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Intelligent Systems Integrate Learning and Reasoning
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Intelligent Systems Integrate Learning and Reasoning
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Generalist Systems, Think Fast and Slow

Reasoning & learning are
in charge of different
cognitive systems.

Input Specifications:

« Add a blue microwave
right of the oven

« Add a green toaster

left of the oven and Need both for building a

below the sink generalist Al.
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Data-driven Operational Research

« Service Vehicle Dispatching

— Recommend dispatching routes which (i)
satisfy daily delivery requests; (ii) meet
implicit preferences

— Constraint reasoning along (e.g., solving
TSP) cannot learn implicit preferences from
data

— Machine learning-based recommendations
cannot meet daily requests

~*» COnstraint Reasoning Embedded
Learning (CORE) as a combined ML +
Reasoning approach

 Valid routes: 1% (pure ML) — 100%
« Satisfy drivers’ utilities well



Program Synthesis from Natural Language

If-then program synthesis

Input: SMS me to park in the garage if it

snows tomorrow.

Output:

Channel: Weather

Function: Snow
tomorrow

Channel: SMS

Function: send message
“‘park in the garage”

Text2SQL query synthesis

Input Table:

Player | No. Position School
0 | Antonio | 21 | Guard-Forward Duke

' 1 | Voshon | 2

Guard Minnesota

-2 Marin 3 | Guard-Forward | Butler CC

Input Query:
How many schools did

Output SQL Query:

SELECT COUNT “School

aggiop sel-col

player number 3 play at?

'WHERE"I}IO." = 3
VA AN

cond-col cond-op cond-val

Challenging machine
learning problem: learn a
program from natural language,;
pure ML cannot satisfy
syntactic or semantic rules.

Reasoning can produce valid
programs, but cannot
understand natural language.

CORE machine learning +
reasoning

if-then programs generation: validity
88% —> 100%, 2% > in accuracy.
Text2SQL: validity 83.7% - 100%, 4.2%
M execution accuracy, 1.9% 1 logic
accuracy



Design Generation

Existing Kitchen Env:
- :

Input Specifications:

* Add a blue microwave
right of the oven

« Add a green toaster
left of the oven and
below the sink

(stated in propositional
logic)

« Good designs need to meet industry standards
and user needs, while capturing subtle aspects
such as aesthetics and convenience.

« Complete constraint reasoning approach:
satisfy design specifications, but cannot capture
subtle aspects. In fact, cannot be encoded in
objective functions.

« Complete ML approach: generate beautiful
designs, but cannot meet specifications.

b, ﬁ 4

Baseline (Stable Diffusion) Ours (CORE)
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Technical Approach
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Constraint Reasoning

Compiled from Decision Diagrams;
embed as a fully differentiable
layer; filter out infeasible solutions.

(1)ML with safety, correctness, and/or fairness assurances.
(2)Boost performance: learn faster, more accurate predictions.



CORE Filters Invalid Actions on MDD
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CORE Filters Invalid Actions on MDD

Input Xy, xz,\L. oy X
( Sequential Encoder )
Sequential A, —* h v
0 1 i )
decoder 0 (_RNN_)
v 1
Vi Va Vy » [ -
01 02 03

v

v V) Va
Softmax 03 033
1 MDD
pivot v, w
s LO |1 .
J b))
Vl . V2 .
Mask 5733 @
)
_ Vl ‘ V2 Vl
Re-norm / 0.47 e
q)) ‘ qi2
0 1
l
Output VI=WV \

Pivot change from u;to u,



CORE Filters Invalid Actions on MDD
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CORE Applied to Design Generation

Perception Module

Spatial Reasoning Module

Visual Element Generator
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CORE Applied to Design Generation
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CORE Applied to Design Generation
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Service Vehicle Dispatching
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If-then Program Synthesis

I T s

Methods Width Accuracy  Valid (%) Width  Accuracy Valid (%)
LatentAttention N/A 42.17% 87.51% N/A 31.74 88.00%
+best relaxed CORE 80 44.12% 99.19% 1200 34.28 99.53%
+ exact CORE 111 43.07% 100% 1353 32.83 100%
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Program Synthesis from Natural Language

Text2SQL Prediction:

Input Table: Input Query:
How many schools did player number 3 play at?
Player | No. Position School
' 0 | Antonio | 21 | Guard-Forward Duke Output SQL Query:
' 1 | Voshon | 2 Guard Minnesota | SELECT CoyNT “Sclt]‘ool” WHERE No T 3\
2 | Marin 3 | Guard-Forward | Butler CC agg-op sel-col cond—éol cond-op cond-val
Accuracy Full test set Moderate test set Hard test set
per component | SQLNova CORE-SP | SQLNova CORE-SP | SQLNova CORE-SP
sel-col 96.3% 96.3% 96.4% 97.0% 96.6% 97.7%
agg-op 89.8% 89.7% 75.7% 77.8% 75.4% 75.8%
#WHERE 98.1% 97.9% 98.5% 98.6% 98.9% 98.5%
cond-col 93.6% 93.6% 94.0% 93.8% 93.6% 93.7%
cond-op 96.7% 96.9% 89.8% 91.6% 84.8% 87.9%
where-val-idx 94.5% 94.8% 89.4% 92.3% 86.7% 87.5%
where-val 94.7% 94.9% 89.3% 92.2% 86.4% 87.1%
Full test set Moderate test set Hard test set
Overall Accuracy | SQLNova CoORE-SP | SQLNova CORE-SP | SQLNova CORE-SP
Logical Accuracy 79.3% 79.9% 61.6% 65.8% 58.3% 62.5%
Execution Accuracy 85.5% 86.1% 75.4% 79.1% 76.1% 78.0%
Valid SQL 99.3% 100.0% 94.3% 100% 83.7% 100%
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CORE for Design Generation

SD (center) GLIDE (center) SG2IM
=N . vl B =

A microwave, an oven, a toaster, and a sink. The sink is left of and at least partly above the oven, the microwave is right of and
above the oven, and the toaster is below the microwave.
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Conclusion

* Presented three application domains which need tight integration of
machine learning with automated reasoning
— Data-driven Operational Research
— Program Synthesis from Natural Language
— Al-driven Design Generation

 Demonstrated CORE as a hybrid learning + reasoning approach to
— Generation structures satisfying constraints
— Boost learning performance (higher accuracies, learning faster generalizing better)

» Future directions
— Explore richer set of constraints; e.g., constraints stated in natural language
— Complex constraint satisfaction problems beyond reach of exact decision diagrams.
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