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Abstract. Deep Reinforcement Learning (RL) agents often overfit the
training environment, leading to poor generalization performance. In this
paper, we propose Thinker, a bootstrapping method to remove adver-
sarial effects of confounding features from the observation in an unsu-
pervised way, and thus, it improves RL agents’ generalization. Thinker
first clusters experience trajectories into several clusters. These trajecto-
ries are then bootstrapped by applying a style transfer generator, which
translates the trajectories from one cluster’s style to another while main-
taining the content of the observations. The bootstrapped trajectories
are then used for policy learning. Thinker has wide applicability among
many RL settings. Experimental results reveal that Thinker leads to
better generalization capability in the Procgen benchmark environments
compared to base algorithms and several data augmentation techniques.

Keywords: Deep Reinforcement Learning · Generalization in Reinforcement
Learning.

1 Introduction

Deep reinforcement learning has achieved tremendous success. However, deep
neural networks often overfit to confounding features in the training data due to
their high flexibility, leading to poor generalization [14,33,7,6]. These confound-
ing features (e.g., background color) are usually not connected to the reward;
thus, an optimal agent should avoid focusing on them during the policy learn-
ing. Even worse, confounding features lead to incorrect state representations,
which prevents deep RL agents from performing well even in slightly different
environments.

Many approaches have been proposed to address this challenges including
data augmentation approaches such as random cropping, adding jitter in image-
based observation [7,21,27,20,22],random noise injection [17], network random-
ization [25,4,23], and regularization [7,20,17,32] have shown to improve general-
ization. The common theme of these approaches is to increase diversity in the
training data so as the learned policy would better generalize. However, this per-
turbation is primarily done in isolation of the task semantic, which might change
an essential aspect of the observation, resulting in sub-optimal policy learning.
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Fig. 1. Comparison between style transfer-based Thinker and random crop data
augmentation-based RAD [21] agents on Procgen Dodgeball. [Left] We see that The
random crop removes many essential aspects of the observation while the style trans-
fer retains most game semantics and changes mainly the background and texture of
objects. [Right] In generalization, the Thinker agent achieves better performance com-
pared to PPO. In contrast, the RAD Crop agent significantly worsens the base PPO’s
performance.

Moreover, the random perturbation in various manipulations of observations
such as cropping, blocking, or combining two random images from different en-
vironment levels might result in unrealistic observations that the agent will less
likely observe during testing. Thus these techniques might work poorly in the
setup where agents depend on realistic observation for policy learning.

For example, consider a RL maze environment where the agent takes the
whole maze board image as input observation to learn a policy where the back-
ground color of maze varies in each episode. Thus, applying random cropping
might hide essential part of the observation which eventually results in poor
performance. Our proposed method tackle this issue by changing style of the ob-
servation (e.g., background color) while maintaining the maze board’s semantic
which eventually help RL agent to learn a better policy. It is also desirable to
train the agent with realistic observations, which helps it understand the envi-
ronments’ semantics. Otherwise, the agent might learn unexpected and unsafe
behaviors while entirely focusing on maximizing rewards even by exploiting flaws
in environments such as imperfect reward design.

In this paper, we propose Thinker, a novel bootstrapping approach to remove
the adversarial effects of confounding features from observations and boost the
deep RL agent performance. Thinker automatically creates new training data
via changing the visuals of the given observation. An RL agent then learns from
various observation style instead of a single styled the original training data.
Intuitively, this approach help the agent not to focus much on the style which
assumed to be confounder and can change in future unseen environments. Com-
pared to previous approaches, our proposed method focuses on transforming the
visual style of observations realistically while keeping the semantics same. Thus,
the transferred trajectories corresponds to those that possibly appear in testing
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environments, hence assisting the agent in adapting to the unseen scenarios. De-
sign of our method is motivated by the counterfactual thinking nature of human -
“what if the background color of the image observation was Red instead of Blue?" ;
thus the name is Thinker. This imagination-based thinking often beneficial for
decision-making on similar scenarios in the future events [28,8].

Our method uses a similar mechanism to disentangled confounding features.
Figure 1 shows an overview of the Thinker module. It maintains a set of distribu-
tions (cluster of sample observations) of experience data, which can be learned
using a clustering algorithm.

Our proposed approach consists of a style transfer-based observation transla-
tion method that considers content of the observation. Trajectory data from the
agent’s replay buffer is clustered into different categories, and then observation
is translated from one cluster style to another cluster’s style. Here the style is
determined by the commonality of observation features in a cluster. Thus this
style translation is targeted toward non-generalizable features. The agent should
be robust toward changes of such features. Moreover, the translated trajectories
correspond to those that possibly appear in testing environments, assisting the
agent in adapting to unseen scenarios.

Thinker learns generators between each pair of clusters using adversarial loss
[12] and cycle consistency loss [35,5]. The generator can translate observations
from one cluster to another; that means changing style to another cluster while
maintaining the semantic of the observation in the underlying task. After train-
ing, all generators are available to the RL agent to use during its policy learning
process.

During policy training, the agent can query the Thinker module with new
observations and get back the translated observations. The agent can then use
the translated observation for policy training. Here, the Thinker module boot-
straps the observation data and tries to learn better state representation, which
is invariant to the policy network’s unseen environment. Intuitively, the obser-
vation translation process is similar to asking the counterfactual question; what
if the new observation is coming from a different source (visually different dis-
tribution)?

Note that, Thinker works entirely in an unsupervised way and does not re-
quire any additional environment interactions. Thus the agent can learn policy
without collecting more data in the environment, potentially improving sample
efficiency and generalization in unseen environments.

We evaluated the effectiveness of Thinker module on Procgen [6] bench-
mark environments. We evaluated the usefulness of Thinker on the standard on-
policy RL algorithm, Proximal Policy Optimization (PPO) [30]. We observe that
Thinker often can successfully transfers style from one cluster to another, gen-
erating semantically equivalent observation data. Moreover, our agent performs
better in generalization to unseen test environments than PPO. We further evalu-
ate our method with two popularly used data augmentation approaches: random
cropping and random cutout [21]. We demonstrate that these data augmentation
method sometimes worsen the base PPO algorithm while our proposed approach
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improve the performance in both sample efficiency (Train Reward) and general-
ization (Test Reward).

In summary, our contributions are listed as follows:

– We introduce Thinker, a bootstrapping method to remove adverse effects of
confounding features from the observation in an unsupervised way.

– Thinker can be used with existing deep RL algorithms where experience
trajectory is used for policy training. We provide an algorithm to leverage
Thinker in different RL settings.

– We evaluate Thinker on Procgen environments where it often successfully
translates the visual features of observations while keeping the game seman-
tic intact. Overall, our Thinker agent performs better in sample efficiency
and generalization than the base PPO [30] algorithm and and two data
augmentation-based approaches: random crop and random cutout [21].

The source code of our Thinker module is available at https://github.com/
masud99r/thinker.

2 Background

Markov Decision Process (MDP). An MDP can be denoted asM = (S,A,P, r)
where S is a set states, A is a set of possible actions. At every timestep t, from
an state st ∈ S, the agent takes an action at ∈ A and the environment proceed
to next state. The agent then receives a reward rt as the environment moves to
a new state st+1 ∈ S based on the transition probability P (st+1|st, at).
Reinforcement Learning. In reinforcement learning, the agent interacts with
the environment in discrete timesteps that can be defined as an MDP, denoted by
M = (S,A,P, r), P is the transition probability between states after agent takes
action, and r is the immediate reward the agent gets. In practice, the state (S)
is unobserved, and the agent gets to see only a glimpse of the underlying system
state in the form of observation (O). The agent’s target is to learn a policy (π),
which is a mapping from state to action, by maximizing collected rewards. In
addition, to master skills in an environment, the agent needs to extract useful
information from the observation, which helps take optimal actions. In deep
reinforcement learning (RL), the neural network architecture is often used to
represent the policy (value function, Q-function). In this paper, we use such a
deep RL setup in image-based observation space.
RL Agent Evaluation. Traditionally, RL agent trained in an environment
where it is evaluated how quickly it learns the policy. However, the evaluation is
often done on the same environment setup. While this evaluation approach can
measure policy learning efficiency, it critically misses whether the agent actually
learned the necessary skill or just memorized some aspect of the environment to
get the maximum reward in training. In this setup, the agent can often overfit to
the scoreboard or timer in a game which can lead to the best reward; however, the
agent can completely ignore other parts of the environment [34,31]. The agent can
even memorize the training environment to achieve the best cumulative reward

https://github.com/masud99r/thinker
https://github.com/masud99r/thinker
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[34]. In contrast, in this paper, we use a zero-shot generalization [31] setup where
the agent is trained and tested on different environment instances. Furthermore,
the agent’s performance is evaluated on unseen environment instances; thus, the
agent must master skills during training to perform better in generalization.
Generalization Issue in Deep RL. The agent’s goal is to use necessary infor-
mation from the observation and learn behavior that maximizes reward. How-
ever, due to the lack of variability in observations, the agent might focus on
spurious features. This problem becomes commonplace in RL training, espe-
cially if the observation space is large, such as the RGB image. In such cases,
the agent might memorize the trajectory without actually learning the under-
lying task. This issue might be undetected if the agent trains and evaluates in
the same environment. The agent trained in such a task (environment) might
overfit to the trained environment and fail to generalize in the same task but
with a slightly different environment. For example, background color might be
irrelevant for a game, and the game might have different backgrounds at different
episodes, but the game logic will remain the same. These unimportant features
are the confounder that might mislead agents during training. The issue might
be severe in deep reinforcement learning as the agent policy is often represented
using high-capacity neural networks. If the agent focuses on these confounder
features, it might overfit and fails to generalize.
Style Transfer with Generative Adversarial Network. The task of style
transfer is to change particular features of a given image to another, where gen-
erative adversarial network (GAN) has achieved enormous success [19,18,35,5].
This setup often consists of images from two domains where models learn to
style translate images from one domain to another. The shared features then
define the style among images in a domain. A pairing between two domains
images is necessary to make many translation methods work. However, such in-
formation is not available in the reinforcement learning setup. Nevertheless, an
unpaired image-to-image translation method can be used, which does not require
a one-to-one mapping of annotated images from two domains. In this paper, we
leverage StarGAN [5] that efficiently learns mappings among various domains
using a single generator and discriminator. In the RL setup, we apply a clus-
tering approach which first separates the trajectory data into clusters. Then we
train the StarGAN on these clusters that learn to style translate images among
those clusters.

3 Bootstrap Observations with Thinker

Our proposed method, Thinker, focuses on removing the adverse confounding
features, which helps the deep RL agent to learn invariant representations from
the observations, which eventually help to learn generalizable policy. Figure
2 shows an overview of our method. Thinker maintains a set of distributions
achieved by clustering observation data that come from the experience trajec-
tory. We implemented our method on a high-dimensional RGB image observation
space.
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Fig. 2. Overview of style Thinker module. The experience trajectory observation data
for the task environment are separated into different classes based on visual features
using Gaussian Mixture Model (GMM) clustering algorithm. The task of the generator
is then to translate the image from one class image to another classes images. In this
case, the “style" is defined as the commonality among images in a single class. Given
a new observation, it first infers into its (source) cluster using GMM, and then the
generator translated it to (target) another cluster style. The target cluster is taken
randomly from the rest of the cluster. The translated observations are used to train
the policy.

Clustering Trajectories. The trajectory data is first clustered into several (n)
clusters. Though any clustering algorithms can be leveraged for this clustering
process, in this paper, we describe a particular implementation of our method,
where we use the Gaussian Mixture Model (GMM) for clustering, and ResNet
[15] for feature extraction and dimension reduction. Furthermore, this clustering
process focuses entirely on the visual aspect of the observation without neces-
sarily concentrating on the corresponding reward structure. Therefore, images
would be clustered based on these visual characteristics. In the next step, the
observation dataset is clustered using the GMM algorithm. Images in these clus-
ters’ are then used to carry out style transfer training.

Generator Training. We train a single generator G to translate image from
one cluster to another. We build on the generator on previous works [5,35] which
is a unified framework for a multi-domain image to image translation. Given an
input image x from a source cluster the output translated image x′ conditioned
on the target cluster number c, that is x′ ← G(x, c), where c is a randomly
chosen cluster number. A discriminator D : x → {Dsrc(x), Dcls(x)} is used to
distinguish real image and fake image generated by G. Here Dsrc distinguish
between fake and real images of the source, and Dcls determines the cluster
number of the given input image x. Generator G tries to fool discriminator D
in an adversarial setting by generating a realistic image represented by the true
image distribution.
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The adversarial loss is calculated as the Wasserstein GAN [3] objective with
gradient penalty [13] which stabilize the training compared to regular GAN
objective [12]. This loss is defined as

Ladv = Ex[Dsrc]− Ex,c[Dsrc(G(x, c))]− λgpEx̂[(||∇x̂Dsrc(x̂)|| − 1)2], (1)

where x̂ is sampled uniformly along a straight line between a pair of real and
generated fake images and λgp is a hyperparameter. The cluster classification
loss is defined for real and fake images. The classification loss of real image is
defined as

Lr
cls = Ex,c′ [− logDcls(c

′|x)], (2)

where Dcls(c
′|x) is the probability distribution over all cluster labels. Similarly,

the classification loss of fake generated image is defined as

Lf
cls = Ex,c[− logDcls(c|G(x, c))], (3)

The full discriminator loss is

LD = −Ladv + λclsLr
cls, (4)

which consists of the adversarial loss Ladv, and domain classification loss Lr
cls

and λcls is a hyperparameter. The discriminator detects a fake image generated
by the generator G from the real image in the given class data.

To preserve image content during translation a reconstruction loss is applied

Lrec = Ex,c,c′ [||x−G(G(x, c), c′)||1], (5)

where we use the L1 norm.
The Lrec is the reconstruction loss which makes sure the generator preserves

the content of the input images while changing the domain-related part of the
inputs. This cycle consistency loss [5,35] Lrec makes sure the translated input
can be translated back to the original input, thus only changing the domain
related part and not the semantic. Thus, the generator loss is

LG = Ladv + λclsLf
cls + λrecLrec, (6)

where Ladv is adversarial loss, and Lf
cls is the loss of detecting fake image and

the λrec is a hyperparameter.
Train Agent with Thinker. During policy training, the agent can query the
generator module with a new observation and get back translated observation
(Algorithm 1). The agent can then use the translated observation for policy
training. Intuitively, the observation translation process is similar to asking the
counterfactual question; “what if the new observation is coming from a visually
different episode distribution)?" The Thinker method can be applied to existing
deep RL algorithms where experience data is used to train policy networks. In
this paper, we evaluate Thinker with on-policy PPO [30]. Intuitively, Thinker
maintains a counterfactual-based visual thinking component, which it can invoke
at any learning timestep and translate the observation from one distribution to
another. Algorithm 1 describes detailed steps of training deep RL agents with
Thinker.
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Algorithm 1 Thinker
Get PPO for policy learning RL agent
Collect observation trajectory D using initial policy
Cluster dataset D into n clusters using GMM
Train Generator G with the n clusters by optimizing equation 4, and 6
for each iteration do

for each environment step do
at ∼ πθ(at|xt)
xt+1 ∼ P (xt+1|xt, at)
rt ∼ R(xt, at)
B ←− B ∪ {(xt, at, rt, xt+1)}
Translate all obs x ∈ B to get B′ using Generator G
Train policy πθ on B′ with PPO

end for
end for

4 Experiments

4.1 Implementation

We implemented Thinker using Ray framework: Tune, and RLlib [24], which
supports simple primitive and unified API to build scalable applications.
Clustering. We use Gaussian Mixture Model (GMM) implementation available
in Scikit-learn [26]. We first pass observation through the pre-trained ResNet18
[15] model which is trained on ImageNet dataset [29]. The ResNet18 model 1

converts the RGB image into a 1000 dimensional vector. We use the layer just
before the final softmax layer to get this vector. This dimensionality reduction
step drastically reduces the training and inference time of the Gaussian mixture
model. Given the number of cluster n, this model train on n clusters. These
n clusters data are stored by the agent, which is later used for the generator
training. The inference module takes input an observation, and it returns the
cluster-ID to which it belongs, which is used to identify the target cluster for
the style translation. The number of clusters is the hyperparameter, which can
depend on the diversity of environment levels. However, for our method to be ef-
fective, at least two clusters are required. Therefore, unless otherwise mentioned,
we reported comparison results using the number of clusters n = 3 (better per-
forming in ablation).
Learning Generator. After clustering, all data is then feed to the generator
module which learns a single generator that style translate between any pair of
clusters. The agent can choose various cluster numbers (hyperparameter) during
training time. Each time the clustering is trained, the generator must be updated
with the new cluster samples. In our experiments, we train the generator once
and at the beginning of the training. Note that the collected trajectory data
should be representative enough to train a good generator. Thus initially, the

1 https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/
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agent has to sufficiently explore the environments to have a diverse observation
in the buffer. In our experiment, we use an initial policy whose parameters are
chosen randomly to allow exploration and enable diverse data collection for the
cluster and generator training.

4.2 Experiment Setup

Fig. 3. Some snippets of different Procgen environments. The training (seen) levels
vary drastically from the testing (unseen) environment. The agent must master the skill
without overfitting irrelevant non-generalizable aspects of the environment to perform
better in unseen levels.

For the StarGAN training, we use 500 iterations, where in each iteration,
the data were sampled from the available clusters dataset. These sampled data
were used to train the generators’ networks. For the generator model, we use
a ResNet-based CNN architecture with 6 residual blocks. The hyperparameters
are set λcls = 1, λrec = 10, and λgp = 10.

Environment. We conducted experiments on four OpenAI Procgen [6] envi-
ronments consisting of diverse procedurally-generated environments with differ-
ent action sets: Maze, CaveFlyer, Dodgeball, and Jumper. These environments
are chosen due to their relatively larger generalization gap [6]. We conduct ex-
periments on these environments to measure how quickly (sample efficiency) a
reinforcement learning agent learns generalizable policy. Some snippets of differ-
ent Procgen environments are given in Figure 3. All environments use a discrete
15 dimensional action space which generates 64×64×3 RGB image observations.
Settings. As suggested in the Procgen benchmark paper [6], we trained the
agents on 200 levels for easy difficulty levels and evaluated on the full distribution
of levels. We report evaluation results on the full distribution (i.e., test), including
unseen levels, focusing on generalization as well as training learning curve for
sample efficiency. We used the standard Proximal Policy Optimization (PPO)
[30] and data augmentation techniques for our baseline comparison. PPO learns
policy in an on-policy approach by alternating between sampling data through
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interaction with the environment and optimizing a surrogate objective function,
enabling multiple epochs of minibatch updates using stochastic gradient ascent.

On the other hand, RAD is a data augmentation technique [21] which shows
effective empirical evidence in complex RL benchmarks including some Procgen
environments. In particular, the Cutout Color augmentation technique which has
shown better results in many Procgen environments compared in [21] thus we
compare with this data augmentation technique. Additionally, we experimented
on random crop augmentation. However, this augmentation fails to achieve any
reasonable performance in the experimented environments. Thus, we do not
report the results for random crop here in our experiments.

We used RLlib [24] to implement all the algorithms. For all the agents
(Thinker, PPO, and RAD), to implement the policy network (model), we use a
CNN architecture used in IMPALA [9], which also found to work better in the
Procgen environments [6]. To account for the agents’ performance variability,
we run each algorithm with 5 random seeds. Policy learning hyperparameter
settings (RLlib’s default[24]) for Thinker, PPO, and RAD are set the same for
a fair comparison. The hyperparameters are given in Table 1.

Table 1. Hyperparameters for Experiments - RLlib

Description Hyperparameters Description Hyperparameters
Discount factor 0.999 The GAE(lambda) 0.95
Learning rate 5.0e − 4 Epochs per train batch 3
SGD batch 2048 Training batch size 16384

KL divergence 0.0 Target KL divergence 0.01
Coeff. of value loss 0.5 Coeff. of the entropy 0.01
PPO clip parameter 0.2 Clip for the value 0.2

Global clip 0.5 PyTorch Framework torch
Settings for Model IMPALA CNN Rollout Fragment 256

Evaluation Metric. It has been observed that a single measure in the form of
mean or median can hide the uncertainty implied by different runs [2]. In this
paper, we report the reward distribution of all 5 random seed runs in the form
of a boxplot to mitigate the above issue.
Computing details. We used the following machine configurations to run our
experiments: 20 core-CPU with 256 GB of RAM, CPU Model Name: Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20GHz, and an Nvidia A100 GPU. In our setup,
for each run of a training of 25M timesteps, Thinker took approx. 14 hours
(including approx. 2 hours of generator training), RAD-Random Crop took ap-
prox. 30 hours, RAD-Cutout Color took approx. 9 hours and PPO took approx.
8 hours.

4.3 Results

We now discuss the results of our experiments. We first discuss the general-
ization results and then sample efficiency. Further, we evaluate how our agents
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perform in different hyperparameter values of the number of clusters. Finally,
we demonstrate samples of the style transfer by our generator.
Generalization on unseen environments. We show how each agent achieves

Fig. 4. Generalization (Test) results. Our agent Thinker performs better in all envi-
ronments than the base PPO algorithm and RAD cutout data augmentation.

Fig. 5. Sample efficiency (Train) results. Thinker achieves better sample efficiency in
the Jumper environment while performing comparably with the base PPO algorithm
in other environments. Note that our agent Thinker still achieves competitive results
during training despite being optimized for generalization.

generalization after training for 25 million timesteps. This scenario is a zero-shot
setting, which means we do not train the agent on the test environment levels
(unseen to the trained agent). We report the reward in different random seed
runs in a boxplot. The generalization results are computed by evaluating the
trained agents on test levels (full distribution) for 128 random episode trials.

Figure 4 shows the boxplot of the test performance at the end of the training.
We observe that our agent Thinker performs better (in the median, 25th, and
75th reward) compared to the base PPO algorithm and RAD cutout data aug-
mentation. On the other hand, the random cutout data augmentation approach
sometimes worsens the performance compared to the base PPO. In all cases,
Thinker performs better than the data augmentation-based approach. Random
Crop performed worst and could not produce any meaningful reward in these
environments. Thus, for brevity, we omit them from Figure 4.
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These results show the importance of our bootstrapped observations data
during policy training, which could help us learn a policy that performs better
across unseen levels of environments than baselines.
Sample efficiency during training. We further evaluate the sample efficiency
of our method during training. We show in Figure 5 the final train reward after
training the agents for 25 million timesteps.

Fig. 6. Ablation results. Thinker’s performance on different cluster numbers (3, 5, and
10) on the Maze Procgen environment. The results are averaged over 5 seeds. [Left]
Thinker’s learning curve during training. [Right] Thinker’s generalization performance
in boxplot on unseen levels after the training.

Thinker achieves better sample efficiency in the Jumper environment and per-
forms comparably with the base PPO algorithm in other environments. However,
the random cutout data augmentation mostly fails to improve (and sometimes
worsens) the performance over the base PPO algorithm. Note that the ultimate
goal of our agent Thinker is to perform better in test time. Despite that objective,
it still achieves competitive results during training.

On the other hand, our agent Thinker performs better than the data augmentation-
based approach in all the environments. We omit the random crop data augmen-
tation result for brevity due to its poor performance. 6.
Ablation Study. The ablation results for different cluster numbers are shown
in Figure 6. We observe that the number of clusters has some effect on policy
learning. The generalization (Test Reward) performance is dropping with the
increase in clusters. When the number of clusters is large, that is 10; the generator
might overfit each cluster’s features and translate the essential semantic part
of the observation, thus resulting in lower performance. However, the cluster
number does not affect the train results (Train Reward). We see the best results
at cluster number 3 in the Maze Procgen environment.
Style Transfer Sample. Figure 7 shows some sample style translations by our
trained generator. Overall, the generator performs style transfer while mostly
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maintaining the game semantics. For example, in the Dodgeball environment, in
the second column, we see that the background color of the observation is gray,
while in the translated observation, it is mostly blue. Additionally, the game
objects (e.g., small dots, horizontal and vertical bar) remain in place. These
objects are the essential part where the agent needs to focus while solving the
task.

Fig. 7. Sample style translations by our trained generator on some Procgen environ-
ments. The top images are the original observations for each environment, and the
corresponding bottom images are the translated images. We see that the contents of
the translated images mostly remain similar to the original images while the style
varies.

5 Related Work

Regularization has been used to improve RL generalization [10,7,20,17,32]. On
the other hand, data augmentation has been shown promising results in gen-
eralization and in high-dimensional observation space [7,21,20,27,20]. Network
randomization [25,4,23] and random noise injection [17], leveraging inherent se-
quential structure in RL [1] have been explored to improve RL robustness and
generalization. In these cases, the idea is to learn invariant features and disen-
tangled representation [16] robust to visual changes in the testing environment.
In our work, we explicitly tackle this problem by generating semantically similar
but visually different observation samples, which ideally cancel out unimportant
features in the environment and thus learn invariant state representations. Our
method focuses on performing realistic visual style transfer of observations while
keeping the semantic same. Thus, the target observation corresponds to possible
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testing environments, aiming to prepare the agent for the unseen scenarios. A
closely related paper of our style transfer approach is [11]. They require access
to the annotated agent’s trajectory data in both source and target domains for
the GAN training. In our case, we do not need the information of levels and
their sample beforehand; instead, we automatically cluster the trajectory data
based on observation’s visual features. Thus, the style transfer happens between
learned clusters. Additionally, our approach uses visual-based clustering; thus,
one cluster may have data from multiple levels, potentially preventing GAN from
overfitting [11] to any particular environment levels.

6 Discussion

In conclusion, we proposed a novel bootstrapping method to remove the adverse
effects of confounding features from the observation in an unsupervised way. Our
method first clusters experience trajectories into several clusters; then, it learns
StarGAN-based generators. These generators translate the trajectories from one
cluster’s style to another, which are used for policy training. Our method can be
used with existing deep RL algorithms where experience trajectory is used for
policy training. Evaluating on visually enriched environments, we demonstrated
that our method improves the performance of the existing RL algorithm while
achieving better generalization capacity and sample efficiency.

The impacts of Thinker on policy learning depends on the quality of the
bootstrapped data generations. Thus our method is better suited for the cases
where different levels of an environment vary visually (e.g., changing background
color, object colors, texture). In the scenarios where different levels of an envi-
ronment vary due to mostly its semantic logic differences (e.g., the structural
difference in a maze), our method might face challenges. Lack of visual diversity
in the clustering might lead the generator to overfit, impacting the its translation
performance across these clusters. A possible alternative is to cluster observa-
tion data using other features that vary between clusters in addition to visual
aspects. A large number of the cluster might place less diverse observation in
individual cluster focusing on low-level objects’ details, which might cause the
generator to overfit. We suggest to reduce the number of clusters in such scenar-
ios. During policy learning, the agent requires some time to train and infer the
Thinker module. However, this additional time is negligible compared to deep
RL agents’ typical stretched running time. Additionally, as we are training a sin-
gle generator for all the cluster pairs, we find the overhead of Thinker training
time reasonable in the context of deep RL agent training.
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