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Intelligent Systems Integrate Learning and Reasoning
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Knowledge

Data Action

Machine learning: 

• Bottom-up: Learn 

predictive models from 

data

• Challenging in 

providing formal 

guarantees

 

• May violate 

constraints in rare and 

unseen situations

Automated reasoning:
 

• Top-down: Build models 

from problem description

• Rigid models: problem 

formulation must be 

agreed a-priori

• Difficult to adapt to data 

distributions

Perceptio
n Reaction
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Big challenge: 

How to integrate 

learning with reasoning



Generalist Systems, Think Fast and Slow
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Input Specifications:   

• Add a blue microwave 

right of the oven

• Add a green toaster 

left of the oven and 

below the sink

System 1 

perception

(fast thinking)

System 2 

planning & 

generation

(slow thinking) 

Reasoning & learning are 

in charge of different 

cognitive systems.

Need both for building a 

generalist AI.

Learning

Reasoning 

+ Learning



• Service Vehicle Dispatching

– Recommend dispatching routes which (i) 

satisfy daily delivery requests; (ii) meet 

implicit preferences

– Constraint reasoning along (e.g., solving 

TSP) cannot learn implicit preferences from 

data

– Machine learning-based recommendations 

cannot meet daily requests

• COnstraint Reasoning Embedded 

Learning (CORE) as a combined ML + 

Reasoning approach

• Valid routes: 1% (pure ML) → 100%

• Satisfy drivers’ utilities well

Data-driven Operational Research
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Program Synthesis from Natural Language

If-then program synthesis

Input: SMS me to park in the garage if it 

snows tomorrow.

Output:

Text2SQL query synthesis

• Challenging machine 

learning problem: learn a 

program from natural language; 

pure ML cannot satisfy 

syntactic or semantic rules.

• Reasoning can produce valid 

programs, but cannot 

understand natural language.

• CORE machine learning + 

reasoning
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Trigger (If) Action (then)..

Channel: Weather Channel: SMS

Function: Snow 

tomorrow

Function: send message 

“park in the garage”

if-then programs generation: validity 
88% → 100%, 2% ↑ in accuracy.
Text2SQL: validity 83.7% → 100%, 4.2% 
↑ execution accuracy, 1.9% ↑ logic 
accuracy



Design Generation

• Good designs need to meet industry standards 

and user needs, while capturing subtle aspects 

such as aesthetics and convenience.

• Complete constraint reasoning approach: 

satisfy design specifications, but cannot capture 

subtle aspects. In fact, cannot be encoded in 

objective functions.

• Complete ML approach: generate beautiful 

designs, but cannot meet specifications.
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Existing Kitchen Env:   

Input Specifications:   

• Add a blue microwave 

right of the oven

• Add a green toaster 

left of the oven and 

below the sink

(stated in propositional 

logic)

Baseline (Stable Diffusion) Ours (CORE)



Technical Approach
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Machine Learning
D

ecisio
n
 D

iag
ram

(1)ML with safety, correctness, and/or fairness assurances.

(2)Boost performance: learn faster, more accurate predictions.

CORE framework

Constraint Reasoning

Compiled from Decision Diagrams; 

embed as a fully differentiable 

layer; filter out infeasible solutions.

𝑦1, 𝑦2, 𝑦3 all 

different; 𝑦1 ≠ 𝑣1



CORE Filters Invalid Actions on MDD

The MDD enforces Constraints C over output from the Seq2seq model.



CORE Filters Invalid Actions on MDD

Pivot change from u1 to u4



CORE Filters Invalid Actions on MDD

Pivot change from u4 to t 



CORE Applied to Design Generation
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CORE Applied to Design Generation
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Service Vehicle Dispatching
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If-then Program Synthesis

IFTTT Zapier

Methods Width Accuracy Valid (%) Width Accuracy Valid (%)

LatentAttention N/A 42.17% 87.51% N/A 31.74 88.00%

+best relaxed CORE 80 44.12% 99.19% 1200 34.28 99.53%

+ exact CORE 111 43.07% 100% 1353 32.83 100%
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Program Synthesis from Natural Language
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Text2SQL Prediction:



CORE for Design Generation
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Conclusion

• Presented three application domains which need tight integration of 

machine learning with automated reasoning

– Data-driven Operational Research

– Program Synthesis from Natural Language

– AI-driven Design Generation

 

• Demonstrated CORE as a hybrid learning + reasoning approach to

– Generation structures satisfying constraints

– Boost learning performance (higher accuracies, learning faster generalizing better)

• Future directions

– Explore richer set of constraints; e.g., constraints stated in natural language

– Complex constraint satisfaction problems beyond reach of exact decision diagrams.
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