.
Visualizer Phase-Mapper provides a way to visualize both
the input data as well as the solution that is generated. When
an instance file of a materials system is uploaded to the sys-
tem, the visualizer will generate a composition map, which
illustrates the varying compositions of elements, for all sam-
ple points. The user can freely inspect the XRD patterns
of each sample point, as well as the heatmap of XRD pat-
terns for a slice of sample points. A slice heatmap example
is shown in Figure 2, where two selected slices of sample
points are shown in grey. The heatmaps on the left represent
the XRD patterns at the sample points in the slice.

When the solution files are loaded into the application,
either uploaded by the user or generated by the solver, three
new plots are generated: 1) the basis patterns that were found
as solutions; 2) a composition map displaying the mixture
proportions; and 3) the original XRD signal compared with
the reconstructed signal for a user specified sample point.
Connection to Solver The solving feature of Phase-Mapper
enables users to interact with the AI solver behind the
scenes. The user can specify many solver parameters such
as how much to enforce sparsity, how many phases the solu-
tion should have, and how much shift between basis patterns
it should allow. The user can also specify initial or frozen
values to use as basis patterns.

User input parameters aim to help the solver more effi-
ciently and accurately find a solution, either by starting the
solver off closer to a solution, or distorting the solution space
so the solver finds a more accurate solution.

5 System Design and Deployment
Application Description Phase-Mapper was originally de-
veloped as a standalone application in C#, built on our
previous visualization tool, UDiscoverItViz (Le Bras et al.
2014). As this restricted users to the Windows platform and

interactive-only use, we reimplemented the AgileFD solver
in C++ as a commandline tool, levaraging Armadillo as
a structured BLAS interface for numerical computations,
and CPLEX for the application of combinatorial constraints.
This implementation is flexible and can be run on a per-
sonal computer, in batch on an HPC cluster, or connected
to a graphical interface.

In order to support all use cases and also for platform
independence, we rewrote the visualization component for
the web. The visualization functions were implemented en-
tirely client-side using HTML5 canvas with the help of the
W3.CSS framework and JQuery. The user can load and ex-
plore locally stored or solver-generated instance and solu-
tion files, with a variety of visualization features.

AgileFD is also integrated with Phase-Mapper as a state-
less web service. In order to invoke the solver, the user
loads the instance file, and selects configuration parameters
through the GUI. The client then makes an AJAX request to
the web service, which is a PHP script that runs AgileFD on
the server using a system call. On completion, the solution
file data is returned to the client and loaded into the visu-
alization interface, and can be saved locally if desired. Be-
cause the requests are asynchronous, the user can continue
to explore the data or previous solutions while AgileFD runs
on the server.
Development and Deployment Development of each of the
main components was led by a separate developer who im-
plemented the majority of their component. However, ma-
jor design, architecture, and implementation decisions were
discussed collectively. The developers are a mix of gradu-
ate and undergraduate students, and professional staff. We
have weekly webconferences between the computer science
group at Cornell University and the materials science group
at JCAP, in which materials scientists provide feedback on
both the solver and the interface and suggest modifications
and new features that would be useful to them. Each com-
ponent required about a month of development to reach a
stable version, with continuous development after the initial
release.
Maintainance The primary maintenance activity is continu-
ous development of both AgileFD and the Phase-Mapper in-
terface, which must be kept in sync. These updates are made
as they are ready. The system is stateless, which simplifies
maintenance: modifications to AgileFD can be deployed as
a drop-in replacement; similarly, Phase-Mapper can be up-
dated like any website. Additionally, supporting increasing
demand can be accomplished using elastic scaling through a
cloud-based hosting service.

6 Experiments
6.1 Large Scale Experiments
Despite the fact that several solvers have been proposed
to solve the phase-mapping problem in recent years, most
solvers were configured and tested only on a handful of sys-
tems. Here we provide a large-scale evaluation of various
solvers on the phase-mapping problem.

We generated synthetic ternary metallic systems using
data provided by the Materials Project (Jain et al. 2013),
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Figure 3: (Left) Normalized L2 loss vs. ground truth phases
for NMF, AgileFD, AgileFD with sparsity, AgileFD with
sparsity & the Gibbs phase rule and CombiFD for 20 phys-
ical systems. AgileFD and its variants perform best. (Right)
Runtimes to solve 20 instances. CombiFD was run on 12
cores with a soft time limit of 1 hour or until it found
a feasible solution (1-2 iterations; convergence would take
days); (*) indicates that CombiFD did not complete within
36 hours. The times for the other solvers are until conver-
gence using 1 core (convergence gap 2× 10−5).

which provides theoretical crystal structure information us-
ing Density-Functional Theory based convex hull construc-
tion in composition-energy space that predicts compositions
and corresponding lowest energy of formation atomic con-
figurations that form the vertices of the convex hull.

The XRD patterns at compositions between the vertices
of the convex hull were calculated, using pymatgen (Ong et
al. 2013), by interpolation of a) XRD patterns of the ver-
tex phases or b) modified XRD patterns of the vertex phases
to accommodate alloying. We applied a stylized model of
solid solubility and alloying, and used structure interpola-
tion to simulate modified phase diagrams that include the
additional degrees of freedom from alloying. We calculated
XRD patterns for each modified constituent, including their
interpolated structures, and combined them according to the
mixture proportions in the phase diagram.

We selected 20 examples containing varying numbers of
phases and amounts of alloying for our experminent, reflect-
ing many properties of real experimental data. The simula-
tion used to generate these data provides ground truth, which
we compare directly to computed solutions found by differ-
ent solvers. We tested NMF (implemented as AgileFD with
M = 1), AgileFD, AgileFD with sparsity regularization
(AgileFD-Sp), AgileFD with sparsity and the Gibbs phase
rule enforced (AgileFD-Sp-Gibbs), and CombiFD. The con-
vergence gap for NMF and AgileFD are 2 × 10−5, and
the sparsity regularization parameter is 0.35 in AgileFD Sp.
CombiFD uses a MIP gap of 0.2, and a soft time limit of 1
hour on 12 cores, which is exceeded to reach a feasible solu-
tion and typically allows only 1 update iteration. This is the
reason for reduced solution quality. The other solvers use 1
core and run until convergence. We assume K and M are
provided. A method for automatically selecting K and M is
important, but is beyond the scope of this study.

First we evaluate the solution quality by comparing the
modeled signal for each phase at each sample point, includ-
ing shift, to the known signal from that phase at that sample
point. We find the permutation of the phases in the solu-
tion to best match the ground truth, and calculate the L2 loss

System K NMF AgileFD AgileFD AgileFD CombiFD
Sp Sp Gibbs

Ac-Ag-Hg (*) 5 0.35 0.28 0.43 1.00 *
Ag-Ba-Sn 13 0.09 0.09 0.21 1.00 1.00
Au-Bi-Os 4 0.81 0.77 0.81 1.00 1.00
Au-Cd-Mg 12 0.12 0.12 0.20 1.00 1.00
Bi-Cu-Tc 3 1.00 1.00 1.00 1.00 1.00
Cd-Hg-Lu 7 0.12 0.11 0.22 1.00 1.00
Cu-Ru-Tm 6 0.32 0.27 0.62 1.00 1.00
Er-Ga-Os 8 0.08 0.12 0.43 1.00 1.00
Fe-Mg-Nb 4 0.73 0.78 0.89 1.00 1.00
Ga-V-Zr 13 0.10 0.07 0.41 1.00 1.00
Hf-Ir-Pd 8 0.27 0.38 0.51 1.00 1.00

In-Nb-Pt (*) 10 0.14 0.14 0.34 1.00 *
Ir-Tm-Y 4 0.86 0.94 0.98 1.00 1.00

La-Ru-Sn 12 0.12 0.09 0.32 1.00 1.00
Li-Pd-Tc 8 0.25 0.48 0.49 1.00 1.00
Lu-Rh-Tl 9 0.17 0.12 0.36 1.00 1.00
Lu-Ru-Sc 4 0.51 0.95 0.95 1.00 1.00
Mg-Os-Sc 7 0.38 0.35 0.57 1.00 1.00
Mg-Ru-Ta 8 0.22 0.20 0.27 1.00 1.00
Pd-Sc-Tc 9 0.24 0.14 0.44 1.00 1.00

Table 1: Percentage of sample points that satisfy the Gibbs
phase rule for each solver on 20 physical systems. Phases
that account for less than 1% of the modeled signal are
not counted towards this phase limit, and (*) indicates that
CombiFD did not complete.

for each component. These are summed over all phases and
samples, and scaled by the total value of all signals.

As shown in Figure 3 (Left), in general the solutions
found by AgileFD (including AgileFD-Sp and AgileFD-Sp-
gibbs) better match the ground truth when compared with
NMF and CombiFD. NMF underperforms because it can-
not model peak shifting. Notice that CombiFD, along with
other solvers, is given a short time limit (one hour), which
is different from the experimental setting in (Ermon et al.
2015). This short time limit is more in line with the way
materials scientists use Phase Mapper. Under this short time
limit, CombiFD often only completed a few iterations, and
in a few cases timed out in the first iteration, in contrast with
AgileFD and NMF, which completed thousands of updates.
The expensive updates of CombiFD resulted in lower solu-
tion quality. Figure 3 (Right) compares the runtimes on each
instance. The full table of the number of updates is included
in the technical report (Xue et al. 2016).

AgileFD-Sp and AgileFD-Sp-Gibbs outperform AgileFD
without extensions. They are able to find solutions that better
match the physical constraints. We calculate the percentage
of sample points that satisfy the Gibbs phase rule, for the
solutions found by each solver for each instance. The result
is shown in Table 1.

6.2 Case Study: Nb-V-Mn Oxides
The integration of the rapid solver with visualization tools
enables materials scientists to take advantage of the tunable
initialization and constraint parameters to create a meaning-
ful solution. An illustrative example is found in a ternary
composition library containing a broad range of composi-
tions in the Nb-V-Mn oxide space. While the phase behavior
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Figure 4: The K=6 basis patterns for the AgileFD solution (top) and AgileFD-Sp-Gibbs solution (middle) for the Nb-V-Mn
system are shown along with stick patterns (translucent red) of the crystal structures identified using the AgileFD-Sp-Gibbs
solution. The primary discrepancy in the AgileFD solution is highlighted in yellow. The phase map representation of H is
shown as a series of composition plots for each phase from the AgileFD-Sp-Gibbs solution (bottom) showing the samples
containing each phase with point size indicating the concentration of the phase and the point color indicating the fractional shift
with respect to the plotted basis patterns. The elemental labels for the composition diagrams are shown in Figure 5.

K=6, M=1 (NMF) K=6, M=10
(AgileFD)

K=6, M=10
(AgileFD_sp_gibbs) Num.

phases

Figure 5: Composition maps of the number of theK=6 basis
components utilized in the solutions from 3 different solvers:
NMF, AgileFD, and AgileFD-Sp-Gibbs. Values in excess of
3 are non-physical.

of binary sub-compositions (e.g. Nb-V oxides) have been
previously studied, the ternary compositions are being ex-
plored for the first time to discover solar light absorbers for
energy applications. While the set of 317 XRD patterns pro-
vides sufficient information to solve the phase behavior of
these oxides, the materials researchers were unable to obtain
a meaningful phase diagram for over a year due to the com-
plex phase behavior that evaded comprehension via man-
ual analysis. Using the visualization tools and rapidly trying
various solutions, the researchers determined that there are
K=6 primary phases in this dataset. For this case study, we
compare solutions from 3 different solvers with K=6: (1)
NMF; (2) AgileFD with M=10, which includes shifting of
each basis pattern by up to approximately 2%; (3) AgileFD-
Sp-Gibbs with M=10.

Adherence to the Gibbs phase rule is important for pro-
viding the researcher with a meaningful phase diagram. The
number of basis patterns utilized for each sample is shown
in Figure 5 for each of the 3 solutions. The NMF solution
adheres to the Gibbs phase rule for only 4% of the sam-
ples, with nearly half of the samples utilizing all 6 basis pat-
terns. While the AgileFD solution is more meaningful than
the NMF solution due to the tracking of alloying via basis
pattern shifting, the AgileFD solution uses more phases for
several compositions, corresponding to a worse violation of
the Gibbs phase rule. This property of the AgileFD solver
may be understood intuitively by considering that for a given

sample, any of the M copies of each basis pattern can be
utilized to model small features in the XRD patterns, re-
sulting in small amounts of shifted patterns to appear across
the composition space and further motivating the encoding
of the Gibbs phase rule in the solver. With this constraint,
the AgileFD solution utilizes a maximum of 3 phases and in
some composition regions only 2 phases are utilized.

Figure 4 summarizes the AgileFD-Sp-Gibbs solution, and
its attributes. Even though some of the solution character-
stics were not explicitly enforced, they are desirable, since
they provide meaning to the researcher, namely: (1) excel-
lent matching of the primary peaks of each basis pattern with
a known crystal structure, demonstrating that each basis pat-
tern is truly representative of a phase, (2) excellent compo-
sition space connectivity of each phase concentration map,
as expected for equilibrium phase behavior, (3) systematic
compositional variation in the shift parameter λ, demon-
strating alloying within the phases, in particular phases 3,
5, and 6. While the AgileFD solution includes pattern shift-
ing, the lack of adherence to the Gibbs phase rule has im-
portant consequences on the solution that cannot be amelio-
rated through modification of the H matrix to impose Gibbs
phase rule ex post facto, without a corresponding refine-
ment of W . The most prominent difference, in comparison
to the AgileFD-Sp-Gibbs solution, is highlighted in Figure
4 where the second basis pattern of the AgileFD basis pat-
tern is quite different from that of the AgileFD-Sp-Gibbs
solution. This AgileFD basis pattern contains a mixture of
signals from other phases and is thus not able to be matched
to a known structure. Enforcement of the Gibbs phase rule
in the solver results in effective demixing of basis patterns
such that all 6 primary phases are identified. Indeed, only
by imposing a priori constraints in AgileFD is a complete,
meaningful solution produced.

7 Conclusion
High-throughput materials discovery is revolutionizing the
efficiency of materials science. A major, critically-missing
component of the high-throughput materials discovery



pipeline is the ability to rapidly solve the phase map iden-
tification problem, which involves the determination of the
underlying phase diagram of a family of materials from their
composition and structural characterization data. To address
this challenge, we developed Phase-Mapper, a comprehen-
sive platform that tightly integrates XRD experimentation,
AI problem solving, and human intelligence. AI solvers in
Phase-Mapper provide high-quality solutions to the phase
mapping problem within minutes, which can then be ex-
amined and further refined by materials scientists interac-
tively and in real time. We have developed a novel solver,
AgileFD, that features lightweight iterative updates of can-
didate solutions and a suite of adaptations to the multiplica-
tive update rules. In particular, we have developed the abil-
ity to incorporate constraints that capture the physics of ma-
terials as well as human feedback, enabling functionalities
well beyond traditional demixing techniques and produc-
ing physically-meaningful solutions. We compare different
solver variants with previously proposed methods in a large-
scale experiment, demonstrating the efficacy of imposing
physical constrains using AgileFD, while keeping fast so-
lution times. Phase-Mapper has been deployed at the De-
partment of Energy’s Joint Center for Artificial Photosyn-
thesis (JCAP) for materials scientists to solve a wide va-
riety of real-world phase diagrams. Since the deployment
of Phase-Mapper, thousands of X-ray diffraction patterns
have been processed and the results are yielding the dis-
covery of new materials for energy applications, as exem-
plified by the discovery of a new family of metal oxide solar
light absorbers, among the previously unsolved Nb-Mn-V
oxide system, which is provided here as an illustrative ex-
ample. Phase-Mapper is also being deployed at the Stanford
Synchrotron Radiation Lightsource (SSRL) to enable phase
mapping on datasets in real time. We believe Phase-Mapper
will lead to further developments in high-throughput mate-
rials discovery by providing rapid and critical insights into
the phase behavior of new materials.
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