
Expediting Symbolic Regression for Science Using
Scientific Approaches

Md Nasim[0000−0002−6930−9466], Nan Jiang[0000−0001−6863−2897], and Yexiang
Xue[0000−0002−4533−0543]

Purdue University, West Lafayette, IN, USA
{mnasim,jiang631,yexiang}@purdue.edu

Abstract. Automating the discovery of symbolic equations from data,
i.e., symbolic regression, is a grand goal of Artificial Intelligence (AI) but
has never been fully realized. Despite the tremendous progress made in
this area, scientific discovery using scientific approaches was largely over-
looked in AI. This chapter presents an overview of successful approaches
over the last few decades that leverage scientific approaches to expedite
scientific discovery. We discuss the architecture and the lessons learned
deploying BACON, LAGRANGE, Adam, Eve, and AI Feynman sys-
tems. We also describe Control Variable Genetic Programming (CVGP)
– our recently developed symbolic regression algorithm, which uses con-
trol variable experiments to expedite symbolic regression over equations
with many independent variables. CVGP expedites symbolic expression
discovery via customized control variable experiments. It starts by fit-
ting simple expressions involving a small set of independent variables
using genetic programming, under controlled experiments where the re-
maining variables are held as constants. It then adds new independent
variables into these equations, harnessing new control variable experi-
ments in which these variables are allowed to vary. We demonstrate that
CVGP outperforms state-of-the-art symbolic regressors in learning equa-
tions involving many independent variables.

Keywords: Scientific Approaches · Control Variable Experiment · Sym-
bolic Regression · AI-driven Scientific Discovery

1 Introduction

Scientific discovery of new knowledge from experimental data can revolution-
ize our understanding of the physical world and lead to breakthroughs in new
technologies. AI-driven scientific discovery refers to the process of using artificial
intelligence to accelerate this scientific discovery process in various domains such
as physics, chemistry, biology, etc. Automatic AI-driven methods for scientific
discovery offer several benefits – efficient analysis of high-volume experimental
data, detailed record-keeping of the experimental setups to ensure reproducibil-
ity, high throughput scientific hypothesis forming and testing, etc. Although
many attempts have been made to use machines for automating scientific dis-
covery, dating back to the foundation of AI [31], autonomous scientific discovery
still remains a challenging task.
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Fig. 1. Using scientific approaches (especially control variable experiments) accelerates
the discovery of the ideal gas law, compared to non-scientific reasoning processes.

One of the problems that have particularly intrigued the interest of the AI
and machine learning research community is the scientific discovery of sym-
bolic equations from experimental data. Symbolic equations succinctly describe
verbose scientific knowledge and provide insights into the relationship between
interrelated variables of a system. An example is the ideal gas law PV = nRT
representing the relation between pressure P , volume V , amount of gas n, and
temperature T for an ideal gas. The equation PV = nRT describes several
relationships at once:

1. P ∝ T , when n, V are constant [27];
2. P ∝ 1

V , when n, T are constant [2];
3. P ∝ n, when V, T are constant.

The benefit of symbolic equations – the succinct representation of multitudes
of scientific knowledge – unfortunately poses a key challenge in the automatic
machine discovery of such equations. The discovery of the ideal gas law equation
requires knowledge of three separate physical processes. For complex systems
with many contributing variables and/or interactive physical processes, the dis-
covery of underlying governing equations becomes even more challenging.

Researchers have put much effort into automatic symbolic equation discov-
ery i.e., symbolic regression, notably using genetic programming, search-based
methods, reinforcement learning, deep neural networks, sparse identification,
integrated systems, etc. A common theme that many of the current symbolic re-
gression algorithms share is that they search for the optimal symbolic equation
involving all relevant variables. Since the hypothesis space of possible equations
grows exponentially, such methods are better suited for simple equations involv-
ing a small number of variables. For complex equations with many interacting
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variables, searching the space of all possible equations becomes computationally
intractable.

Interestingly, human scientists have been able to discover complex symbolic
equations including algebraic, and differential equations involving many vari-
ables. Their secret weapon is scientific approaches, specifically control variable
experiments. In control variable experiments, scientists study the relationship
between a subset of the variables of a system at a time, while controlling the
remaining variables i.e., keep them at fixed constant values. Studying the rela-
tionship between free variables i.e., variables that are not controlled, is a much
simpler task than studying the relationship of all variables at once. The result
of this controlled study is a reduced-form equation representing the relationship
among free variables. Once this simple equation is validated using observation
data, scientists can improve upon this reduced-form equation iteratively, by free-
ing up some of the controlled variables in each iteration and searching for the
optimal symbolic equation involving those newly freed variables. This process
continues until an equation involving all variables has been discovered.

We see an example of how scientific approaches in the form of the control
variable experiment can be used to discover symbolic equations such as ideal gas
law PV = nRT in Figure 1. At the beginning, we control gas amount n and
temperature T , and explore symbolic equation relating pressure P and volume
V of the gas. This results in the discovery that pressure is inversely proportional
to volume, P ∝ 1

V . We then study the relationship between the pressure P
and temperature T , with the rest of the variables held as constants. The result
is P ∝ T . Similarly, we can find the relationship between pressure P and the
amount of gas n, which is P ∝ n. Finally, when considering all the variables,
the expressions that can be reduced to all the pre-discovered equations would be
PV = nRT . Controlling a subset of variables in this manner is beneficial because
it eliminates the effect of the controlled variable on the measured outputs, and
thus greatly reduces the hypothesis space of possible symbolic equations.

Over the last several decades, a group of scientists went beyond the main-
stream machine learning paradigm and tested how scientific principles can be
incorporated into the AI-driven knowledge discovery process. They explored how
an AI agent using scientific approaches, i.e., building and validating increasingly
more complex models using self-designed control variable experiments, can ex-
pedite scientific discovery. This effort started from the BACON system [24],
which used a rule-based production system and controlled experiments to dis-
cover empirical laws in the form of symbolic equations from data. BACON looks
for simple patterns in data such as proportionality, constant, etc. The discov-
ered patterns in each iteration are expressed in symbolic form, and used in later
iterations to find more complex patterns. BACON showed promising results in
discovering algebraic equations. Later on, LAGRANGE [6] extended the scope of
such automatic machine discovery to differential equations. LAGRANGE used
systematic hypothesis generation and linear regression to discover differential
equation models for dynamical systems i.e., systems that evolve over time. In
the initial stages, the hypothesis that equations are linear in system variables is
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Fig. 2. The high-level idea of Control Variable Genetic Programming (CVGP). CVGP
first learns an equation mapping the single input variable to the output variable,
through control variable experiments where all other variables are controlled as con-
stants. The learning is completed using genetic programming. The learned reduced-
form equation is expanded to include the second, and third input variables sequen-
tially, using a series of control variable experiments where the remaining variables are
constants. This process continues until all the input variables are introduced into the
modeling equation.

explored, and in later iterations, more complex equations involving higher-order
terms are explored.

Scientific discovery systems, such as BACON and LAGRANGE, focus on
finding patterns in experimental data, and rely on human scientists to perform
the actual experiments. Robot scientist projects like Adam [17] and Eve [16] were
proposed later to make the whole discovery process autonomous, where robots
take charge of designing and conducting the experiments, in addition to data
analysis. Robot scientist Adam was deployed for functional genomics - the task
of identifying the role of different genes in an organism. While robot scientist Eve
was designed to automate the early stage of drug design and reduce the overall
cost of drug discovery. Of the recent notable works for the scientific discovery of
symbolic equations, AI-Feynman [33] uses a neural network as an interpolation-
extrapolation system when data is scarce, and uses a series of scientific reasoning
with this neural network prediction to infer symbolic equations. Since forward
prediction in neural networks is much cheaper than controlled experiments, this
leads to an overall reduction of the discovery process cost.

Building an AI agent that is capable of making scientific discoveries using
scientific approaches requires a rapid synergy between model learning and ex-
periment design. In this regard, BACON combines rule-based pattern matching
with controlled experiments, LAGRANGE uses systematic search to reduce the
need for new experiments, robot scientists Adam and Eve use actual robots
to automate experiment design and execution, and AI-Feynman uses a neural
network as an oracle that can mimic controlled experiments.

The aim of this book chapter is two-fold: (1) we give a historical overview of
successful approaches integrating scientific approaches into AI-driven scientific
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discovery. (2) We report our recent endeavor in this domain with the new system
of Control Variable Genetic Programming (CVGP) [15].

Our CVGP for symbolic equation discovery uses genetic programming (GP)
together with scientific approaches to discover complex symbolic equations in-
volving many variables. Previous approaches to scientific discovery using heuris-
tic algorithms such as genetic programming are limited to simple equations with
few variables, due to the large search space of candidate equations. The key
contribution of our CVGP system is the introduction of the control variable
experiments in the GP workflow. The high-level idea of CVGP is as follows.
CVGP first discovers a simple reduced-form equation involving a subset of vari-
ables. This equation is discovered through control variable experiments where
the variables outside of the subset are held as constants. Then, CVGP incre-
mentally expands the equations discovered in previous generations, introducing
new independent variables one at a time. The discovery of these equations again
relies on new control variable experiments where the newly introduced variables
are allowed to vary. This process continues until the final equation involving all
variables is found. Intuitively, the search spaces of CVGP in the first few steps
where a lot of variables are controlled as constants are significantly smaller than
the full hypothesis space involving all independent variables. Moreover, the ex-
pansion step of CVGP involves introducing one variable at a time, also cheaper
than identifying equations of many variables. Hence, CVGP has the potential to
supercharge existing symbolic regression tools in identifying complex equations
with many intertwined variables and processes.

Our work is tightly connected to the previous work which we have reviewed
that implements scientific approaches for symbolic regression. While many pre-
vious approaches are rule-based (a limitation because of the computing power
at the time these approaches were introduced), we used a more recent genetic
programming approach for hypothesis generation and testing. GP allows us to
trade-off exploration with exploitation computation - we exploit already discov-
ered “good” equations by maintaining a large pool of candidate equations in
the GP pool, and we explore the hypothesis space of the equations by randomly
mating and mutating from the candidate equations in the GP pool. However, we
emphasize the commonalities of our current CVGP and our reviewed previous
approaches. All these systems share the same vision of using scientific reasoning
principles in AI-driven knowledge discovery.

Experiment results demonstrate that scientific reasoning together with GP
(i.e., CVGP) greatly improves the fitness score (i.e., normalized mean square
error) of the predicted equation than the pure GP algorithm, given noiseless and
noisy data. Compared to current popular deep neural network-based approaches,
our CVGP also finds expressions with better fitness scores.

AI-driven symbolic regression using scientific approaches suggests that the
merging of isolated branches of AI can achieve what is beyond the capabilities
of the technologies of each branch alone. Traditionally, symbolic regression is
considered a learning task, because the input is experimental data, and the out-
put is a symbolic equation – a model. Nevertheless, scientific approaches, such
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as controlled variable experiments, hypothesis forming, validation, involve goal
setting, planning, designing, deductive reasoning, which are typically not con-
sidered in learning. Philosophically, our research, and the prior work discussed
in this chapter, raise a question: whether any substantial human intelligent ac-
tivities, scientific discovery as one of the most sophisticated, can be achieved
by one cognitive function (or one line of thought in AI research), or require the
interplay of multiple functions. A healthy debate on this topic will potentially
have long-lasting implications on the development of the next generation AI.

2 AI-driven Scientific Discovery using Scientific
Approaches

2.1 Principles of Scientific Approaches

Scientific approaches are the backbone of scientific progress. While the precise
methodology may differ across disciplines, most scientific investigations share a
common structure rooted in rational inquiry and empirical validations. These
fundamental components include:

1. Problem Specification. Scientific inquiry begins with a well-defined ques-
tion or problem, often arising from unexplained phenomena, inconsisten-
cies in existing theories, or emerging empirical patterns. The clarity of the
problem defines the trajectory of the investigation and frames its potential
impact.

2. Hypothesis Formulation. A hypothesis offers a tentative explanation or
predictive model addressing the problem. It must be falsifiable and precise
enough to enable systematic testing. In computational contexts, hypothe-
ses may take the form of symbolic expressions or probabilistic assumptions
encoded within algorithms.

3. Experimental Testing. Through controlled experimentation or computa-
tional simulation, researchers collect data to test the validity of competing
hypotheses. In computational science, this step often involves large-scale
simulations, synthetic data generation, or algorithmic reasoning under var-
ied initial conditions.

4. Data Analysis. Collected data is analyzed to determine which hypotheses
are supported or refuted. Statistical and computational tools, such as re-
gression models, uncertainty quantification, or Bayesian inference, play an
increasingly central role in making this process scalable and reproducible.

Over the years, numerous methodologies have adopted these scientific prin-
ciples to automate the discovery of new knowledge. In the following section, we
describe four such approaches, each illustrating how computational tools can
operationalize the scientific method.
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2.2 BACON – A System for the Discovery of Empirical Laws

BACON [24] is one of the first attempts at automating the scientific discovery of
new knowledge from data. Named after Sir Francis Bacon, the BACON systems
attempt to find hidden patterns in data by the computer program to search
for scientific hypotheses. BACON expresses these patterns with simple symbolic
equations. There have been 5 versions of the BACON system, each building on
top of the previous release [21–23]. Later, the KEKADA [20] system followed
the same idea to actively execute experiments to model the heuristics in the
discovery of the urea cycle, which was a major event in biochemistry.

Production Systems. BACON is written in the production system language
OPS [7] for historical reason. Before we move on to the details of how BACON
works, let’s first review how production system [18] languages such as OPS work.
Production systems used to develop BACON consist of two basic data structures:

1. Working memory, containing a collection of symbolic data elements.
2. Production memory, containing a set of condition-action rules called produc-

tions.

The two data structures work together through a recognize-then-act cycle. This
cycle contains the following distinct steps:

1. Match process, through which we find which production rule condition matches
the current state of working memory.

2. Act process, which applies the action of the matched production rules on the
working memory. In case multiple production rule conditions are matched,
intermediate conflict resolution steps determine which actions to apply.

Let us go through a simple example, where we have two real-valued variables
x1 and x2, stored in tabular format with 2 columns. Each row represents a tuple
of (x1, x2) values. Using the production system, we will add another column x3

in this table, which will indicate if x1 and x2 have the same sign or not. Example
production rules paraphrased in simple text here can be as follows:

1. IF sign(x1) = sign(x2), THEN write “YES” in column x3.
2. IF sign(x1) ̸= sign(x2), THEN write “NO” in column x3.

These rules are then applied row by row. The production rules for BACON
systems are more complex than this simple example. Now that we have a basic
understanding of what a production system is, let us go through the working
principle of the BACON system.

Working Mechanism of BACON System. BACON mimics the human dis-
covery process, starting with the goal of discovering the relationship between
different variables of a system, collecting experimental data with controlled set-
tings, looking for simple linear and constant relationship patterns in data, con-
solidating the discovered relationship with the symbolic equation, and repeating
the process until a relation between all variables is found.
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Let’s work through an example of how BACON can discover ideal gas law
from experimental data. The ideal gas law PV = nRT denotes the relationship
between pressure P , volume V , temperature T , and number of moles n for ideal
gas. As we can see there are a good number of moving parts in this equation
(except for R, the ideal gas constant, all others are variables), and given a dataset
depicting P, V, n, T , it is quite challenging for a machine learning model to arrive
at PV = nRT relation due to overfitting.

BACON breaks this task of finding ideal gas law into a hierarchical relation-
finding task. In the lowest level of this hierarchy, BACON looks for simple re-
lations involving a subset of variables using controlled setup. As we go up this
hierarchy, additional variables are added to the task, and at the top level, we
get the final relationship involving all variables. A typical workflow could look
like this:

1. For constant n, T , new experiments are conducted and corresponding P, V
values are recorded. Upon inspecting these values, BACON finds that the
product term PV is constant. BACON records this term PV for use in future
iterations.

2. For constant T , new experiments are conducted and corresponding P, V, n, PV
values are recorded. BACON finds that the quotient PV

n is constant. BACON
records this new relation PV

n for use in the next iteration.
3. At the last stage, without controlling for any of the variables P, V, n, T ,

new experiments are conducted, and corresponding P, V, n, PV, PV
n , T are

recorded. Upon inspecting these values, BACON finds that PV
nT is a con-

stant approximately equal to the ideal gas constant 8.32. Therefore BACON
terminates and outputs the relation PV

nT = 8.32 as the newly discovered law.

The basic principles behind BACON’s success in finding empirical laws are
the heuristics search process (searching for known patterns in human-discovered
empirical laws, such as constant, linear relations in data) and the access to data
collected using scientific approaches such as controlled experiments. It is this
scientific approach behind data collection that enables BACON to infer laws
from even a small dataset.

2.3 LAGRANGE – Scientific Discovery of Dynamic System Model

LAGRANGE [5, 6] is a system for discovering the governing model for the dy-
namic system. Dynamic systems change state over time, while static systems
such as systems in equilibrium do not change state. LAGRANGE is able to
discover differential/algebraic equations that model the evolution of a dynamic
system, given the behavior trace of the system. Behavior trace of the system
means the value of the system variables, measured at regular intervals over a
fixed period of time. The core contribution of LAGRANGE is the extension
of machine discovery to dynamic systems involving differential equations, while
previous works mainly focused on static systems.
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Working Mechanism of LAGRANGE. The input to the LAGRANGE sys-
tem is the behavior trace of a dynamic system. LAGRANGE uses an iterative
generate-and-test approach to explore the hypothesis space of all possible equa-
tions. Initially, only linear equations involving the system variables are tested
via linear regression. Afterwards, new terms are introduced systematically and
the more complex equations are tested via linear regression until a pre-specified
limit is reached. The basic building block of the LAGRANGE algorithm consists
of 3 parts:

1. Hypothesis Formulation: In the LAGRANGE system, hypotheses are the
differential/algebraic equations that can explain the behavioral trace of the
system in interest. Starting with the set of variables S = {x1, x2, . . . , xN},
LAGRANGE first computes the numerical derivatives of these variables from
the observed data. New terms are then introduced by repeatedly multiplying
the variables in S and their time derivatives. The order of the highest time
derivative and number of multiplication steps i.e., depth, are pre-specified
as hyperparameters.

2. Hypothesis Testing: Given the set of all variables generated in the hypoth-
esis formulation, LAGRANGE uses linear regression to test if there exists
any linear relation among any subset of the variables. Once a significant re-
lation is found (significant according to some pre-specified criterion), this is
added to the set of discovered symbolic equations. The hypothesis formula-
tion and testing are intertwined and repeated until the pre-specified depth
is reached.

Let’s work through an example of how LAGRANGE works in practice. Sup-
pose we have a biological system containing bacteria and nutrient materials. Over
time, bacteria take in the nutrient materials and the concentration of nutrients
xn decreases. The concentration of bacteria xb initially increases due to the abun-
dance of nutrients, and then decreases as nutrient concentration depletes. The
time derivatives of the two variables are noted as ∂xn

∂t , ∂xb

∂t , representing the rate
of change of nutrient and bacteria concentration respectively. The change in bac-
teria and nutrient concentration is governed by the following partial differential
equations:

∂xn

∂t
= c1

xn

xn + c2
xb,

∂xb

∂t
=

(
c3

xn

xn + c2
− c4

)
xb,

where c1, c2, c3, c4 are all constants. Given the snapshots of xn, xb at regular time
intervals of ∆t, LAGRANGE aims to discover the governing equations for ∂xn

∂t

and ∂xb

∂t .
Initially, the variable set S contains only the system variables, S = {xn, xb}.

We assume that the maximum depth of the new terms generated by multipli-
cation during LAGRANGE hypothesis formulation is d = 2, the terms xn, xb

are at depth 1, the terms x2
n, xnxb, . . . are at depth 2 and so on. The maximum
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size of regression variables is 3, which means that we are looking for equations
containing at most (3 + 1) = 4 terms.

LAGRANGE first computes the partial derivatives D = {∂xn

∂t , ∂xb

∂t } numer-
ically. The second step generates all terms of depth 2, generating the following
set:

V =

{
x2
n, xnxb, xn

∂xn

∂t
, xn

∂xb

∂t
, x2

b , xb
∂xn

∂t
, xb

∂xb

∂t
,

(
∂xn

∂t

)2

,
∂xn

∂t

∂xb

∂t
,

(
∂xb

∂t

)2
}
.

After generating set V , from the combined set (S ∪D ∪ V ), LAGRANGE con-
siders all subsets of size 1 to 4 and performs linear regression on these subsets.
These include the subsets {xn

∂xb

∂t ,
∂xn

∂t , xnxb} and {xn
∂xb

∂t ,
∂xb

∂t , xnxb, xb}, which
generates the 2 model equations. During hypothesis testing, to judge the signif-
icance of an equation, multiple regression coefficients [35] metric are used.

2.4 Robot Scientists – Adam and Eve

The robot scientist project aims to build AI systems that can mimic human sci-
entists – memorize available background knowledge, formulate new hypotheses,
design and conduct experiments to validate/reject hypotheses, analyze exper-
imental data, refine the hypothesis in case of rejection, and add the accepted
hypothesis as new knowledge. Two systems that have been designed so far with
this grand goal in mind are Adam [16] and Eve [36]. Although Adam and Eve
are designed for two different applications, the string that connects both of these
systems and all the future systems in this line of work, is the philosophy of using
scientific approaches to make the scientific discoveries of new knowledge. Adam
uses abductive reasoning to generate a new hypothesis.

Basic Workflow of Adam. Robot scientist Adam aims to identify the roles
of different genes in Saccharomyces cerevisiae (also known as baker’s/brewer’s
yeast) growth. To do so, Adam uses background knowledge of yeast metabolism
process and scientific approach to generate and test new hypotheses about the
role of unknown genes through growth experiments.

1. Background Knowledge: Many of the genes in S. cerevisiae have known
functions, while many don’t. The background domain knowledge of different
genes’ role in yeast metabolism is stored as a labeled hyper-graph in Adam,
using logic programming. The metabolites (small molecules) are represented
as nodes while the arcs represent enzymes the facilitate transformation of one
molecule to another. An arc labeled E, going from node A to B represents
that A can be transformed into B molecules using enzyme E.

2. Hypothesis Formulation: The goal of Adam is to predict missing la-
bels/edges in the hyper-graph of yeast metabolism. This prediction task is
equivalent to identifying the genes responsible for encoding the enzymes that
catalyze biochemical reactions in yeast. Adam uses abductive reasoning to
predict possible missing labels/edges in the metabolism graph. The missing
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information can then be used to explain the observed experimental results.
The hypotheses that fail to explain observed results should be discarded,
while the successful ones are accepted as new knowledge.

3. Experiment Design: Adam uses controlled experiments for hypothesis
testing. Once a gene is identified as a potential candidate encoding an en-
zyme, two samples – one with the gene and one without the genes are grown
in similar conditions. The correctness of the hypothesis can then be measured
using the difference in growth of these two samples.

4. Data Analysis: Adam uses machine learning techniques to analyze exper-
imental data and relate the findings to the hypotheses. Specifically, deci-
sion trees and random forests with resampling methods were used to decide
whether the yeast growth in different media, controlled for the hypothesized
gene was significant. Classical statistical methods were used to verify the
results manually.

Adam formulated and tested 20 hypotheses about genes encoding 13 different
enzymes, and 12 of these hypotheses were confirmed with statistically signifi-
cant observations. Later these were tested with standard experiments by human
scientists. While robot scientist Adam focused on automating the full process
of functional genomics, the other robot scientist Eve was designed to automate
the early stage of drug discovery. However, the working philosophy for Eve was
the scientific approach of hypothesis generation and testing, the same as that of
Adam.

Basic Workflow of Eve. Robot scientist Eve was designed with the purpose
of making the drug discovery process cheaper and faster. Specifically, Eve aims
to automate the early stage of drug design - the identification of a possible “lead”
compound to be used as a drug, using automated scientific experiments. Given
a set (library) of potential compounds for a drug, Eve performs the following
steps to identify possible lead compounds:

– Background Knowledge: In Eve, background knowledge is represented
using graph and chemoinformatic methods. Unlike robot scientist Adam,
background knowledge exploitation is largely conducted by human experts.
Human scientists use standardized synthetic biology experiments to design
appropriate experiments (also called ‘assay’), which is then used by Eve.

– Hypothesis Formulation: Eve’s hypothesis takes the form of a quantita-
tive structure-activity relationship (QSAR). Given the structure of a com-
pound, QSAR predicts how a compound will perform on experimental eval-
uation. Eve uses inductive reasoning, specifically ridge regression to form
QSARs. This is equivalent to the Gaussian process with a linear kernel,
which enables the computation of posterior uncertainty.

– Hypothesis Testing: Eve uses active learning to test new hypotheses. The
active learning task here is to choose which compound to test from a library
of available compounds. Eve uses a reward function combining high esti-
mated activity and high estimated variance for each compound and selects
the compounds with the highest rewards for testing.
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On real-world deployment, Eve was able to identify that the anti-cancer
compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the
malaria-causing parasite Plasmodium vivax. This discovery was later validated
by additional testing. The repositioning of drugs – the application of known drug
compounds to new diseases is of high potential value, and thus Eve was able to
demonstrate that AI methods fueled by scientific principles have the potential
to greatly accelerate the drug discovery pipeline.

2.5 AI-Feynman – Combining Physics Knowledge and Neural
Networks for Equation Discovery

AI-Feynman [32, 33] systems aim to find symbolic equations from static datasets.
Named after famous physicist Richard Feynman, the AI-Feynman systems take
inspiration from known physics laws. Given a set of data points (x1, x2, . . . , xn, y)
where y = f(x1, x2, . . . , xn), the goal of the AI-Feynman system for symbolic
regression is to find unknown function f . Such function f can be extremely
complicated, and the possible number of such functions is exponentially large.
However, in physics and other science domains, such functions exhibit some
simplifying properties:

– Physical unit property. The variables xi and f have known physical units.
– Low-order property. The entire function f of part of it is polynomial in a

subset of variables {x1, x2, . . . , xn}.
– Compositional property. The function f can be decomposed as a composition

of simpler functions.
– Smoothness property. The function f is continuous and smooth.
– Symmetry property. The function f is symmetrical with respect to a subset

of variables {x1, x2, . . . , xn}.
– Separability property. The function f can be separated into 2 parts with a

disjoint set of variables, connected via addition/multiplication.

AI-Feynman systems look for these simplifying properties in the data and dis-
cover the symbolic relationship f step-by-step.

Unlike BACON which assumes that new experimental data can be acquired
under a control setup, AI-Feynman assumes a static dataset. To probe data
points that are not present in the static dataset, AI-Feynman uses a neural
network to perform interpolation/extrapolation.

Working process of AI-Feynman. AI-Feynman applies the following proce-
dures in sequence:

1. Dimension Analysis: Every variable in a symbolic equation has physical
units, and the units on both sides of the equation must match. Using this
idea, this step tries to transform the problem of finding an equation of n
variables into a problem involving less than n variables.
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2. Polynomial Fitting: Many physics systems can be represented as low-order
polynomials. In this step of AI-Feynman, low-order polynomials up to degree
4 are tried exhaustively to find a symbolic equation.

3. Brute Force Search: The number of possible symbolic equations is ex-
ponential in the equation length (the number of symbols in the equation).
When the equation length is small, a brute force method to try all possible
equations can be feasible. In this step of AI-Feynman, a brute force approach
is applied to try to fit equations up to a certain length and find the best pos-
sible one. In cases where multiple equations fit the data, the equation with
the lowest root mean squared error (RMSE) within a bound is selected.

4. Neural network-based Tests and Transformations: This step of the
AI-Feynman workflow is the second core contribution of this method, the
first one is the heuristics obtained from physics knowledge. Scientific experi-
ments can be costly both in terms of time and effort. In the absence of data
from scientific experiments, scientific models suffer from errors. To bridge
this gap of data scarcity, AI-Feynman uses a neural network to extrapo-
late/interpolate missing data from available data points. Once this neural
network is trained, scientists can make scientific queries and generate new
data to test hypothesis models.

AI-Feynman uses cutting-edge deep learning techniques to reduce the cost of
scientific experiments for finding symbolic equations from data. At the core of
the workflow, the algorithm still relies on scientific approaches for making new
knowledge discoveries.

3 Control Variable Genetic Programming for Symbolic
Equation Discovery

Control Variable Genetic Programming (CVGP) is a modern computational
framework designed to accelerate symbolic equation discovery from experimental
data by incorporating scientific reasoning—specifically through control variable
experiments—into traditional equation discovery methods. Our CVGP approach
scales effectively to discover complex algebraic and differential equations involv-
ing many interacting variables. In the following section, we outline the core prin-
ciples of CVGP and present empirical evidence demonstrating its effectiveness
in symbolic equation discovery.

3.1 Motivation

Since the inception of BACON system, there have been many exciting works
in this direction of symbolic equation discovery [30, 34, 10, 26, 25, 26, 29, 28, 14].
The use of learning algorithms such as genetic programming and neural networks
are of special mention here. Despite such progress, the current state-of-the-art
methods are limited to learning very simple symbolic equations. The main reason
is that the hypothesis space of the symbolic equation is exponential in the length
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of the equation (the length of the equation is measured in terms of the number
of operands and operators in the equation). Searching the exponentially large
space of possible equations has shown to be an NP-hard problem. Therefore,
we need scalable methods that can automate the discovery of complex symbolic
equations involving many interrelated variables, which are prevalent in physical
science domains.

3.2 Preliminaries

Control Variable Experiment. A control variable experiment takes in several
input arguments – a hypothesis equation ϕ, a list of free variables vf , a list of
controlled variables vc and the total number of control variable trials K. Out
of all variables in vf , we designate one as the output variable and measure its
values in the varying setup of other variables. The constants of the equation ϕ
if present, are calculated by fitting the equation to the training dataset.

In each trial, we generate and collect a dataset by keeping the controlled
variables in vc to constant values, and randomly varying variables in vf and
measuring the output variable. In the real world, this is done by conducting
scientific experiments, while in our case, we do this by using a data oracle that
mimics the output of scientific experiments. The data oracle simulates the ground
truth equation and yields noisy output, similar to real-world experiments.

Assuming there is a ground-truth equation that governs the output of such
experiments, during the controlled setup, we actually observe simulation from
a reduced form of the ground-truth equation. In this reduced-form equation,
subexpressions involving the controlled variables appear as constants. Depending
on the control setup, the value of these constants may vary. In each trial, we
record two critical information:

1. Fitness score of the hypothesis equation: This is done by defining a
reward function such as the inverse mean squared error. The reward func-
tion measures how well the hypothesis equation can explain the generated
controlled dataset in the trial.

2. Summary constants of the equation: We also record the value of the con-
stants in the hypothesis equation. The variability of these constants across
multiple trials gives us an idea about whether a constant depends on the
controlled variables or not.

Genetic Programming for Symbolic Regression. Genetic programming
(GP) is a heuristic algorithm inspired by evolutionary phenomena such as selec-
tion, mutation, crossover, etc. Initially, we start with a random set of possible
candidate equations i.e., a population. We define criteria to test how good the
equations are. An example criterion can be a loss function that penalizes the
mismatch between equation evaluation and observation data. After this initial-
ization, we repeatedly apply 3 basic steps to the population:

1. Selection. Keep the best candidate in the population according to test
criteria.
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2. Mutation. Randomly pick equations, and change one of their subexpres-
sions randomly.

3. Crossover. Randomly pick a pair of equations, and exchange subexpressions
to form a pair of new equations.

In GP, we repeat these 3 procedures repeatedly for a number of fixed itera-
tions and keep track of the best equations in each iterations. At the end of the
final iterations, the set of best equations is returned as the final output of GP.

3.3 Working Mechanism of Control Variable Genetic Programming

Our control variable genetic programming (CVGP) algorithm integrates scien-
tific reasoning in the form of control variable experiment trials, and randomiza-
tion in the form of genetic programming to scale up the scientific discovery of
symbolic equations. The basic building blocks of the CVGP framework are as
follows:

1. Background Knowledge: CVGP assumes the mathematical operators
(e.g., addition, multiplication, etc.) and the variables (given as part of the
dataset for testing candidate equations) are known.

2. Hypothesis Formulation with Control Variable Experiment: Hy-
potheses in CVGP are the possible symbolic equations that can explain a
given dataset. In CVGP, control variable experiment trials combined with
genetic programming, are used for hypothesis formulation. Lets assume there
are N variables in a dataset x1, x2, . . . , xN . Instead of trying out equations
involving all N variables, CVGP will first generate and test equations in-
volving x1, and control the rest of the variables to be constants. Once an
equation is discovered, CVGP will use this equation to generate new can-
didate equations involving x1, x2 only, controlling the rest of the variables.
In the final iteration of CVGP, the generated equations will involve all N
variables with no control.

3. Hypothesis Testing: Once the structure of the hypothesis is formed, the
constants of the hypothesis equations if present, are calculated using gradient-
based optimization to minimize difference with a dataset. The dataset is
generated with a control variable experiment setup. To test how well the
hypothesis equations can describe the dataset, a loss function such as mean
squared error can be used. The hypothesis with the minimum loss functions
is retained for the next iterations.

We see the outline of CVGP in Algorithm 1. Initially, all variables are added
to the control set (line 1− 2). A set of random equations constitutes the initial
population for candidate equations (line 3). The parameter set θ includes many
hyperparameters of genetic programming such as the probability of mutation and
crossover, the size of the hall-of-fame set, which keeps track of the best equations
across GP iterations, etc. After fixing the order of the variables, we move one
variable at a time from the control set to the free set (line 5−6). For each equation
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Algorithm 1 Control Variable Genetic Programming (CVGP)
Input: Set of variables {x1, x2, . . . , xN}; Number of control variable trials K; Size M

of the best equation set H.
Output: The best-fitted expressions.
1: vc ← {x1, . . . , xN};
2: vf ← ∅;
3: Pgp ← CreateInitialPool();
4: for xi ∈ {x1, . . . , xN} do
5: vc ← vc \ {xi};
6: vf ← vf ∪ {xi};
7: for ϕ ∈ Pgp do
8: ϕ.constants, ϕ.score← ControlVariableExperiment(ϕ,vc,vf ,K);
9: Pgp ← GP (Pgp,vc,vf );

10: for ϕ ∈ Pgp do
11: FreezeEquation(ϕ);
12: H ← Top M equations of Pgp according to fitness score;
13: return H

Helper Procedures
14: procedure GP (Pgp,vc,vf )
15: Generate new equations from Pgp by selection,mutation and crossover;
16: Use only the variables in set vf during mutation and crossover process;
17: return The set of all equations.
18: procedure ControlVariableExperiment(ϕ,vc,vf ,K)
19: for k ∈ {1, . . . ,K} do
20: Tk ← Generate datasets by controlling vc and varying vf ;
21: Ck ← Find optimum constants in ϕ using Tk;
22: Fk ← Find fitness score of ϕ using Tk;
23: return {Ck}Kk=1,{Fk}Kk=1.
24: procedure FreezeEquation(ϕ)
25: Except for constants, mark the operands of equation ϕ as immutable;
26: For constants of ϕ that vary little across trials, mark them as immutable;

in the population, we perform K trials of the control variable experiment and
record the constants and fitness scores (line 7−8). We use genetic programming
to update the pool of candidate equations (line 9). For every equation, if a
constant in the equation shows little variability across multiple trials of the
control variable experiment, we denote them as independent of the controlled
variables and mark them immutable for later generations of GP (line 11). Finally,
we rank all the candidate equations of Pgp according to fitness score, and return
the set H, the set of top-ranked equations (line 12).

Example Discovery of the Ideal Gas Law. Using our CVGP algorithm, an
example of successful scientific discovery of empirical laws such as ideal gas law
PV = nRT depicting a relationship between pressure P , volume V , number of
moles of gas n and temperature T , can take the following course of actions:
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1. CVGP first fix a library of mathematical operators – addition, subtraction,
multiplication, and division and 4 variables P, V, n, T , which will be used to
generate hypothesis equations. P is chosen as the output variable which will
be measured after varying the other variables.

2. Controlling V (volume), n (gas amount), and T (temperature) as constants,
CVGP generates hypothesis equations involving pressure P only, and even-
tually finds the equation P = c1, where c1 indicates a constant coefficient.
The value of constant c1 is calculated using gradient-based optimization to
minimize the difference between equation output and observed data.

3. In the next iteration, CVGP will control only n and T , and generate equa-
tions by looking for replacement of c1 in equation P = c1. Eventually, CVGP
finds the equation P = c2

V , where c2 is a constant.
4. In the third iteration, CVGP will control only n, and generate hypothesis

equations by replacing the constant c2 in P = c2
V , which will lead to the

discovery of P = (c3T )
V , where c3 is a constant.

5. In the next and final iteration, CVGP does not control any variable and
generates hypothesis equations by replacing constant c3 in the equation P =
(c3T )
V , and eventually finds the equation P = (c4n)T

V . The value of constants
c3 and c4 are calculated using gradient-based optimization, similar to c1, c2,
and the final value of c4 is found to the ideal gas constant R = 8.31.

3.4 Experimental Evaluation

Experiment Settings. 1 We consider the following baselines based on evolu-
tionary algorithms: 1) Genetic Programming (GP) [8]. We also consider a series
of baselines using reinforcement learning: 2) Priority queue training (PQT) [1].
3) Vanilla Policy Gradient (VPG) that uses the REINFORCE algorithm [37]
to train the model. 4) Deep Symbolic Regression (DSR) [26]. 5) Neural-Guided
Genetic Programming Population Seeding (GPMeld) [25].

The ground-truth equations we consider are multi-variable polynomials char-
acterized by their operands and a tuple (a, b, c). Here a is the number of indepen-
dent variables. b is the number of singular terms. A singular term can be an inde-
pendent variable, such as x1, or a unary operand on a variable, such as sin(x1).
c is the number of cross terms. They look like C1x3x4 or C2 sin(x1)inv(x5), etc.
Here C1, C2 are randomly generated constants. The tuples and operands listed
in different tables and charts indicate how the ground-truth expressions are gen-
erated. For each dataset configuration, we repeat our experiments 10 times, each
time with a randomly generated symbolic expression of the given configuration.
For noiseless datasets, the output is exactly the evaluation of the ground-truth
expression. For noisy datasets, the output is further perturbed by Gaussian noise
of zero means and a given standard deviation.

We mainly consider the goodness-of-fit measure (NMSE) for the learning
algorithms tested in our work, which indicates how well the learning algorithms
perform in discovering symbolic expressions. The full quartiles of the NMSE
1 All code available publicly at https://github.com/jiangnanhugo/cvgp
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are reported. Given a separated testing dataset Dtest = {(xi, yi)}mi=1 generated
from the ground-truth expression, we measure the goodness-of-fit of a predicted
expression ϕ̄, by evaluating the normalized-mean-squared error (NMSE):

NMSE =
1

mσ2
y

m∑
i=1

(yi − ϕ̄(xi))
2 (1)

where the empirical variance σ2
y = 1

m

∑n
i=1

(
yi − 1

m

∑m
i=1 yi

)2.
Learning Result. The CVGP method attains the smallest NMSE values among
all the baselines when evaluated on noisy datasets (Figure 3). This shows our
method can better handle multiple variables symbolic regression problems than
the current best algorithms in this area.
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Fig. 3. Quartiles of Normalized Mean squared error (NMSE) values of all the methods
over several noisy datasets. Gaussian noise with zero mean and standard deviation
0.1 is added. CVGP shows a consistent improvement over all the baselines considered,
among all the datasets. The reason is because of the introduction of scientific reasoning,
i.e., the control variable experiment.
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4 Related Works for Symbolic Equation Discovery

There have been a vast amount of contemporary research works for the auto-
matic discovery of symbolic equations besides the already discussed works in
this chapter. Many of the algorithms for symbolic equation discovery are based
on evolutionary algorithms like genetic programming [19, 33, 34, 14]. Most no-
table in this line of research is the commercially available software Eureqa [4].
Recently, reinforcement learning-based methods for symbolic equation discov-
ery has garnered much attention [26, 25, 3]. Active learning, which considers the
query data point for maximum learning performance have also been used for
symbolic equation discovery [11, 9, 12, 13].

In terms of similarity, our CVGP method is most similar to the BACON
system [24] as both of them use control variable experiments. Compared to
the benefit of heuristic knowledge provided by BACON, our CVGP algorithm
provides the exploration-exploitation trade-off in searching the huge hypothesis
space of possible symbolic equations. CVGP also saves in time and space in
equation discovery as the equations discovered in different controlled settings
are reused.
Limitations of current symbolic equation discovery algorithms: Our
Control Variable Genetic Programming (CVGP) approach and other symbolic
equation discovery approaches discussed in this chapter assume that all relevant
and irrelevant variables are present in the data. If important variables are missing
or have been erroneously excluded due to incorrect assumptions, the performance
of these methods, including ours, can degrade significantly or fail altogether.

Furthermore, in systems where input variables exhibit complex, confounding,
or unpredictable interactions, standard control-variable experiments, a key nov-
elty of our CVGP algorithm, become inapplicable. Future research may consider
first identifying and modeling the confounding interactions between variables
and then partitioning them into coherent groups. Control-variable experiments
can then be applied at the group level, rather than on individual variables, to
better account for interdependencies and improve robustness in complex settings.

5 Conclusion

In this book chapter, we have provided a summary of the key milestones in the
history of scientific approach-based symbolic equation discovery. We started with
BACON, a production-system-based equation discovery algorithm, which was a
pioneer in this domain. We then moved on to LAGRANGE – which extended
the equation discovery process to differential equations. We described Robot sci-
entists Adam and Eve, which aim to make the whole scientific discovery process
autonomous by minimizing human intervention in physical experiments. We then
described our own work, control variable genetic programming (CVGP), which
integrates scientific reasoning and randomization for scalable scientific discovery
of symbolic equations involving many interrelated variables. Aside from these
frameworks, there is an abundance of research works which aim to automate
scientific discovery using computational systems.
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The growing reliance on computational systems to automate elements of
the scientific process prompts critical reflection on the nature and limitations
of machine-guided discovery. Unlike humans, computational systems lack in-
tuition, creativity, and broader contextual understanding—traits that human
scientists are good at. Instead, these systems excel in exhaustive search, pat-
tern recognition, and probabilistic inference, offering a powerful but incomplete
perspective on scientific discovery. In this book chapter, we have chosen to high-
light computation approaches with integrated scientific reasoning in some form.
This represents a line of effort to enhance machine systems with intuition and
creativity-based active exploration. It also demonstrates that the merging of
several branches of AI may result in novel capabilities that are beyond the ap-
proaches in each branch alone. We believe that scientific reasoning is a key to
automating the discovery of new knowledge from a huge volume of experimental
data, and this chapter will serve as a helpful guide to interested readers who are
interested in pursuing future works in this direction.
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