
Learning Markov Random Fields for Combinatorial Structures via
Sampling through Lovász Local Lemma

Nan Jiang*1, Yi Gu*2, Yexiang Xue1

1 Department of Computer Science, Purdue University, USA
2 Department of Mathematics, Northwestern University, USA
{jiang631, yexiang}@purdue.edu, Yi.Gu@u.northwestern.edu

Abstract

Learning to generate complex combinatorial structures sat-
isfying constraints will have transformative impacts in many
application domains. However, it is beyond the capabilities of
existing approaches due to the highly intractable nature of the
embedded probabilistic inference. Prior works spend most of
the training time learning to separate valid from invalid struc-
tures but do not learn the inductive biases of valid structures.
We develop NEural Lovász Sampler (NELSON), which em-
beds the sampler through Lovász Local Lemma (LLL) as a
fully differentiable neural network layer. Our NELSON-CD
embeds this sampler into the contrastive divergence learning
process of Markov random fields. NELSON allows us to ob-
tain valid samples from the current model distribution. Con-
trastive divergence is then applied to separate these samples
from those in the training set. NELSON is implemented as a
fully differentiable neural net, taking advantage of the paral-
lelism of GPUs. Experimental results on several real-world
domains reveal that NELSON learns to generate 100% valid
structures, while baselines either time out or cannot ensure
validity. NELSON also outperforms other approaches in run-
ning time, log-likelihood, and MAP scores.

1 Introduction
In recent years, tremendous progress has been made in gen-
erative modeling (Hinton 2002; Tsochantaridis et al. 2005;
Goodfellow et al. 2014; Kingma and Welling 2014; Germain
et al. 2015; Larochelle and Murray 2011; van den Oord,
Kalchbrenner, and Kavukcuoglu 2016; Arjovsky, Chintala,
and Bottou 2017; Song and Ermon 2019; Song et al. 2021;
Murphy, Weiss, and Jordan 1999; Yedidia, Freeman, and
Weiss 2000; Wainwright and Jordan 2006).

Learning a generative model involves increasing the di-
vergence in likelihood scores between the structures in the
training set and those structures sampled from the cur-
rent generative model distribution. While current approaches
have achieved successes in un-structured domains such as
vision or speech, their performance is degraded in the struc-
tured domain, because it is already computationally in-
tractable to search for a valid structure in a combinatorial
space subject to constraints, not to mention sampling, which

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has a higher complexity. In fact, when applied in a con-
strained domain, existing approaches spend most of their
training time manipulating the likelihood of invalid struc-
tures, but not learning the difference between valid struc-
tures inside and outside of the training set. In the mean-
time, tremendous progress has been made in automated rea-
soning (Braunstein, Mézard, and Zecchina 2005; Andersen
et al. 2007; Chavira, Darwiche, and Jaeger 2006; Van Hen-
tenryck 1989; Gogate and Dechter 2012; Sang, Bearne,
and Kautz 2005). Nevertheless, reasoning and learning have
been growing independently for a long time. Only recently
do ideas emerge exploring the role of reasoning in learn-
ing (Kusner, Paige, and Hernández-Lobato 2017; Jin, Barzi-
lay, and Jaakkola 2018; Dai et al. 2018; Hu et al. 2017; Lowd
and Domingos 2008; Ding et al. 2021).

The Lovász Local Lemma (LLL) (Erdős and Lovász
1973) is a classic gem in combinatorics, which at a high
level, states that there exists a positive probability that none
of a series of bad events occur, as long as these events
are mostly independent from one another and are not too
likely individually. Recently, Moser and Tardos (2010) came
up with an algorithm, which samples from the probabil-
ity distribution proven to exist by LLL. Guo, Jerrum, and
Liu (2019) proved that the algorithmic-LLL is an unbiased
sampler if those bad events satisfy the so-called “extreme”
condition. The expected running time of the sampler is also
shown to be polynomial. As one contribution of this paper,
we offer proofs of the two aforementioned results using pre-
cise mathematical notations, clarifying a few descriptions
not precisely defined in the original proof. While this line of
research clearly demonstrates the potential of LLL in gener-
ative learning (generating samples that satisfy all hard con-
straints), it is not clear how to embed LLL-based samplers
into learning and no empirical studies have been performed
to evaluate LLL-based samplers in machine learning.

In this paper, we develop NEural Lovász Sampler
(NELSON), which implements the LLL-based sampler as a
fully differentiable neural network. Our NELSON-CD em-
beds NELSON into the contrastive divergence learning pro-
cess of Markov Random Fields (MRFs). Embedding LLL-
based sampler allows the contrastive learning algorithm to
focus on learning the difference between the training data
and the valid structures drawn from the current model distri-
bution. Baseline approaches, on the other hand, spend most

of their training time learning to generate valid structures. In
addition, NELSON is fully differentiable, hence allowing for
efficient learning harnessing the parallelism of GPUs.

Related to our NELSON are neural-based approaches to
solve combinatorial optimization problems (Selsam et al.
2019; Duan et al. 2022; Li, Chen, and Koltun 2018).
Machine learning is also used to discover better heuris-
tics (Yolcu and Póczos 2019; Chen and Tian 2019). Re-
inforcement learning (Karalias and Loukas 2020; Bengio,
Lodi, and Prouvost 2021) as well as approaches integrating
search with neural nets (Mandi et al. 2020) are found to be
effective in solving combinatorial optimization problems as
well. Regarding probabilistic inference, there are a rich line
of research on MCMC-type sampling (Neal 1993; Dagum
and Chavez 1993; Ge, Xu, and Ghahramani 2018) and vari-
ous versions of belief propagation (Murphy, Weiss, and Jor-
dan 1999; Ihler, Fisher III, and Willsky 2005; Coja-Oghlan,
Müller, and Ravelomanana 2020; Ding and Xue 2020). Sam-
pleSearch (Gogate and Dechter 2011) integrates importance
sampling with constraint-driven search. Probabilistic infer-
ence based on hashing and randomization obtains proba-
bilistic guarantees for marginal queries and sampling via
querying optimization oracles subject to randomized con-
straints (Gomes, Sabharwal, and Selman 2006; Ermon et al.
2013b; Achlioptas and Theodoropoulos 2017; Chakraborty,
Meel, and Vardi 2013).

We experiment NELSON-CD on learning preferences to-
wards (i) random K-satisfiability solutions (ii) sink-free ori-
entations of un-directed graphs and (iii) vehicle delivery
routes. In all these applications, NELSON-CD (i) has the
fastest training time due to seamless integration into the
learning framework (shown in Tables 1(a), 3(a)). (ii) NEL-
SON generates samples 100% satisfying constraints (shown
in Tables 1(b), 3(b)), which facilitates effective contrastive
divergence learning. Other baselines either cannot satisfy
constraints or time out. (iii) The fast and valid sample gen-
eration allows NELSON to obtain the best learning perfor-
mance (shown in Table 1(c), 2(a,b), 3(c,d)).

Our contributions can be summarized as follows: (a) We
present NELSON-CD, a contrastive divergence learning al-
gorithm for constrained MRFs driven by sampling through
the Lovász Local Lemma (LLL). (b) Our LLL-based sam-
pler (NELSON) is implemented as a fully differentiable
multi-layer neural net, allowing for end-to-end training on
GPUs. (c) We offer a mathematically sound proof of the
sample distribution and the expected running time of the
NELSON algorithm. (d) Experimental results reveal the ef-
fectiveness of NELSON in (i) learning models with high like-
lihoods (ii) generating samples 100% satisfying constraints
and (iii) having high efficiency in training1.

2 Preliminaries
Markov Random Fields (MRF) represent a Boltzmann
distribution of the discrete variables X = {Xi}ni=1 over a

1Code is at: https://github.com/jiangnanhugo/nelson-cd.
Please refer to the Appendix in the extended version (Jiang, Gu,
and Xue 2022) for the whole proof and the experimental settings.

Boolean hypercube X = {0, 1}n. For x ∈ X , we have:

Pθ(X = x) =
exp (ϕθ(x))

Z(θ)
=

exp
(∑m

j=1 ϕθ,j(xj)
)

Z(θ)
.

(1)
Here, Z(θ) =

∑
x′∈X exp (ϕθ(x

′)) is the partition function
that normalizes the total probability to 1. The potential func-
tion is ϕθ(x) =

∑m
j=1 ϕθ,j(xj). Each ϕθ,j is a factor poten-

tial, which maps a value assignment over a subset of vari-
ables Xj ⊆ X to a real number. We use upper case letters,
such as Xj to represent (a set of) random variables, and use
lower case letters, such as xj , to represent its value assign-
ment. We also use var(ϕθ,j) to represent the domain of ϕθ,j ,
i.e., var(ϕθ,j) = Xj . θ are the parameters to learn.

Constrained MRF is the MRF model subject to a set of
hard constraints C = {cj}Lj=1. Here, each constraint cj lim-
its the value assignments of a subset of variables var(cj) ⊆
X . We write cj(x) = 1 if the assignment x satisfies the con-
straint cj and 0 otherwise. Note that x is an assignment to all
random variables, but cj only depends on variables var(cj).
We denote C(x) =

∏L
j=1 cj(x) as the indicator function.

Clearly, C(x) = 1 if all constraints are satisfied and 0 other-
wise. The constrained MRF is:

Pθ(X = x|C) = exp (ϕθ(x))C(x)

ZC(θ)
, (2)

where ZC(θ) =
∑

x′∈X exp (ϕθ(x))C(x) sums over only
valid assignments.

Learn Constrained MRF Given a data setD = {xk}Nk=1,
where each xk is a valid assignment that satisfies all con-
straints, learning can be achieved via maximal likelihood es-
timation. In other words, we find the optimal parameters θ∗
by minimizing the negative log-likelihood ℓC(θ):

ℓC(θ) = −
1

N

N∑
k=1

logPθ(X = xk|C)

= − 1

N

N∑
k=1

ϕθ(x
k) + logZC(θ).

(3)

The parameters θ can be trained using gradient descent:
θt+1 = θt − η∇ℓC(θ), where η is the learning rate. Let
∇ℓC(θ) denotes the gradient of the objective ℓC(θ), that is
calculated as:

∇ℓC(θ) = −
1

N

N∑
k=1

∇ϕθ(x
k) +∇ logZC(θ)

= −Ex∼D (∇ϕθ(x)) + Ex̃∼Pθ(x|C) (∇ϕθ(x̃)) .

(4)

The first term is the expectation over all data in training set
D. During training, this is approximated using a mini-batch
of data randomly drawn from the training set D. The sec-
ond term is the expectation over the current model distri-
bution Pθ(X = x|C) (detailed in Appendix C.2). Because
learning is achieved following the directions given by the
divergence of two expectations, this type of learning is com-
monly known as contrastive divergence (CD) (Hinton 2002).

Estimating the second expectation is the bottleneck of train-
ing because it is computationally intractable to sample from
this distribution subject to combinatorial constraints. Our
approach, NELSON, leverages the sampling through Lovász
Local Lemma to approximate the second term.

Factor Potential in Single Variable Form Our method
requires each factor potential ϕθ,j(xj) in Eq. (1) to involve
only one variable. This is NOT an issue as all constrained
MRF models can be re-written in single variable form by in-
troducing additional variables and constraints. Our transfor-
mation follows the idea in Sang, Bearne, and Kautz (2005).
We illustrate the idea by transforming one-factor potential
ϕθ,j(xj) into the single variable form. First, notice all func-
tions including ϕθ,j(xj) over a Boolean hypercube {0, 1}n
have a (unique) discrete Fourier expansion:

ϕθ,j(xj) =
∑

S∈[var(ϕθ,j)]

ϕ̂θ,j,S χS(x). (5)

Here χS(x) =
∏

Xi∈S Xi is the basis function and ϕ̂θ,j,S

are Fourier coefficients. [var(ϕθ,j)] denotes the power set
of var(ϕθ,j). For example, if var(ϕθ,j) = {X1, X2},
then [var(ϕθ,j)] = {∅, {X1}, {X2}, {X1, X2}}. See Man-
sour (1994) for details of Fourier transformation. To trans-
form ϕθ,j(xj) into single variable form, we introduce a new
Boolean variable χ̂S for every χS(x). Because χ̂S and all
Xi’s are Boolean, we can use combinatorial constraints to
guarantee χ̂S =

∏
Xi∈S Xi. These constraints are incorpo-

rated into C. Afterward, ϕθ,j(xj) is represented as the sum
of several single-variable factors. Notice this transformation
is only possible when the MRF is subject to constraints. We
offer a detailed example in Appendix C.1 for further expla-
nation. Equipped with this transformation, we assume all
ϕθ,j(xj) are single variable factors for the rest of the paper.

Extreme Condition The set of constraints C is called “ex-
tremal” if no variable assignment violates two constraints
sharing variables, according to Guo, Jerrum, and Liu (2019).
Condition 1. A set of constraints C is called extremal if and
only if for each pair of constraints ci, cj ∈ C, (i) either their
domain variables do not intersect, i.e., var(ci)∩ var(cj) =
∅. (ii) or for all x ∈ X , ci(x) = 1 or cj(x) = 1.

3 Sampling Through Lovász Local Lemma
Lovász Local Lemma (LLL) (Erdős and Lovász 1973) is a
fundamental method in combinatorics to show the existence
of a valid instance that avoids all the bad events, if the occur-
rences of these events are “mostly” independent and are not
very likely to happen individually. Since the occurrence of
a bad event is equivalent to the violation of a constraint, we
can use the LLL-based sampler to sample from the space of
constrained MRFs. To illustrate the idea of LLL-based sam-
pling, we assume the constrained MRF model is given in the
single variable form (as discussed in the previous section):

Pθ(X = x|C) =
exp (

∑n
i=1 θixi)C(x)

ZC(θ)
, (6)

where ZC(θ) =
∑

x′∈X exp (
∑n

i=1 θixi)C(x).

Algorithm 1: Sampling Through Lovász Local Lemma.

Input: Random variables X = {Xi}ni=1; Constraints C =
{cj}Lj=1; Parameters of the constrained MRF θ.

1: xi ∼ exp(θixi)∑
xi∈{0,1} exp(θixi)

, for 1 ≤ i ≤ n. ▷ initialize

2: while C(x) = 0 do
3: Find all violated constraints S ⊆ C in x.
4: xk∼ exp(θkxk)∑

xk∈{0,1}
exp(θkxk)

, for xk ∈ var(S). ▷ resample

return A valid sample x drawn from Pθ(X = x|C).

As shown in Algorithm 1, the LLL-based sampler (Guo,
Jerrum, and Liu 2019) takes the random variables X =
{Xi}ni=1, the parameters of constrained MRF θ, and con-
straints C = {cj}Lj=1 that satisfy Condition 1 as the in-
puts. In Line 1 of Algorithm 1, the sampler gives an initial
random assignment of each variable following its marginal
probability: xi ∼ exp(θixi)∑

xi∈{0,1} exp(θixi)
, for 1 ≤ i ≤ n.

Here we mean that xi is chosen with probability mass
exp(θixi)∑

xi∈{0,1} exp(θixi)
. Line 2 of Algorithm 1 checks if the cur-

rent assignment satisfies all constraints in C. If so, the al-
gorithm terminates. Otherwise, the algorithm finds the set
of violated constraints S = {cj |cj(x) = 0, cj ∈ C} and
re-samples related variables Xk ∈ var(S) using the same
marginal probability, i.e., xk ∼ exp(θkxk)∑

xk∈{0,1} exp(θkxk)
. Here

var(S) = ∪cj∈S var(cj). The algorithm repeatedly sam-
ples all those random variables violating constraints until all
the constraints are satisfied.

Under Condition 1, Algorithm 1 guarantees each sample
is from the constrained MRFs’ distribution Pθ(X = x|C)
(in Theorem 1). In Appendix A, we present the detailed
proof and clarify the difference to the original descriptive
proof (Guo, Jerrum, and Liu 2019).

Theorem 1 (Probability Distribution). Given random vari-
ables X = {Xi}ni=1, constraints C = {cj}Lj=1 that satisfy
Condition 1, and the parameters of the constrained MRF in
the single variable form θ. Upon termination, Algorithm 1
outputs an assignment x that is randomly drawn from the
constrained MRF distribution: x ∼ Pθ(X = x|C).

Sketch of Proof. We first show that in the last round, the
probability of obtaining two possible assignments condition-
ing on all previous rounds in Algorithm 1 has the same ra-
tio as the probability of those two assignments under dis-
tribution Pθ(X = x|C). Then we show when Algorithm 1
ends, the set of all possible outputs is equal to the domain
of non-zero probabilities of Pθ(X = x|C). Thus we con-
clude the execution of Algorithm 1 produces a sample from
Pθ(X = x|C) because of the identical domain and the match
of probability ratios of any two valid assignments.

The expected running time of Algorithm 1 is determined
by the number of rounds of re-sampling. In the uniform case
that θ1 = . . . = θn, the running time is linear in the size
of the constraints O(L). The running time for the weighted
case has a closed form. We leave the details in Appendix B.

4 Neural Lovász Sampler
We first present the proposed Neural Lovász Sampler
(NELSON) that implements the LLL-based sampler as a neu-
ral network, allowing us to draw multiple samples in parallel
on GPUs. We then demonstrate how NELSON is embedded
in CD-based learning for constrained MRFs.

4.1 NELSON: Neural Lovász Sampler
Represent Constraints as CNF NELSON obtains samples
from the constrained MRF model in single variable form
(Eq. 6). To simplify notations, we denote Pθ(Xi = xi) =

exp(θixi)∑
xi∈{0,1} exp(θixi)

. Since our constrained MRF model is de-

fined on the Boolean hyper-cube {0, 1}n, we assume all con-
straints {cj}Lj=1 are given in the Conjunctive Normal Form
(CNF). Note that all propositional logic can be reformulated
in CNF format with at most a polynomial-size increase. A
formula represented in CNF is a conjunction (∧) of clauses.
A clause is a disjunction (∨) of literals, and a literal is either
a variable or its negation (¬). Mathematically, we use cj to
denote a clause and use lj,k to denote a literal. In this case, a
CNF formula would be:

c1 ∧ . . . ∧ cL, where cj = lj,1 ∨ . . . ∨ lj,K (7)

A clause is true if and only if at least one of the literals in the
clause is true. The whole CNF is true if all clauses are true.

We transform each step of Algorithm 1 into arithmetic op-
erations, hence encoding it as a multi-layer neural network.
To do that, we first need to define a few notations:

• Vector of assignment xt = (xt
1, . . . , x

t
n), where xt

i is the
assignment of variable Xi in the t-th round of Algorithm 1.
xt
i = 1 denotes variable Xi takes value 1 (or true).

• Vector of marginal probabilities P = (P1, . . . , Pn), where
Pi is the probability of variable Xi taking value 0 (false):
Pi = Pθ(Xi = 0) = exp(0)/(exp(0) + exp(θi)).

• Tensor W ∈ {−1, 0, 1}L×K×n and matrix b ∈
{0, 1}L×n, that are used for checking constraint satisfaction:

Wjki =


1 if k-th literal of clause cj is Xi,

−1 if k-th literal of clause cj is ¬Xi,

0 otherwise.
(8)

bjk =

{
1 if k-th literal of clause cj is negated,
0 otherwise.

(9)

• Matrix V ∈ {0, 1}L×n, denoting the mapping from
clauses to variables in the CNF form for constraints C:

Vji=
{
1 if clause cj contains a literal involving Xi

0 otherwise.
(10)

• Vector of resampling indicators At, where At
i = 1 indi-

cates variable Xi needs to be resampled at round t.

Given these defined variables, we represent each step of Al-
gorithm 1 using arithmetic operations as follows:

Initialization To complete line 1 of Algorithm 1, given the
marginal probability vector P , the first step is sampling an
initial assignment of X , x1 = (x1

1, . . . , x
1
n). It is accom-

plished by: for 1 ≤ i ≤ n,

x1
i =

{
1 if ui > Pi,

0 otherwise.
(11)

Here ui is sampled from the uniform distribution in [0, 1].

Check Constraint Satisfaction To complete line 2 of Al-
gorithm 1, given an assignment xt at round t ≥ 1, tensor W
and matrix b, we compute Zt as follows:

Zt = W ⊛ xt + b, (12)

where ⊛ represents a special multiplication between tensor
and vector: (W ⊛ x)jk =

∑n
i=1 Wjkix

t
i. Note that Zt

jk = 1
indicates the k-th literal of j-th clause is true (takes value 1).
Hence, we compute St

j as:

St
j = 1− max

1≤k≤K
Zjk, for 1 ≤ j ≤ L. (13)

Here St
j = 1 indicates xt violates j-th clause. We check∑L

j=1 S
t
j ̸= 0 to see if any clause is violated, which corre-

sponds to C(x) = 0 and is the continuation criteria of the
while loop.

Extract Variables in Violated Clauses To complete line
3 of Algorithm 1, we extract all the variables that require
resampling based on vector St computed from the last step.
The vector of resampling indicator At can be computed as:

At
i = 1

 L∑
j=1

St
jVji ≥ 1

 , for 1 ≤ i ≤ n (14)

where
∑L

j=1 S
t
jVji ≥ 1 implies Xi requires resampling.

Resample To complete line 4 of Algorithm 1, given the
marginal probability vector P , resample indicator vector At

and assignment xt, we draw a new random sample xt+1.
This can be done using this update rule: for 1 ≤ i ≤ n,

xt+1
i =

{
(1−At

i)x
t
i +At

i if ui > Pi,

(1−At
i)x

t
i otherwise.

(15)

Again, ui is drawn from the uniform distribution in [0, 1].
Drawing multiple assignments in parallel is attained by ex-
tending xt with a new dimension (See implementation in
Appendix D.1). Example 1 show the detailed steps of NEL-
SON (See more examples in Appendix A.5).

Example 1. Assume we have random variables X1, X2, X3

with n = 3, Constraints C = (X1 ∨X2) ∧ (¬X1 ∨X3) in
the CNF form with L = 2,K = 2. Tensor W is:

W=
[
w11=[w111, w112, w113], w12=[w121, w122, w123]
w21=[w211, w212, w213], w22=[w221, w222, w223]

]
,

w11 = [1, 0, 0], w12 = [0, 1, 0], w21=[−1, 0, 0], w22=[0, 0, 1].

Algorithm 2: Learn Constrained MRFs via NELSON-CD.

Input: Dataset D; Constraints C; #Samples m; Learning It-
erations Tmax; Parameters of Constrained MRFs θ.

1: NELSON(W, b, V)← build(X, C). ▷ in Sec. 4
2: for t = 1 to Tmax do
3: {xj}mj=1 ∼ D. ▷ from data
4: {x̃j}mj=1 ← NELSON(θt,m). ▷ from model
5: gt ← 1

m

∑m
j=1∇ϕ(xj)−∇ϕ(x̃j) ▷ divergence

6: θt+1 ← θt − ηgt. ▷ update parameters
return The converged MRF model θTmax .

Note that w111 = 1 means X1 is the 1st literal in the 1st
clause and w211 = −1 means ¬X1 is the 1st literal in the
2nd clause. Matrix b and the mapping matrix V are:

b =

[
0 0
1 0

]
, V =

[
1 1 0
1 0 1

]
,

b21 = 1 indicates the 1st literal in the 2nd clause is negated.
For the mapping matrix, V11 = V12 = 1 implies the 1st
clause contains X1 and X2. For t = 1, suppose we have an
initialized assignment x1 = [0 0 1]⊤, meaning X1 = X2 =
0, X3 = 1. The intermediate results of Z1, S1, A1 become:

Z1 =

[
0 0
1 1

]
, S1 =

[
1
0

]
, A1 =

[
1
1
0

]
,

where S1
1 = 1 implies the 1st clause is violated. A1

1 = A1
2 =

1 denotes variables X1, X2 require resampling.

4.2 Contrastive Divergence-based Learning
The whole learning procedure is shown in Algorithm 2.
At every learning iteration, we call NELSON to draw as-
signments {x̃j}mj=1 from constrained MRF’s distribution
Pθ(X|C). Then we pick m data points at random from the
training set {xj}mj=1 ∼ D. The divergence gt in line 5 of Al-
gorithm 2 is an estimation of ∇ℓC(θ) in Eq. (4). Afterward,
the MRFs’ parameters are updated, according to line 6 of
Algorithm 2. After Tmax learning iterations, the algorithm
outputs the constrained MRF model with parameters θTmax .

5 Experiments
We show the efficiency of the proposed NELSON on learn-
ing MRFs defined on the solutions of three combinatorial
problems. Over all the tasks, we demonstrate that NELSON
outperforms baselines on learning performance, i.e., gener-
ating structures with high likelihoods and MAP@10 scores
(Table 1(c), 2(a,b), 3(c,d)). NELSON also generates samples
which 100% satisfy constraints (Tables 1(b), 3(b)). Finally,
NELSON is the most efficient sampler. Baselines either time
out or cannot generate valid structures (Tables 1(a), 3(a)).

5.1 Experimental Settings
Baselines We compare NELSON with other contrastive di-
vergence learning algorithms equipped with other sampling
approaches. In terms of baseline samplers, we consider:

• Gibbs sampler (Carter and Kohn 1994), which is a special
case of MCMC that is widely used in training MRF models.
• Weighted SAT samplers, including WAPS (Gupta et al.
2019), WeightGen (Chakraborty et al. 2014) and XOR sam-
pler (Ermon et al. 2013a; Ding and Xue 2021).
• Uniform SAT samplers, including CMSGen (Golia et al.
2021), QuickSampler (Dutra et al. 2018), UniGen (Soos,
Gocht, and Meel 2020) and KUS (Sharma et al. 2018). No-
tice these samplers cannot sample SAT solutions from a non-
uniform distribution. We include them in the learning exper-
iments as a comparison, and exclude them in the weighted
sampling experiment (in Fig. 2).

Metrics In terms of evaluation metrics, we consider:
• Training time per iteration, which computes the average

time for every learning method to finish one iteration.
• Validness, that is the percentage of generated solutions

that satisfy the given constraints C.
• Mean Averaged Precision (MAP@10), which is the per-

centage that the solutions in the training set D reside
among the top-10 w.r.t. likelihood score. The higher the
MAP@10 scores, the better the model generates struc-
tures closely resembling those in the training set.

• log-likelihood of the solutions in the training set D (in
Eq. 3). The model that attains the highest log-likelihood
learns the closest distribution to the training set.

• Approximation error of∇ logZC(θ), which is the L1 dis-
tance between the exact value ∇ logZC(θ) and the ap-
proximated value given by the sampler.

See Appendix D for detailed settings of baselines and evalu-
ation metrics, as well as the following task definition, dataset
construction, and potential function definition.

5.2 Random K-SAT Solutions with Preference
Task Definition & Dataset This task is to learn to gener-
ate solutions to a K-SAT problem. We are given a training
set D containing solutions to a corresponding CNF formula
c1 ∧ . . . ∧ cL. Note that not all solutions are equally likely
to be presented in D. The learning task is to maximize the
log-likelihood of the assignments seen in the training set D.
Once learning is completed, the inference task is to gener-
ate valid solutions that closely resemble those inD (Dodaro
and Previti 2019). To generate the training set D, we use
CNFGen (Lauria et al. 2017) to generate the random K-SAT
problem and use Glucose4 solver to generate random valid
solutions (Ignatiev, Morgado, and Marques-Silva 2018).

Sampler’s Efficiency and Accuracy Table 1 shows the
proposed NELSON is an efficient sampler that generates
valid assignments, in terms of the training time for learn-
ing constrained MRF, approximation error for the gradient
and validness of the generated assignments. In Table 1(a),
NELSON takes much less time for sampling against all the
samplers and can train the model with the dataset of prob-
lem size 1000 within an hour. In Table 1(b), NELSON always
generates valid samples. The performance of QuickSampler
and Gibbs methods decreases when the problem size be-
comes larger. In Table 1(c), NELSON, XOR and WAPS are

Table 1: Sampling efficiency and accuracy for learning K-SAT solutions with preferences. The proposed NELSON is the most
efficient (see “Training Time Per Epoch”) and always generates valid assignments (see “Validness”) with a small approximation
error (see “Approximation Error of Gradient”) against all baselines. T.O. means time out.

Problem (a) Training time per iteration (Mins) (↓)
size NELSON XOR WAPS WeightGen CMSGen KUS QuickSampler Unigen Gibbs
10 0.13 26.30 1.75 0.64 0.22 0.72 0.40 0.66 0.86
20 0.15 134.50 3.04 T.O. 0.26 0.90 0.30 2.12 1.72
30 0.19 1102.95 6.62 T.O. 0.28 2.24 0.32 4.72 2.77
40 0.23 T.O. 33.70 T.O. 0.31 19.77 0.39 9.38 3.93
50 0.24 T.O. 909.18 T.O. 0.33 1532.22 0.37 13.29 5.27
500 5.99 T.O. T.O. T.O. 34.17 T.O. T.O. T.O. 221.83

1000 34.01 T.O. T.O. T.O. 177.39 T.O. T.O. T.O. 854.59
(b) Validness of generated solutions (%) (↑)

10− 50 100 100 100 100 100 100 82.65 100 90.58
500 100 T.O. T.O. T.O. 100 T.O. 7.42 100 54.27

1000 100 T.O. T.O. T.O. 100 T.O. 0.00 100 33.91
(c) Approximation error of∇ logZC(θ) (↓)

10 0.10 0.21 0.12 3.58 3.96 4.08 3.93 4.16 0.69
12 0.14 0.19 0.16 5.58 5.50 5.49 5.55 5.48 0.75
14 0.15 0.25 0.19 T.O. 6.55 6.24 7.79 6.34 1.30
16 0.16 0.25 0.15 T.O. 9.08 9.05 9.35 9.03 1.67
18 0.18 0.30 0.23 T.O. 10.44 10.30 11.73 10.20 1.90

Table 2: The quality of learning outcomes for learning ran-
dom K-SAT solutions with preferences. NELSON achieves
the best likelihood and MAP@10 scores. T.O. is time out.

(a) log-likelihood (↑)
Problem

NELSON Gibbs CMSGen
Quicksampler

size WeightGen,KUS
XOR, WAPS

100 −49.16 −36.36 −60.12

T.O.
300 −52.61 −53.11 −128.39
500 −196.47 −197.21 −272.49
700 −238.60 −238.75 −389.44

1000 −294.22 −296.33 −532.85
(b) MAP@10 (%) (↑)

100 82.13 83.32 86.34

T.O.
300 66.37 64.42 64.50
500 90.03 73.14 70.67
700 69.74 69.74 48.10

1000 91.70 77.56 78.72

the three algorithms that can effectively estimate the gradi-
ent while the other algorithms incur huge estimation errors.
Also, the rest methods are much slower than NELSON.
Learning Quality Table 2 demonstrates NELSON-CD
learns a more accurate constrained MRF model by measur-
ing the log-likelihood and MAP@10 scores. Note that base-
lines including Quicksampler, Weightgen, KUS, XOR and
WAPS timed out for the problem sizes we considered. Com-
pared with the remaining baselines, NELSON attains the best
log-likelihood and MAP@10 metric.

Abalation Study We also evaluated the samplers’ effi-
ciency in isolation (not embedded in learning). The sam-
pling cases we considered are uniform and weighted (mainly
following the experiment setting in Chakraborty and Meel
(2019)). In weighted sampling, the weights are specified

10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT

100

101

102

E
m

p
ir
ic

al
R

u
n
n
in

g
T

im
e

(s
)

Nelson (ours)

CMSGen

QuickSampler

UniGen

KUS

101 102 103

Problem size of Random K-SAT

0%

20%

40%

60%

80%

100%

Va
lid

 A
ss

ig
nm

en
t (

%
)

Nelson (ours)
CMSGen
QuickSampler
UniGen
KUS

Figure 1: Running time and the percentage of valid struc-
tures sampled uniformly at random from solutions of K-SAT
problems. Among all the problem sizes, NELSON always
generate valid solutions and is the most efficient sampler.

Em
pi

ric
al

 R
un

ni
ng

 T
im

e
(s

)

102 103

50%

100%

Va
lid

ne
ss

 (%
)

Nelson (ours)
Gibbs

101 102 103

Problem Size of Random K-SAT

2

4

6

of

 R
es

am
pl

es
Nelson (ours)

Figure 2: Running time, the percentage of valid solutions
generated, and rounds of resampling for weighted sam-
ple generation of K-SAT solutions. Among all the problem
sizes, NELSON scales the best among all approaches and al-
ways generates valid solutions.

Table 3: Sample efficiency and learning performance of the
sink-free orientation task. NELSON is the most efficient (see
Training Time Per Epoch) and always generates valid as-
signments (see Validness), has the smallest error approxi-
mating gradients, and has the best learning performance (see
MAP@10) among all baselines.

Problem (a) Training Time Per Epoch (Mins) (↓)
size NELSON Gibbs CMSGen
10 0.53 9.85 0.69
20 0.53 80.12 1.93
30 0.72 256.38 3.65
40 0.93 777.01 5.99
50 1.17 T.O. 9.08

(b) Validness of Orientations (%) (↑)
7 100 50.16 100
8 100 64.63 100
9 100 47.20 100

10 100 62.60 100
11 100 84.95 100

(c) Approximation Error of∇ logZC(θ) (↓)
5 0.01 0.09 0.21
7 0.05 0.08 2.37
9 0.03 0.11 2.37

11 0.04 0.17 8.62
13 0.05 0.28 11.27

(d) MAP@10 (%) (↑)
10 61.14 60.01 64.56
20 55.26 55.20 47.79
30 100.00 96.29 100.00
40 40.01 39.88 38.90
50 46.12 T.O. 42.11

by fixed values to the single factors in Eq. (6). In the uni-
form sampling case in Fig. 1, NELSON and Quicksampler
require much less time to draw samples compared to other
approaches. However, the solutions generated by Quicksam-
pler rarely satisfy constraints. In the weighted sampling case
in Fig. 2, NELSON scales better than all the competing sam-
plers as the sizes of the K-SAT problems increase.

5.3 Sink-Free Orientation in Undirected Graphs
Task Definition & Dataset A sink-free orientation of an
undirected graph is a choice of orientation for each arc such
that every vertex has at least one outgoing arc (Cohn, Pe-
mantle, and Propp 2002). This task has wide applications in
robotics routing and IoT network configuration (Takahashi
et al. 2009). Even though finding a sink-free orientation is
tractable, sampling a sink-free orientation from the space of
all orientations is still #P-hard. Given a training set of pre-
ferred orientations D for the graph, the learning task is to
maximize the log-likelihood of the orientations seen in the
training set. The inference task is to generate valid orienta-
tions that resemble those in the training set. To generate the
training set, we use the Erdős-Rényi random graph from the
NetworkX library. The problem size is characterized by the
number of vertices in the graph. The baselines we consider
are CD-based learning with Gibbs sampling and CMSGen.

0 50 250100 150 200
0

200

400

600

800

C
ou

nt

Nelson (ours)

Number of resamples
0.25 0.50 0.75 1.00 1.25 1.50

Time used by sampler (ms)
0

200

400

600

C
ou

nt

Nelson (ours)

Figure 3: Frequency histograms for the number of resample
and the total time of NELSON method for uniformly sam-
pling visiting paths for vehicle routing problem.

Learning Quality In Table 3(a), we show the proposed
NELSON method takes much less time to train MRF for one
epoch than the competing approaches. Furthermore, in Ta-
ble 3(b), NELSON and CMSGen generate 100% valid ori-
entations of the graph while the Gibbs-based model does
not. Note the constraints for this task satisfy Condition 1,
hence NELSON sampler’s performance is guaranteed by
Theorem 1. In Table 3(c), NELSON attains the smallest ap-
proximation error for the gradient (in Eq. 4) compared to
baselines. Finally, NELSON learns a higher MAP@10 than
CMSGen. The Gibbs-based approach times out for problem
sizes larger than 40. In summary, our NELSON is the best-
performing algorithm for this task.

5.4 Learn Vehicle Delivery Routes
Task Definition & Dataset Given a set of locations to
visit, the task is to generate a sequence to visit these loca-
tions in which each location is visited once and only once
and the sequence closely resembles the trend presented in
the training data. The training data are such routes collected
in the past. The dataset is constructed from TSPLIB, which
consists of 29 cities in Bavaria, Germany. The constraints
for this problem do not satisfy Condition 1. We still apply
the proposed method to evaluate if the NELSON algorithm
can handle those general hard constraints.

In Fig. 3, we see NELSON can obtain samples of this de-
livery problem efficiently. We measure the number of re-
samples taken as well as the corresponding time used by the
NELSON method. NELSON takes roughly 50 times of resam-
ples with an average time of 0.3 seconds to draw a batch (the
batch size is 100) of valid visiting sequences.

6 Conclusion
In this research, we present NELSON, which embeds a sam-
pler based on Lovász Local Lemma into the contrastive di-
vergence learning of Markov random fields. The embedding
is fully differentiable. This approach allows us to learn gen-
erative models over constrained domains, which presents
significant challenges to other state-of-the-art models. We
also give sound proofs of the performance of the LLL-based
sampler. Experimental results on several real-world domains
reveal that NELSON learns to generate 100% valid struc-
tures, while baselines either time out or cannot generate
valid structures. NELSON also outperforms other approaches
in the running times and in various learning metrics.

Acknowledgments
We thank all the reviewers for their constructive comments.
This research was supported by NSF grants IIS-1850243,
CCF-1918327.

References
Achlioptas, D.; and Theodoropoulos, P. 2017. Probabilistic
Model Counting with Short XORs. In SAT, volume 10491
of Lecture Notes in Computer Science, 3–19. Springer.
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A Constraint Store Based on Multivalued Decision
Diagrams. In CP, volume 4741 of Lecture Notes in Com-
puter Science, 118–132. Springer.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasser-
stein Generative Adversarial Networks. In ICML, volume 70
of Proceedings of Machine Learning Research, 214–223.
PMLR.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine learn-
ing for combinatorial optimization: A methodological tour
d’horizon. Eur. J. Oper. Res., 290(2): 405–421.
Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Survey
propagation: an algorithm for satisfiability. Random Struct.
Algorithms, 27: 201–226.
Carter, C. K.; and Kohn, R. 1994. On Gibbs sampling for
state space models. Biometrika, 81(3): 541–553.
Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.;
and Vardi, M. Y. 2014. Distribution-Aware Sampling and
Weighted Model Counting for SAT. In AAAI, 1722–1730.
AAAI Press.
Chakraborty, S.; and Meel, K. S. 2019. On Testing of Uni-
form Samplers. In AAAI, 7777–7784.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A Scal-
able and Nearly Uniform Generator of SAT Witnesses. In
CAV, volume 8044, 608–623. Springer.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compil-
ing relational Bayesian networks for exact inference. Int. J.
Approx. Reason., 42(1-2): 4–20.
Chen, X.; and Tian, Y. 2019. Learning to Perform Lo-
cal Rewriting for Combinatorial Optimization. In NeurIPS,
6278–6289.
Cohn, H.; Pemantle, R.; and Propp, J. G. 2002. Generating a
Random Sink-free Orientation in Quadratic Time. Electron.
J. Comb., 9(1).
Coja-Oghlan, A.; Müller, N.; and Ravelomanana, J. B.
2020. Belief Propagation on the random k-SAT model.
arXiv:2011.02303.
Dagum, P.; and Chavez, R. M. 1993. Approximating Proba-
bilistic Inference in Bayesian Belief Networks. IEEE Trans.
Pattern Anal. Mach. Intell., 15(3): 246–255.
Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; and Song, L. 2018.
Syntax-Directed Variational Autoencoder for Structured
Data. In ICLR (Poster). OpenReview.net.
Ding, F.; Ma, J.; Xu, J.; and Xue, Y. 2021. XOR-CD:
Linearly Convergent Constrained Structure Generation. In
ICML, volume 139 of Proceedings of Machine Learning Re-
search, 2728–2738. PMLR.

Ding, F.; and Xue, Y. 2020. Contrastive Divergence Learn-
ing with Chained Belief Propagation. In PGM, volume 138
of Proceedings of Machine Learning Research, 161–172.
PMLR.
Ding, F.; and Xue, Y. 2021. XOR-SGD: provable con-
vex stochastic optimization for decision-making under un-
certainty. In UAI, volume 161 of Proceedings of Machine
Learning Research, 151–160. AUAI Press.
Dodaro, C.; and Previti, A. 2019. Minipref: A Tool for Pref-
erences in SAT (short paper). In RCRA + RiCeRcA, volume
2538 of CEUR Workshop Proceedings. CEUR-WS.org.
Duan, H.; Vaezipoor, P.; Paulus, M. B.; Ruan, Y.; and Mad-
dison, C. J. 2022. Augment with Care: Contrastive Learn-
ing for Combinatorial Problems. In ICML, volume 162
of Proceedings of Machine Learning Research, 5627–5642.
PMLR.
Dutra, R.; Laeufer, K.; Bachrach, J.; and Sen, K. 2018. Ef-
ficient sampling of SAT solutions for testing. In ICSE, 549–
559. ACM.
Erdős, P.; and Lovász, L. 1973. Problems and results on 3-
chromatic hypergraphs and some related questions. In Col-
loquia Mathematica Societatis Janos Bolyai 10. Infinite and
Finite Sets, Keszthely (Hungary). Citeseer.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013a. Embed and Project: Discrete Sampling with Univer-
sal Hashing. In NIPS, 2085–2093.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013b. Taming the Curse of Dimensionality: Discrete In-
tegration by Hashing and Optimization. In ICML (2), vol-
ume 28 of JMLR Workshop and Conference Proceedings,
334–342. JMLR.org.
Fichte, J. K.; Hecher, M.; and Zisser, M. 2019. An Improved
GPU-Based SAT Model Counter. In CP, 491–509.
Ge, H.; Xu, K.; and Ghahramani, Z. 2018. Turing: A Lan-
guage for Flexible Probabilistic Inference. In AISTATS, vol-
ume 84, 1682–1690. PMLR.
Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H.
2015. MADE: Masked Autoencoder for Distribution Esti-
mation. In ICML, volume 37 of JMLR Workshop and Con-
ference Proceedings, 881–889. JMLR.org.
Gogate, V.; and Dechter, R. 2011. SampleSearch: Impor-
tance sampling in presence of determinism. Artif. Intell.,
175(2): 694–729.
Gogate, V.; and Dechter, R. 2012. Importance sampling-
based estimation over AND/OR search spaces for graphical
models. Artificial Intelligence, 184-185: 38 – 77.
Golia, P.; Soos, M.; Chakraborty, S.; and Meel, K. S. 2021.
Designing Samplers is Easy: The Boon of Testers. In FM-
CAD, 222–230. IEEE.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Near-
Uniform Sampling of Combinatorial Spaces Using XOR
Constraints. In NIPS, 481–488. MIT Press.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio,
Y. 2014. Generative Adversarial Nets. In NIPS, 2672–2680.

Guo, H.; Jerrum, M.; and Liu, J. 2019. Uniform Sampling
Through the Lovász Local Lemma. J. ACM, 66(3): 18:1–
18:31.
Gupta, R.; Sharma, S.; Roy, S.; and Meel, K. S. 2019.
WAPS: Weighted and Projected Sampling. In TACAS, vol-
ume 11427, 59–76.
Hinton, G. E. 2002. Training Products of Experts by Min-
imizing Contrastive Divergence. Neural Comput., 14(8):
1771–1800.
Hu, Z.; Yang, Z.; Liang, X.; Salakhutdinov, R.; and Xing,
E. P. 2017. Toward Controlled Generation of Text. In ICML,
volume 70 of Proceedings of Machine Learning Research,
1587–1596. PMLR.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Ora-
cles. In SAT, volume 10929 of Lecture Notes in Computer
Science, 428–437. Springer.
Ihler, A. T.; Fisher III, J. W.; and Willsky, A. S. 2005. Loopy
Belief Propagation: Convergence and Effects of Message Er-
rors. J. Mach. Learn. Res., 6: 905–936.
Jerrum, M. 2021. Fundamentals of Partial Rejection Sam-
pling. arXiv:2106.07744.
Jiang, N.; Gu, Y.; and Xue, Y. 2022. Learning Markov
Random Fields for Combinatorial Structures with Sampling
through Lovász Local Lemma. arXiv:2212.00296.
Jin, W.; Barzilay, R.; and Jaakkola, T. S. 2018. Junction Tree
Variational Autoencoder for Molecular Graph Generation.
In ICML, volume 80 of Proceedings of Machine Learning
Research, 2328–2337. PMLR.
Karalias, N.; and Loukas, A. 2020. Erdos Goes Neural: an
Unsupervised Learning Framework for Combinatorial Opti-
mization on Graphs. In NeurIPS, 6659–6672.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In ICLR.
Kusner, M. J.; Paige, B.; and Hernández-Lobato, J. M. 2017.
Grammar Variational Autoencoder. In ICML, volume 70,
1945–1954. PMLR.
Larochelle, H.; and Murray, I. 2011. The Neural Autore-
gressive Distribution Estimator. In AISTATS, volume 15 of
JMLR Proceedings, 29–37. JMLR.org.
Lauria, M.; Elffers, J.; Nordström, J.; and Vinyals, M. 2017.
CNFgen: A Generator of Crafted Benchmarks. In SAT, vol-
ume 10491, 464–473. Springer.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial Op-
timization with Graph Convolutional Networks and Guided
Tree Search. In NeurIPS, 537–546.
Lowd, D.; and Domingos, P. M. 2008. Learning Arithmetic
Circuits. In UAI, 383–392. AUAI Press.
Mahmoud, M. 2022. GPU Enabled Automated Reasoning.
Ph.D. thesis, Mathematics and Computer Science.
Mandi, J.; Demirovic, E.; Stuckey, P. J.; and Guns, T. 2020.
Smart Predict-and-Optimize for Hard Combinatorial Opti-
mization Problems. In AAAI, 1603–1610. AAAI Press.
Mansour, Y. 1994. Learning Boolean functions via the
Fourier transform. In Theoretical advances in neural com-
putation and learning, 391–424. Springer.

Moser, R. A.; and Tardos, G. 2010. A constructive proof of
the general lovász local lemma. J. ACM, 57(2): 11:1–11:15.
Murphy, K. P.; Weiss, Y.; and Jordan, M. I. 1999. Loopy
Belief Propagation for Approximate Inference: An Empiri-
cal Study. In UAI, 467–475. Morgan Kaufmann.
Neal, R. M. 1993. Probabilistic inference using Markov
chain Monte Carlo methods. Department of Computer Sci-
ence, University of Toronto Toronto, ON, Canada.
Prevot, N.; Soos, M.; and Meel, K. S. 2021. Leveraging
GPUs for Effective Clause Sharing in Parallel SAT Solving.
In SAT, 471–487.
Rosa, E. D.; Giunchiglia, E.; and O’Sullivan, B. 2011. Op-
timal stopping methods for finding high quality solutions to
satisfiability problems with preferences. In SAC, 901–906.
ACM.
Sang, T.; Bearne, P.; and Kautz, H. 2005. Performing
Bayesian Inference by Weighted Model Counting. In AAAI,
AAAI’05, 475–481.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT Solver from Single-Bit
Supervision. In ICLR (Poster). OpenReview.net.
Sharma, S.; Gupta, R.; Roy, S.; and Meel, K. S. 2018.
Knowledge Compilation meets Uniform Sampling. In
LPAR, volume 57 of EPiC Series in Computing, 620–636.
Song, Y.; and Ermon, S. 2019. Generative Modeling by Es-
timating Gradients of the Data Distribution. In NeurIPS,
11895–11907.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Er-
mon, S.; and Poole, B. 2021. Score-Based Generative Mod-
eling through Stochastic Differential Equations. In ICLR.
OpenReview.net.
Soos, M.; Gocht, S.; and Meel, K. S. 2020. Tinted, De-
tached, and Lazy CNF-XOR Solving and Its Applications
to Counting and Sampling. In CAV (1), volume 12224 of
Lecture Notes in Computer Science, 463–484. Springer.
Takahashi, J.; Yamaguchi, T.; Sekiyama, K.; and Fukuda, T.
2009. Communication timing control and topology recon-
figuration of a sink-free meshed sensor network with mobile
robots. IEEE/ASME transactions on mechatronics, 14(2):
187–197.
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun, Y.
2005. Large Margin Methods for Structured and Interdepen-
dent Output Variables. J. Mach. Learn. Res., 6: 1453–1484.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K.
2016. Pixel Recurrent Neural Networks. In ICML, vol-
ume 48 of JMLR Workshop and Conference Proceedings,
1747–1756. JMLR.org.
Van Hentenryck, P. 1989. Constraint Satisfaction in Logic
Programming. Cambridge, MA, USA: MIT Press. ISBN
0-262-08181-4.
Wainwright, M. J.; and Jordan, M. I. 2006. Log-determinant
relaxation for approximate inference in discrete Markov ran-
dom fields. IEEE Trans. Signal Process., 54(6-1): 2099–
2109.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2000. Gener-
alized Belief Propagation. In NIPS, 689–695. MIT Press.

Yolcu, E.; and Póczos, B. 2019. Learning Local Search
Heuristics for Boolean Satisfiability. In NeurIPS, 7990–
8001.

A Probability Distribution of Algorithm 1
A.1 Definitions and Notations
This section is for the proofs related to the probability distribution in the proposed Algorithm 1. For convenience, commonly
used notations are listed in Table 4. We make some slight changes to some notations that appear in the main paper to make sure
they are consistent and well-defined in this proof.

Similar to the previous analysis (Guo, Jerrum, and Liu 2019; Jerrum 2021), we begin by introducing the concept “dependency
graph” (in Definition 1) for the constraints C.

Definition 1 (Dependency Graph). The dependency graph G = (C, E), where the vertex set is the set of constraints C. Two
vertices ci and cj are connected with an edge (ci, cj) ∈ E if and only if they are defined on at least one common random
variable, i.e., var(ci) ∩ var(cj) ̸= ∅.

For keeping track of the whole sampling procedure, we need the concept “sampling record”(in Definition 2) (Guo, Jerrum,
and Liu 2019), which are the broken constraints at every round in Algorithm 1. It is also known as the witness tree in Moser
and Tardos (2010). This allows us to check the constraint satisfaction of the assignment at every round.

Under Condition 1, for any edge in the dependency graph (ci, cj) ∈ E, either 1(x, ci) = 0 or 1(x, cj) = 0 for all x ∈ X .
In other words, two constraints with shared related variables, representing two adjacent vertices in the dependency graph G,
are not broken simultaneously. Thus, the constraints in record St form an independent set2 over the dependency graph under
Condition 1.

Definition 2 (Sampling Record). Given dependency graph G(C, E), let Xt = x be one possible assignment obtained at round
t of Algorithm 1. Let St ⊆ C be the set of vertices in graph G (subset of constraints) that x violates

St = {ci|ci ∈ C and 1(x, ci) = 0}, (16)

where indicator function 1(x, ci) = 0 implies x violates constraint ci at round t. Define the sampling record as the sequence of
violated constraints S1, . . . , St throughout the execution.

At round t (t ≥ 1) of Algorithm 1, suppose the violated constraints is St ⊆ C. The constraints that are not adjacent to St in
the dependency graph are still satisfied after re-sample. The only possible constraints that might be broken after the re-sample
operation are among St itself, or those constraints directly connected to St in the dependency graph. Therefore,

St+1 ⊂ Γ(St), for all t ≥ 1.

where Γ(St) is the set of vertices of St and its adjacent neighbors in the dependency graph G (see Table 4). When Algorithm 1
terminates at round T + 1, no constraints are violated anymore, i.e., sT+1 = ∅. To summarize the above discussion on a
sampling record by Algorithm 1, we have the following Claim 1.

Claim 1. Under Condition 1, a potential sampling record of length T + 1 by the Algorithm 1 is a sequence of independent
sets: S1, S2, . . . , ST , ∅ with

1. St+1 ⊆ Γ(St) and St ̸= ∅, for 1 ≤ t ≤ T ;
2. sT+1 = ∅.

Extra Notations related to Constrained MRF The constrained MRF model over constraints set C is defined as:

Pθ(X = x|C) =
exp(

∑n
i=1 θixi)1(x, C)∑

x′∈X exp(
∑n

i=1 θix
′
i)1(x

′, C)

where the partition function only sums over valid assignments in X . Note that C(x) in Equation (6) is the same as 1(x′, C)
in the above equation. We slightly change the notations for consistency in this proof. Also notice that the output distribution
can no longer be factorized after constraints are enforced, since the partition function cannot be factorized. Our task is to draw
samples from this distribution.

To analyze the intermediate steps in Algorithm 1, we further need to define the following notations.

Definition 3. The constrained MRF distribution for constraints C\Γ(St) is

Pθ(X = x|C\Γ(St)) =
exp(

∑n
i=1 θixi)1(x, C\Γ(St))∑

x′∈X exp(
∑n

i=1 θix
′
i)1(x

′, C\Γ(St))

Definition 4. At round t of Algorithm 1, assume St ⊆ C are the set of broken constraints, Define P(Xt+1 = x|S1, . . . , St) to
be the probability of obtaining a new assignment x after we re-sample random variables indexed by var(St).

2A set of vertices with no two adjacent vertices in the graph.

Table 4: Summary of all the notations used in the theoretical analysis of Algorithm 1.

Notation Definition
X = {Xi}ni=1 set of discrete random variables
x ∈ X possible assignments for variables X
xi ∈ Xi variable Xi can take all values in Xi

C = {cj}mj=1 given constraints
St ⊆ C subset of constraints violated at round t of Algorithm 1
G(C, E) the dependency graph (in Definition 1)
var(cj) the indices of domain variables that are related to constraint ci
var(St) the indices for domain variables that are related to constraints St

Γ(cj) cj and its direct neighbors in the dependency graph
Γ(St) St and direct neighbors of St in the dependency graph
C\Γ(St) all constraints in C but not in Γ(St)
S1, . . . , ST , ∅ a sampling record of Algorithm 1 (in Definition 2)
1(x, ci) indicator function that evaluates if assignment x satisfies constraint ci
1(x, St) indicator function that evaluates if assignment x satisfies constraints in St

1(x, C) indicator function that evaluates if assignment x satisfies all constraints C
Pθ(X|C\Γ(St)) see Definition 3
P(X|St) see Definition 4

A.2 Ratio Property Lemma
Lemma 1 (Ratio Property). Under Condition 1, assume Algorithm 1 is at round t. Conditioning on observing one possible
sampling record S1, . . . , St, Algorithm 1 step 4 will re-sample variables in var(St) at round t + 1. Let x, x′ ∈ X be two
possible assignments after this re-sample. The probability ratio of obtaining these two results equals that under constrained
MRF Pθ(x|C\Γ(St)):

P(Xt+1 = x|S1, . . . , St)

P(Xt+1 = x′|S1, . . . , St)
=

Pθ(X = x|C\Γ(St))

Pθ(X = x′|C\Γ(St))
, (17)

where P(Xt+1 = x|S1, . . . , St) is the probability of Algorithm 1 step 4 produces assignment x at round t + 1, conditioning
on the observed record S1, . . . , St and re-sample var(St). Pθ(X = x|C\Γ(St)) is the constrained MRF (for the constraints
C\Γ(St)) probability on assignment x.

Proof. During the intermediate step of the algorithm, assume the set of constraints St are violated. We want to re-sample
variables indexed by var(St), so variables indexed by var(C\Γ(St)) won’t change assignments. Also, because Γ(St) is the
largest possible set of constraints that can be infected by the re-sample, constraints C\Γ(St) are still satisfied after the re-sample.

At round t, we re-sample variables in var(St) according to step 4 in Algorithm 1, we thus have:

P(Xt+1
var(St)

= xvar(St)|S1 . . . St) =
∏

i∈var(St)

exp(θixi)∑
x′
i∈Xi

exp(θix′
i)
.

Here the notation Xt+1
var(St)

= xvar(St) means Xi = xi for i ∈ var(St) at round t. For any two possible assignments x, x′ after
the re-sample,

xi = x′
i, for i ∈ {1, . . . , n}\var(St)

since the rest variable’s assignments are kept the same after re-sample. Thus, we can have ratio:

P(Xt+1 = x|S1, . . . , St)

P(Xt+1 = x′|S1, . . . , St)
=

exp(
∑

i∈var(St)
θixi)

exp(
∑

i∈var(St)
θix′

i)
=

exp(
∑

i∈var(Γ(St))
θixi)

exp(
∑

i∈var(Γ(St))
θix′

i)
. (18)

For the last step, since every assignment outside var(St) is not changed, we can enlarge the index set of summation to Γ(St)
by multiplying

1 =
exp(

∑
i∈var(Γ(St))\var(St)

θixi)

exp(
∑

i∈var(Γ(St))\var(St)
θix′

i)
.

After re-sample, we knows that x must satisfy the constraints C\Γ(St). Thus, the probability of this x conditioned on constraints
C\Γ(St) holding in the constrained MRF model is:

Pθ(X = x|C\Γ(St)) =
exp(

∑n
i=1 θixi)1(x, C\Γ(St))∑

x′∈X exp(
∑n

i=1 θix
′
i)1 (x

′, C\Γ(St))
=

exp(
∑n

i=1 θixi)∑
x′∈X exp(

∑n
i=1 θix

′
i)1 (x

′, C\Γ(St))
.

In the constrained MRF model (for constraints C\Γ(St)), the ratio of these two probabilistic assignments x, x′ is:

Pθ(X = x|C\Γ(St))

Pθ(X = x′|C\Γ(St))
=

exp(
∑

i∈var(Γ(St))
θixi)

exp(
∑

i∈var(Γ(St))
θix′

i)
, (19)

because the xi outside var(Γ(St)) remains the same. Note that x, x′ are two possible assignments produced according to to
step 4 in Algorithm 1 at round t. Combining Equation (18) and Equation (19), we conclude that:

P(Xt+1 = x|S1, . . . , St)

P(Xt+1 = x′|S1, . . . , St)
=

Pθ(X = x|C\Γ(St))

Pθ(X = x′|C\Γ(St))
.

The proof is finished.

A.3 Proof of Theorem 1
Suppose the re-sampling process terminates at round T+1 and we obtain a valid sample x. Upon the termination of Algorithm 1,
all the constraints are satisfied. So we have: ST+1 = ∅. In other words, 1(x, C) = 1.

Let x, x′ be two possible valid assignments produced at round T +1 by the Algorithm 1. Using the analysis in Lemma 1, we
can still have:

P(XT+1 = x|S1, . . . , ST)

P(XT+1 = x′|S1, . . . , ST)
=

exp(
∑

i∈var(ST) θixi)

exp(
∑

i∈var(ST) θix
′
i)
.

The probability of this x in the constrained MRF model (for constraints C) is:

Pθ(X = x|C) =
exp(

∑n
i=1 θixi)1(x, C)∑

x′∈X exp(
∑n

i=1 θix
′
i)1 (x

′, C)
=

exp(
∑n

i=1 θixi)∑
x′∈X exp(

∑n
i=1 θix

′
i)1 (x

′, C)
.

Then we conclude that:
P(XT+1 = x|S1, . . . , ST)

P(XT+1 = x′|S1, . . . , ST)
=

Pθ(X = x|C)
Pθ(X = x′|C)

.

Note that this ratio property holds for all the possible sampling records S1, . . . , ST , ∅.
Summation of All Possible Sampling Records Define P(S1, . . . , ST) to be the probability of observing record S1, . . . , ST

by Algorithm 1. For any possible sampling record S1, . . . , ST , ∅, the ratio property still holds:

P(XT+1 = x|S1, . . . ST)P(S1, . . . , ST)

P(XT+1 = x′|S1, . . . , ST)P(S1, . . . , ST)
=

Pθ(X = x|C)
Pθ(X = x′|C)

where the term P(S1, . . . , ST) on the Left-hand-side (LHS) is actually the same. After we summarize over all possible sampling
records S1, . . . , ST , ∅, the ratio property still holds. Let P(XT+1 = x) be the probability of obtaining one valid assignment x
by the execution of Algorithm 1.

P(XT+1 = x)

P(XT+1 = x′)
=

∑
S1,...,ST

P(XT+1 = x|S1, . . . , ST)P(S1, . . . , ST)∑
S1,...,ST

P(XT+1 = x′|S1, . . . , ST)P(S1, . . . , ST)
=

Pθ(X = x|C)
Pθ(X = x′|C)

(20)

Sample Space Analysis At Termination We need one more statement to show Theorem 1 holds. Let XLLL be the set of all
possible assignments x that can be generated by Algorithm 1:

XLLL =
⋃

S1...ST

{x|P(XT+1 = x|S1 . . . ST) ̸= 0 and P(S1 . . . ST) ̸= 0}.

where P(S1 . . . ST) ̸= 0 means S1, . . . , ST is a possible record. P(XT+1 = x|S1 . . . ST) ̸= 0 means it is possible to obtain x
given the record S1, . . . , ST .

Let XC be the set of assignments x that satisfy all the constraints in the constrained MRF (for constraints C):

XC = {x|Pθ(X = x|C) ̸= 0, for all x ∈ X}.
Lemma 2. XLLL ⊆ XC and XC ⊆ XLLL, thus XLLL = XC .

Proof. When Algorithm 1 terminates, it only produces valid assignments; thus, we must have: XLLL ⊆ XC . On the other hand,
there is always a non-zero probability that Algorithm 1 will generate every valid assignment x ∈ XC , which implies that
XC ⊆ XLLL. Therefore we can conclude that XLLL = XC .

Lemma 2 show that the two distributions have the same sample space when Algorithm 1 terminates. What’s more, Equa-
tion (20) shows they have the same probability ratio for any possible valid assignments x, x′. This shows that the execution of
the Algorithm 1 is a random draw from the constrained MRF distribution Pθ(X = x|C). The proof of Theorem 1 is finished.

A.4 Difference to the Original Proof
The main difference in the above proof to the existing proof in (Guo, Jerrum, and Liu 2019, Lemma 7) is that: We show
Lemma 1 that characterizes the proportional ratio of getting different assignments of variables, which is more general than the
descriptive proof for Guo, Jerrum, and Liu (2019, Lemma 7).

A.5 A Running Example in View of Markov Chain
We dedicate this section to demonstrate the execution of Algorithm 1 with Example 1. Algorithm 1 can be viewed as a Markov
chain, so we will show the probability of obtaining valid samples is unbiased by running thousands of steps of the Markov
chain. The constraints are C = {c1 = (X1 ∨X2), c2 = (¬X1 ∨X3)}. We use the assignment of all the variables as the states
s1, . . . , s8 in the rounds of Algorithm 1.

s1 = (X0 = 0, X1 = 0, X2 = 0)

s2 = (X0 = 0, X1 = 0, X2 = 1)

s3 = (X0 = 0, X1 = 1, X2 = 0)

s4 = (X0 = 0, X1 = 1, X2 = 1)

s5 = (X0 = 1, X1 = 0, X2 = 0)

s6 = (X0 = 1, X1 = 0, X2 = 1)

s7 = (X0 = 1, X1 = 1, X2 = 0)

s8 = (X0 = 1, X1 = 1, X2 = 1)

(21)

Here s1, s2, s3, s4 correspond to valid assignments of variables with respect to the constraints C and s5, s6, s7, s8 correspond
to invalid assignments of variables, that requires resampling.

For simplicity, we consider the uniform setting where θ1 = θ2 = θ3. The goal is to sample every valid assignment with equal
probability. Therefore, the probability for every variable is:

P (Xi) =

{
1
2 for variable Xi taking value 1
1
2 for variable Xi taking value 0

for i = 1, 2, 3. Based on Algorithm 1, we know the probability of transferring from si to sj (1 ≤ i, j ≤ 8). Thus we can
construct the transition matrix between every state:

T =



s1 s2 s3 s4 s5 s6 s7 s8
s1 1 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0
s3 0 0 1 0 0 0 0 0
s4 0 0 0 1 0 0 0 0
s5

1
4

1
4

1
4 0 1

4 0 0 0
s6 0 1

4 0 0 1
4

1
4 0 1

4
s7

1
4 0 1

4
1
4 0 0 1

4 0
s8 0 0 1

4 0 0 1
4

1
4

1
4


(22)

where Tij = T (si, sj) denotes the transition probability from state si to state sj .
Taking state s5 as an example, it violates constraint C2 thus X2, X3 will be resampled. There are 4 possible assignments

of X2, X3, which corresponds to states {s1, s2, s3, s5}. Since each variable is resampled uniformly at random, the proba-
bility of transition from state s5 to the states {s1, s2, s3, s5} are 1/4. The Algorithm 1 will terminate once it reaches states
{s1, s2, s3, s4}, which corresponds to the (valid) state only transit to itself with probability 1. Thus we find T (si, si) = 1 for
i = 1, 2, 3, 4.

For a randomly initialized assignment:

x =
[s1 s2 s3 s4 s5 s6 s7 s8
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

]
(23)

that has an equal probability of being any state. After executing Algorithm 1 for 2000 steps, we have:

T 2000 =



s1 s2 s3 s4 s5 s6 s7 s8
s1 1 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0
s3 0 0 1 0 0 0 0 0
s4 0 0 0 1 0 0 0 0
s5

1
3

1
3

1
3 0 0 0 0 0

s6
1
6

1
2

1
6

1
6 0 0 0 1

4
s7

1
3 0 1

3
1
3 0 0 0 0

s8
1
6

1
6

1
6

1
2 0 0 0 0


, xT 2000 =

[s1 s2 s3 s4 s5 s6 s7 s8
1
4

1
4

1
4

1
4 0 0 0 0

]
(24)

This implies Algorithm 1 outputs every valid assignment with the same probability in the uniform setting, which follows the
result in Theorem 1.

B Running Time Analysis of Algorithm 1
We dedicate this section to showing the running time of Algorithm 1 on a general weighted case. The expected running time
of Algorithm 1 is determined by the number of rounds of re-sampling. Algorithm 1 re-sample all the related random variables
simultaneously in every single round. However, it is hard to get an estimation of the exact total running time over the random
variables. Instead, we can only have a loose upper bound of the expected running time over the sequence of sampling record
(the sequence of violated constraints).

The overall structure of the proof is similar to the proof in Guo, Jerrum, and Liu (2019, Theorem 13). We show the difference
in our proof at the end of this section.

B.1 Definitions and Notations
We define the following terms to simplify our notations.

Definition 5. Let St be a subset of vertices in a dependency graph. 1) Define pSt
as the probability of constraints in St being

violated:

pSt
= P

(∧
ci∈St

¬ci

)
(25)

where we use ¬ci to indicate the constraint ci is violated. 2) Define qSt
as the probability that only the constraints in St are

violated and nothing else.

qSt = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 (26)

where
∧

ci∈St
¬ci corresponds to only the constraints in St are violated and

∧
cj∈C\St

cj corresponds to all the rest constraints
are satisfied. So q{ci} is the probability that only constraint ci is broken and all the rest still hold. Similarly, q∅ denotes the
probability that all the constraints are satisfied.

Lemma 3. Given Definition 5, we can further expand qSt
under Condition 1:

qSt
= pSt

P
(
∧cj∈C\Γ(St)cj

)
Proof. We can split qSt into the probability of two independent events:

qSt
= P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 By definition of qSt
in Equation (26)

= P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\Γ(St)

cj


= P

(∧
ci∈St

¬ci

)
P

 ∧
cn∈C\Γ(St)

cj


= pStP

(
∧cj∈C\Γ(St)cj

)
. By definition of pSt in Equation (25)

The second equality holds because under Condition 1, adjacent vertices have zero probability. In other words, when we observe
that constraints in St are violated, constraints in Γ(St)\St cannot be violated. The third equality holds because the random
variables in var(St) are independent to those variables in var(C\Γ(St)). So we can apply P (AB) = P (A)P (B) when the
events A,B are independent to each other.

Remark 1 (Equivalence of Record). At round t of Algorithm 1, it finds all the constraints St that are broken (
∧

ci∈St
¬ci),

which implies the rest of the constraints C\Γ(St) are satisfied (
∧

cj∈C\St
cj). Thus the probability of observing St in the record

is equivalent to the following:

P(St) = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 (27)

Lemma 4. Given a possible sampling record S1 . . . St−1,St by Algorithm 1, the following equality holds for the pair
(St−1, St): ∑

St

qSt
= P(∧ci∈C\Γ(St−1)ci)

Proof. By Definition 2 of the sampling record, we have St ⊂ Γ(St−1). The relationship of its complement would be:

C\Γ(St−1) ⊂ C\St.

Using the above result, we have:

P

 ∧
cj∈C\St

cj ∧
∧

ck∈C\Γ(St−1)

ck

 = P

 ∧
cj∈C\St

cj

 (28)

Based on Remark 1 and Baye’s theorem, we have:

P(St| ∧ci∈C\Γ(St−1) ci) = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

∣∣∣ ∧ck∈C\Γ(St−1) ck

 By Equation (27)

=
P
(∧

ci∈St
¬ci ∧

∧
cj∈C\St

cj ∧
∧

ck∈C\Γ(St−1)
ck

)
P
(
∧ci∈C\Γ(St−1)ci

) By Bayes’s formula

=
P
(∧

ci∈St
¬ci ∧

∧
ck∈C\St

ck

)
P
(
∧ci∈C\Γ(St−1)ci

) By Equation (28)

=
qSt

P
(
∧ci∈C\Γ(St−1)ci

) . By definition of pSt
in Equation (26)

(29)

Since LHS of Equation (29) sums over all possible St is one:
∑

St
P(St| ∧ci∈C\Γ(St−1) ci) = 1. Thus, summing over St for

the RHS of Equation (29), we have:

1 =
∑
St

qSt

P
(
∧ci∈C\Γ(St−1)ci

) =

∑
St

qSt

P
(
∧ci∈C\Γ(St−1)ci

) (30)

In the second equality, the reason that we can move the summation operator to the numerator is that the denominator is a constant
w.r.t. all possible St. To be specific, given St ⊆ Γ(St−1), we have St is independent to C\Γ(St−1). Based on Equation (30), we
finally obtain: ∑

St

qSt
= P(∧ci∈C\Γ(St−1)ci).

The proof is finished.

Lemma 5. The probability of observing the sampling record S1, . . . , ST by Algorithm 1 under Condition 1 is:

P(S1, . . . , ST) = qST

T−1∏
t=1

pSt
(31)

Proof. Given sampling record S1, . . . , St−1, the conditional probability of observing the next record St, S
′
t can be expanded

based on Lemma 1,
P(St|S1, . . . , St−1)

P(S′
t|S1, . . . , St−1)

=
P(St| ∧ci∈C\Γ(St−1) ci)

P(S′
t| ∧ci∈C\Γ(St−1) ci)

Based on Equation (29), we can simplify the RHS of the above ratio equality and] obtain:

P(St|S1, . . . , St−1)

P(S′
t|S1, . . . , St−1)

=
qSt

qS′
t

Because of
∑

St
P(St|S1, . . . , St−1) = 1 and Equation (30), we can get:

P(St|S1, . . . , St−1) =
qSt

P(∧ci∈C\Γ(St−1)ci)
(32)

We finally compute the probability of observing the sampling record S1 . . . , ST by:

P(S1 . . . , ST) =P(S1)

T∏
t=2

P(St|S1, . . . , St−1) By Chain rule

=qS1

T∏
t=2

qSt

P(∧ci∈C\Γ(St−1)ci)
By Equation (32)

=qST

T∏
t=2

qSt−1

P(∧ci∈C\Γ(St−1)ci)
Left shift the numerator from St to St−1

=qST

T−1∏
t=1

pSt Plugin Lemma 3

The proof is finished.

B.2 An Upper Bound on Expected Running Time
Suppose the expected number of samplings of constraints ci is E(Ti), then the total running time will be:

E(T) ≤
n∑

i=1

E(Ti)

Since each random variable has equal status, then the question comes down to the computation of individual Ti’s expectation.
Let S1, . . . , ST be any record of the algorithm that successfully terminates, and Ti(S1, . . . , ST) be the total number of sampling
related to constraint ci throughout this record. Based on Lemma 5, we have:

E(Ti) =
∑

S1,...,ST

P(S1, . . . , ST)Ti(S1, . . . , ST)

By far, we have shown the original proof of our work. We leave the difference between our proof with the existing one in
Appendix B.3.

The rest of the computation can be done in the same way as the proof in Guo, Jerrum, and Liu (2019). Thus we cite
the necessary intermediate steps in the existing work and finish the proof logic for the coherence of the whole running time
analysis.

Lemma (Guo, Jerrum, and Liu (2019) Lemma 12). Let q∅ be a non-zero probability of all the constraints are satisfied. Let
q{cj} denote the probability that only constraint cj is broken and the rest all hold. If q∅ > 0, then E(Ti) = q{cj}/q∅.

After incorporating our fix, we can conclude the upper bound on the expected running time in Theorem 2.

Theorem 2 (Guo, Jerrum, and Liu (2019) Theorem 13). Under Condition 1, the total number of re-samplings throughout the
algorithm is then 1

q∅

∑L
j=1 q{cj}.

B.3 Difference to the Existing Proof
The main difference in the above proof to the existing proof in (Guo, Jerrum, and Liu 2019, Theorem 13) is that: based on
Equation (32) and (29), we show

P(St|S1, . . . , St−1) = P(St| ∧ci∈C\Γ(St−1) ci)

In Guo, Jerrum, and Liu (2019)’s Equation (9), the first step cannot holds without the above equality. The original paper uses
this result directly without providing enough justification.

C Constrained MRF Model
C.1 Single Variable Form of Constrained MRF
Here we provide an example of transforming MRF with pairwise and single potential functions into a single potential form by
introducing extra variables. Given random variables X1, X2, X3, we have the following example MRF model:

ϕθ(x1, x2, x3) = θ1x1 + θ2x2 + θ3x1x2

Pθ(x) =
exp(ϕθ(x1, x2, x3))

Z(θ)

X1 X2 X̂00, X̂01, X̂10, X̂11

0 0 1, 0, 0, 0
0 1 0, 1, 0, 0
1 0 0, 0, 1, 0
1 1 0, 0, 0, 1

Table 5: 4 constraints for converting pairwise terms in the potential function into single variable form.

In the above formula, we have a cross term x1x2. Two Boolean variables can have 4 different assignments in total. Therefore
we can construct 4 extra Boolean variables to encode all these assignments. To illustrate, we introduce extra random variables
X̂00, X̂01, X̂10, X̂11. We further introduce extra constraints: When X1 = 0, X2 = 0, the extra variable must take values:
X̂00 = 1, X̂01 = 0, X̂10 = 0, X̂11 = 0. See the rest constraints in Table 5.

Then the new potential function, including extended variables and pairwise to single variable constraints C, is reformulated
as:

ϕ̂θ(x1, x2, x3, x̂00, x̂01, x̂10, x̂11) = θ1x1 + θ2x2 + θ3x̂00 + θ3x̂01 + θ3x̂10 + θ3x̂11

Pθ(x|C) =
exp(ϕ̂θ(x1, x2, x3, x̂00, x̂01, x̂10, x̂11))

ZC(θ)

For clarity, the newly added constraints do not impact Condition 1. Since the single variable transformation in the MRFs model
originates from Sang, Bearne, and Kautz (2005), thus is not considered as our contribution.

C.2 Gradient of log-Partition Function∇ logZC(θ)

We use the Chain rule of the gradient to give a detailed deduction of Equation (4).

∇ logZC(θ) =
∇ZC(θ)

ZC(θ)
=

1

ZC(θ)
∇
∑
x∈X

exp (ϕθ(x))C(x) =
∑
x∈X

exp(ϕθ(x))C(x)

ZC(θ)
∇ϕθ(x) =

∑
x∈X

Pθ(x|C)∇ϕθ(x)

=Ex∼Pθ(x̃|C) (∇ϕθ(x))

(33)

The above result shows the gradient of the constrained partition function is equivalent to the expectation of the gradient of the
potential function ∇ϕθ over the model’s distribution (i.e., Pθ(x̃|C)). Therefore, we transform the gradient estimation problem
into the problem of sampling from the current MRF model.

D Experiment Settings and Configurations
D.1 Implementation Details
Implementation of NELSON The proposed sampler can be implemented with Numpy, Pytorch, or Jax. We further offer a
“batch version” implementation, that draws a batch of samples in parallel on GPU. The batched sampler is useful for those
tasks that require a huge number of samples to estimate the gradient with a small approximation error.

In Section 4.1, we define vector of assignment xt = (xt
1, . . . , x

t
n), where xt

i is the assignment of variable Xi in the t-th round
of Algorithm 1. xt

i = 1 denotes variable Xi takes value 1 (or true). In the batch version, we define the matrix for a batch of
assignments. Let b be the batch size, we have

xt =

x
t
11 . . . xt

1n
...

. . .
...

xt
b1 . . . xt

bn


In the following part, we provide the detailed computation pipeline for the batch version of the proposed algorithm.

Initialization The first step is to sample an initial assignment of X from the given the marginal probability vector P :

x1
li =

{
1 if uli > Pi,

0 otherwise.
, if1 ≤ i ≤ n, 1 ≤ l ≤ b (34)

Here uli is sampled from the uniform distribution over [0, 1].

Nelson
Constraints C

from constrained MRF

from training dataset

x̃1 ∼ Pθ(X |C)

x1 ∼ D

Parameters of
constrained MRF θt

ϕ(x̃1)

ϕ(x1)

Draw samples from
model and from data

Update parameters
 of constrained MRF

Compute potential
in constrained MRF model

θt+1 = θt − ∇ℓC(θ)ℓC(θ) = ϕ(x1) − ϕ(x̃1)

Construct the proposed
Nelson sampler

Training set
D = {xk}N

k=1

Figure 4: Implementation pipeline of the NELSON-CD algorithm with m = 1. The proposed NELSON can be efficiently adapted
to a Pytorch-based machine learning library and enforces constraint satisfaction during learning.

Check Constraint Satisfaction The second step extract which constraint is violated. Given an assignment xt at round t ≥ 1,
tensor W and matrix b, the computation of tensor Zt is:

Zt
lik =

n∑
i=1

Wikjx
t
lj + blik,

The special multiplication between tensor and matrix can be efficiently implemented with the Einstein summation3. Note that
Zt
ljk = 1 indicates for l-th batched assignment xl, the k-th literal of j-th clause is true (takes value 1). Next, we compute St

lj
as:

St
lj = 1− max

1≤k≤K
Zljk, for 1 ≤ j ≤ L, 1 ≤ l ≤ b

Here St
lj = 1 indicates xt

l violates j-th clause. We can check
∑b

l=1

∑L
j=1 S

t
lj ̸= 0 to see if any clause is violated for the current

batch of assignments, which corresponds to
∑b

i=1 C(xl) = 0.

Extract Variables in Violated Clauses We extract all the variables that require resampling based on vector St computed
from the last step. The vector of the resampling indicator matrix At can be computed as:

At
li = 1

 L∑
j=1

St
ljVji ≥ 1

 , for 1 ≤ i ≤ n, 1 ≤ l ≤ b

where
∑L

j=1 S
t
ljVji ≥ 1 implies Xli requires resampling.

Resample Given the marginal probability vector P , resample indicator matrix At and assignment matrix xt, we draw a new
random sample xt+1.

xt+1
li =

{
(1−At

li)x
t
li +At

li if uli > Pi,

(1−At
li)x

t
li otherwise.

for 1 ≤ i ≤ n, 1 ≤ l ≤ b

where uli is drawn from the uniform distribution in [0, 1].
Since GPUs are more efficient at computing tensor, matrix, and vector operations but are slow at processing for loops.

Drawing a batch of samples using the above extended computational pipeline is much faster than using a for loop over the
computational pipeline in Section 4.1.

The sampler is involved with one hyper-parameter Ttryout. NELSON would terminate when it reaches Ttryout number of re-
samples. This practice is commonly used to handle randomized programs that might run forever in rare cases.

Implementation of Algorithm 2 We first use the Constraints C and parameters θt to build the current NELSON module. Then
we draw m samples from NELSON module {x̃j}mj=1 and draw from dataset randomly m samples {xj}mj=1. Continuing from
that point, we compute the potential value from the two sets of inputs, i.e., {ϕθ(x̃

j)}mj=1 and {ϕθ(x̃
j)}mj=1. Pytorch would be

slow if we compute each potential’s gradient using a for-loop. To bypass this problem, we instead compute the following:

ℓC(θ) =
1

m

m∑
j=1

ϕθ(x
j)− 1

m

m∑
j=1

ϕθ(x̃
j). (35)

3https://github.com/dgasmith/opt einsum

Following that, we call the PyTorch library’s gradient function, which computes exactly

∇ℓC(θ) = ∇

 1

m

m∑
j=1

ϕθ(x
j)− 1

m

m∑
j=1

ϕθ(x̃
j)

 =
1

m

m∑
j=1

∇ϕθ(x
j)− 1

m

m∑
j=1

∇ϕθ(x̃
j)

Note that ∇ℓC(θ) recovers the result in Equation (4). Finally, we update the parameters θ. The proposed NELSON module and
the neural network are computed on the same GPU device. This allows us to exploit the parallel computing power of modern
GPUs and remove time for the data transfer from CPU to GPU or vice versa. See Figure 4 for a visualized overview of the
implementation with Pytroch.

D.2 Learn Random K-SAT Solutions with Preference
Task Definition We are given a training set D containing some preferred assignments D = {xj}Nj=1 for the corresponding
CNF formula c1 ∧ . . . ∧ cL. We require the CNF formula to be true. This means, by the definition of CNF formulas, that every
clause has to be satisfied. These clauses become our set of constraints. Under the constrained MRF model, the learning task is
to maximize the log-likelihood of the assignments seen in the training set D. The inference task is to generate valid solutions
from the learned model’s distribution (Dodaro and Previti 2019; Rosa, Giunchiglia, and O’Sullivan 2011).

Dataset We denote the Boolean variables’ size in K-SAT as the “problem size”. We consider several datasets of different
problem sizes generated from CNFGen4 (Lauria et al. 2017) random K-SAT functions. K is fixed as 5; the number of variables
and clauses are kept the same, ranging from 10 to 1500. We generate 100 different CNF formulas for every problem size. To
generate the training set D, we use the Glucose4 solver from PySAT5 library (Ignatiev, Morgado, and Marques-Silva 2018) to
generate 200 assignments randomly as the preferred assignments for every formula.

It should be pointed out that we don’t consider datasets like SATLIB and SAT competitions. It is mainly because these
datasets are hard instances with a much larger input space but a limited number of solutions. NELSON would generally take
exponential time to find these solutions, just like finding needles in a haystack. The other reasons are that using neural networks
to learn these limited assignments is straightforward since we can simply hard-wire the network to memorize all the valid
assignments. The main purpose of this work is to let a constrained MRF learn a representation for the underlying preference
pattern, not create a neural solver that can generate valid assignments for any CNF formula. Thus, we conform to the settings
of the easy formula where obtaining valid solutions is easy.

D.3 Learn Sink-Free Orientation in Undirected Graphs
Task Definition In graph theory, a sink-free orientation of an undirected graph is a choice of orientation for each edge such
that every vertex has at least one outgoing edge (Cohn, Pemantle, and Propp 2002). It has wide applications in robotics routing
and IoT network configuration (Takahashi et al. 2009). The Constraints for this problem are that every vertex has at least one
outgoing edge after orientation. As stated in (Guo, Jerrum, and Liu 2019), these constraints satisfy Condition 1.

See Figure 5 for an example graph and one possible sink-free edge orientation. We define binary variables X1, . . . , Xm, and
associate variable Xi to edge ei for 1 ≤ i ≤ m. Variable Xi takes value 1 if the edge orientation is vi → vj where i < j.
Otherwise, Xi takes value 0. The constraints are:

C = (X1 ∨X2) ∧ (¬X1 ∨X3 ∨ ¬X4) ∧ (¬X2 ∨ ¬X3 ∨X5) ∧ (X4 ∨ ¬X5)

where the single constraint c1 = (X1∨X2) corresponds to vertex v1, constraint c2 = (¬X1∨X3∨¬X4) corresponds to vertex
v2, constraint c3 = (¬X2 ∨ ¬X3 ∨X5) corresponds to vertex v3, and constraint c4 = (X4 ∨ ¬X5) corresponds to vertex v4.
The orientation assignment matrix x shown in Figure 5(b) implies: X1 = 1, X2 = 1, X3 = 1, X4 = 0, X5 = 1.

Notations Let graph G(V,E) be an un-directed graph; its adjacency matrix A that represents graph connectivity is:

Aij =

{
1 If (vi, vj) ∈ E

0 otherwise
(36)

A possible assignment for the orientation of every edge can be represented as a matrix x ∈ {0, 1}|V |×|V |:

xij =

{
1 if the edge orientation is vi → vj
0 otherwise

(37)

In the constrained MRF model defined in Eq. (6), the potential function of one orientation of all edges is

ϕθ(x) =

|V |∑
i=1

|V |∑
j=1

θijAijxij

4https://github.com/MassimoLauria/cnfgen
5https://pysathq.github.io/

v1

v2

v3

(a) An undirected graph G with its adjacency matrix A

v4
A =


v1 v2 v3 v4

v1 0 1 1 0
v2 1 0 1 1
v3 1 1 0 1
v4 0 1 1 0


e1

e2

e3

e4

e5

v1

v2

v3

(b) An orientation of the edges and the orientation matrix x

v4
x =


v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 1 0
v3 0 0 0 1
v4 0 1 0 0


e1

e2

e3

e4

e5

Figure 5: (a) An un-directed graph G(V,E) where the vertices are V = {v1, v2, v3, v4} and the un-directed edges are E =
{e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v3), e4 = (v2, v4), e5 = (v3, v4)}. (b) A possible sink-free orientation of the edges in
the graph and its matrix representation x, where every vertex has at least one outgoing edge.

A single constraint for vertex vk is ck(x) = 1
(∑n

j=1 Ak,jxk,j = 1
)

. If there is no ongoing edge of vertex vk. The constraint

function C(x) is defined as:
∏n

i=1 ck(x). In Algorithm 1 step 1, edge (vi, vj) will pick the orientation vi → vj with probability:

exp(θijAijxij)

exp(θjiAjixji) + exp(θijAijxij)

Dataset We use the NetworkX6 package to generate random Erdos Renyi graph with edge probability 0.55. The problem size
refers to the number of vertices in the graph, we range the problem size from 10 to 100. For each problem size, we generate 100
different random undirected graphs. We then convert the graph into CNF form using the above edge-variable conversion rule.
Afterward, we follow the same processing steps as the previous problem that learn preferential solution distribution for random
K-SAT. .

D.4 Learn Vehicle Delivery Routes
Given a set of locations to visit, the task is to generate a sequence to visit these locations in which each location is visited once
and only once and the sequence closely resembles the trend presented in the training data. The training data are such routes
collected in the past. The dataset is constructed from TSPLIB, which consists of 29 cities in Bavaria, Germany. In Figure 3, we
see NELSON can obtain samples of this delivery problem highly efficiently.

A possible travel plan can be represented as a matrix x ∈ {0, 1}|V |×|V |:

xij =

{
1 if edge vi → vj is selected
0 otherwise

(38)

The constraints are that every routing plan should visit every location once and only once.
Similarly, in the constrained MRF model defined in Eq. (6), the potential function of the vehicle routing plan is

ϕθ(x) =

|V |∑
i=1

|V |∑
j=1

θijAijxij

D.5 Detailed Baselines Configuation
In terms of sampling-based methods, we consider:

• Gibbs sampler (Carter and Kohn 1994), a special case of MCMC that is widely used in training MRF models. In each step,
the Gibbs algorithm samples one dimension based on a conditional marginal distribution. We follow this implementation7.

• Weighted SAT samplers, including WAPS8 (Gupta et al. 2019), WeightGen9 (Chakraborty et al. 2014) and XOR sam-
pler10 (Ermon et al. 2013a; Ding and Xue 2021).

6https://networkx.org/
7https://github.com/Fading0924/BPChain-CD/blob/master/mrf.py
8https://github.com/meelgroup/waps
9https://bitbucket.org/kuldeepmeel/weightgen/src/master/

10https://cs.stanford.edu/∼ermon/code/srcPAWS.zip

• Uniform SAT samplers, including UniGen11 (Soos, Gocht, and Meel 2020), QuickSampler12 (Dutra et al. 2018), CMS-
Gen13 (Golia et al. 2021) and KUS14 (Sharma et al. 2018).

Currently, there are only GPU-based SAT solvers (Prevot, Soos, and Meel 2021; Mahmoud 2022) and model counters (Fichte,
Hecher, and Zisser 2019), GPU-based SAT samplers are not available by far.

D.6 Detailed Definition of Evaluation Metrics
In terms of evaluation metrics, we consider
• Training time per epoch. The average time for the whole learning method to finish one epoch with each sampler.
• Validness. The learned model is adopted to generate assignments and we evaluate the percentage of generated assignments

that satisfy the constraints.
• Mean Averaged Precision (MAP@10). This is a ranking-oriented metric that can evaluate the closeness of the learned MRF

distribution to the goal distribution. If the model learns the goal distribution in the training set, then it would assign a higher
potential value to those assignments in the training set than all the rest unseen assignments. Based on this principle, we
randomly pick two sets of inputs in those valid assignments: seen assignments from the training set and unseen assignments
that are randomly generated. We use the value of factor potential ϕ(x) to rank those assignments in ascending order. Next,
we check how many preferred solutions can fall into the Top-10 by computing the following

MAP@10 =

10∑
k=1

#preferred assignments among top-k
k

• log-likelihood of assignments in the training set D. The model that attains the highest log-likelihood learns the closest
distribution to the training set. Specifically, given a training set D = {xk}Nk=1 and parameters θ, the log-likelihood value is:

1

N

N∑
k=1

logPθ(X = xk|C) = 1

N

N∑
k=1

ϕθ(x
k)− logZC(θ) (39)

We use the ACE algorithm to compute the approximated value of logZC(θ)
15.

• Approximation Error of ∇ logZC(θ), that is the L1 distance between the exact gradient of logZC(θ) in Eq. (4) and the
empirical gradient from the sampler. For small problem sizes, we enumerate all x ∈ X to get the exact gradient and draw
samples {x̃j}mj=1 with m = 2000 from every sampler for approximation.

∣∣∣ ∑
x∈X

exp
(∑n

j=1 θjxj

)
C(x)

ZC(θ)
xi︸ ︷︷ ︸

Exact gradient term

−
m∑
j=1

x̃j
i︸ ︷︷ ︸

Estimated gradient with sampler

∣∣∣
For fixed parameter θ, the best sampler would attain the smallest approximation error.

D.7 Hyper-parameter Settings
In the implementation of NELSON, we set the maximum tryout of resampling as Ttryout = 1000 for all the experiments and all
the datasets.

For the hyper-parameters used in learning the constrained MRF, we set the number of samples from the model to be m = 200,
the learning rate η is configured as 0.1 and the total learning iterations are Tmax = 1000.

11https://github.com/meelgroup/unigen
12https://github.com/RafaelTupynamba/quicksampler
13https://github.com/meelgroup/cmsgen
14https://github.com/meelgroup/KUS
15http://reasoning.cs.ucla.edu/ace/moreInformation.html

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=500

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=700

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1000

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1500

LLL
Nelson (ours)

(a) Uniform Case.

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=500

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=700

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1000

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1500

LLL
Nelson (ours)

(b) Weighted Case.

Figure 6: The distribution of resampling steps in the NELSON and Algorithmic-LLL (Moser and Tardos 2010). Both of them
get a valid sample within Ttryouts . NELSON takes much fewer resamples than Algorithmic-LLL because it resamples all the
violated clauses at every iteration while Algorithmic-LLL only resamples one of them.

