Embedding Constraint Reasoning in Machine Learning to Build Generalist Systems

Yexiang Xue

Department of Computer Science Purdue University

Intelligent Systems Integrate Learning and Reasoning

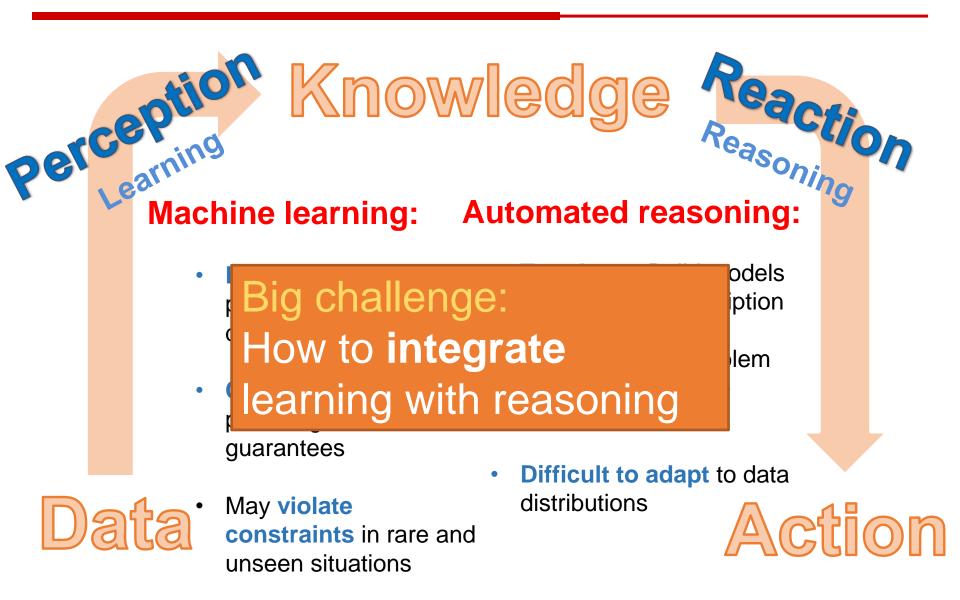
Knowledge Reaction Perception Learning **Machine learning:**

- **Bottom-up:** Learn predictive models from data
- **Challenging** in • providing formal guarantees

- Automated reasoning:
 - **Top-down:** Build models from problem description
 - Rigid models: problem formulation must be agreed a-priori
 - Difficult to adapt to data distributions **ction**

May violate constraints in rare and unseen situations

Intelligent Systems Integrate Learning and Reasoning



Generalist Systems, Think Fast and Slow

Input Specifications:

- Add a blue microwave right of the oven
- Add a green toaster left of the oven and below the sink

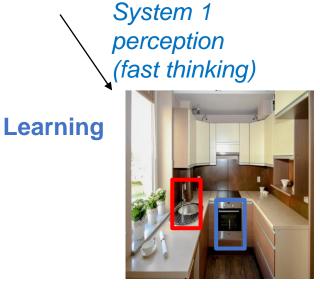
Reasoning & **learning** are in charge of different cognitive systems.

Need both for building a generalist AI.

THINKING, FASTANDSLOW DANIEL

K A H N E M A N

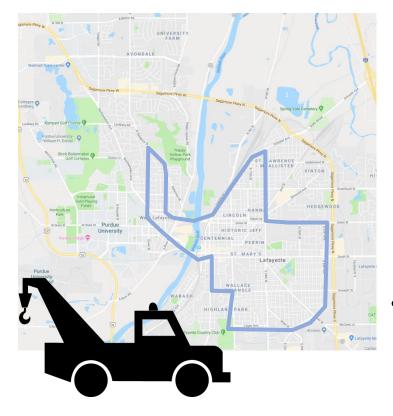
WINNER OF THE NOBEL PRIZE IN ECONOMICS



Reasoning + Learning

System 2 planning & generation (slow thinking)

Data-driven Operational Research



- Service Vehicle Dispatching
 - Recommend dispatching routes which (i) satisfy daily delivery requests; (ii) meet implicit preferences
 - Constraint reasoning along (e.g., solving TSP) cannot learn implicit preferences from data
 - Machine learning-based recommendations cannot meet daily requests
- <u>CO</u>nstraint <u>R</u>easoning <u>E</u>mbedded Learning (CORE) as a **combined ML + Reasoning** approach
- Valid routes: 1% (pure ML) \rightarrow 100%
- Satisfy drivers' utilities well

If-then program synthesis

Input: SMS me to park in the garage if it snows tomorrow.

Output.

Trigger (If)	Action (then)
Channel: Weather	Channel: SMS
Function: Snow tomorrow	Function: send message "park in the garage"

Text2SQL query synthesis

Input Table:

	Player	No.	Position	School	
0	Antonio	21	Guard-Forward	Duke	
1	Voshon	2	Guard	Minnesota	
2	Marin	3	Guard-Forward	Butler CC	

Input Query:

How many schools did player number 3 play at?

Output SQL Query:

SELECT COUNT "School" WHERE "No." = "3" agg-op sel-col cond-col cond-op cond-val

- Challenging machine learning problem: learn a program from natural language; pure ML cannot satisfy syntactic or semantic rules.
- Reasoning can produce valid programs, but cannot understand natural language.

CORE machine learning + reasoning

if-then programs generation: validity 88% \rightarrow 100%, 2% \uparrow in accuracy. Text2SQL: validity 83.7% \rightarrow 100%, 4.2% \uparrow execution accuracy, 1.9% \uparrow logic accuracy

Design Generation

Existing Kitchen Env:

Input Specifications:

- Add a blue microwave right of the oven
- Add a green toaster left of the oven and below the sink

(stated in propositional logic)

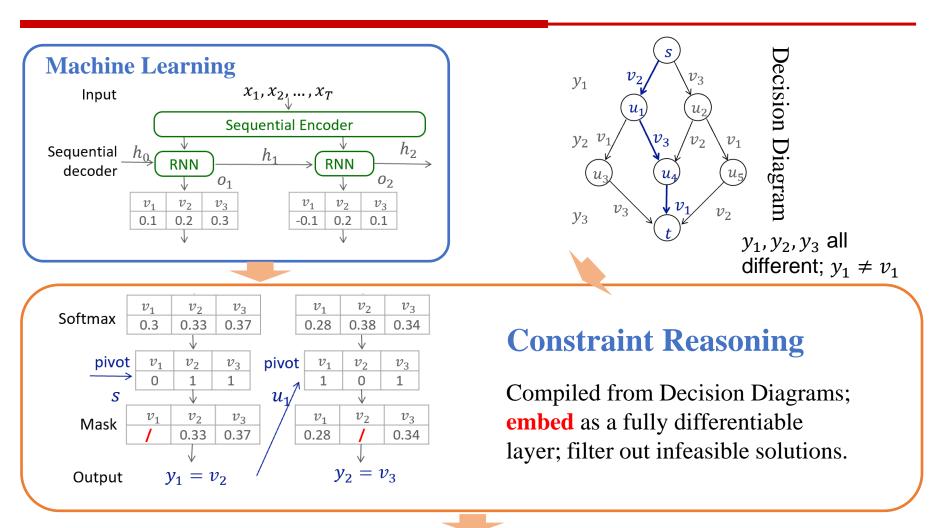
- Good designs need to meet industry standards and user needs, while capturing subtle aspects such as aesthetics and convenience.
- Complete constraint reasoning approach: satisfy design specifications, but cannot capture subtle aspects. In fact, cannot be encoded in objective functions.
- **Complete ML approach**: generate beautiful designs, but cannot meet specifications.

Baseline (Stable Diffusion)

Ours (CORE)

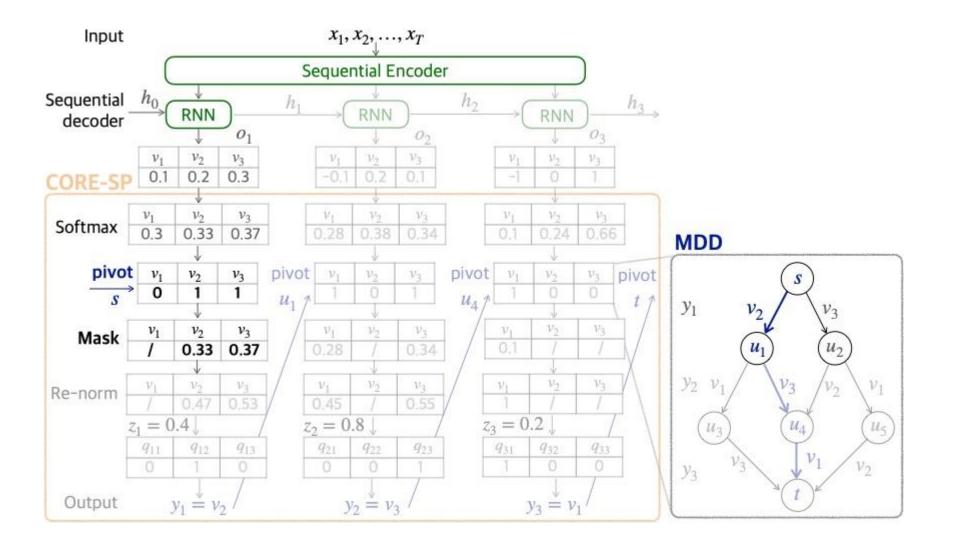
Technical Approach

CORE framework



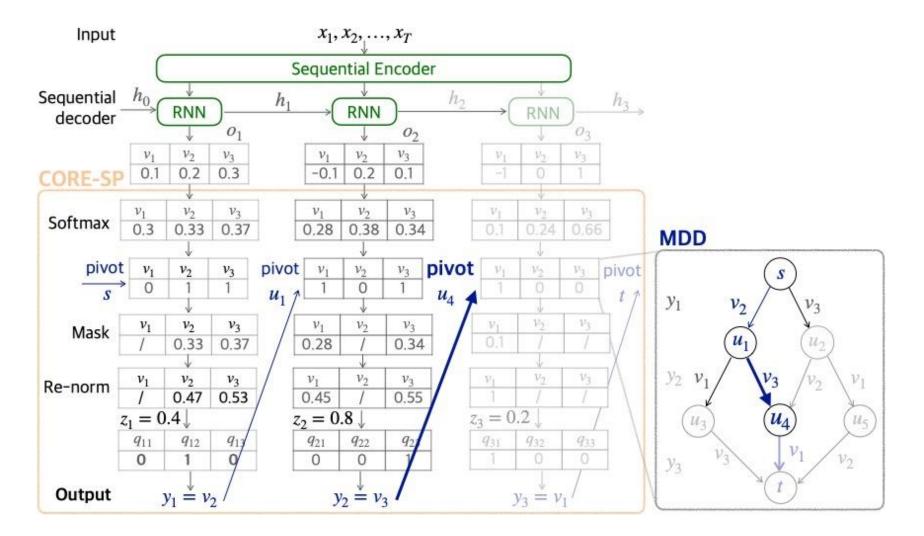
(1)ML with safety, correctness, and/or fairness assurances.(2)Boost performance: learn faster, more accurate predictions.

CORE Filters Invalid Actions on MDD



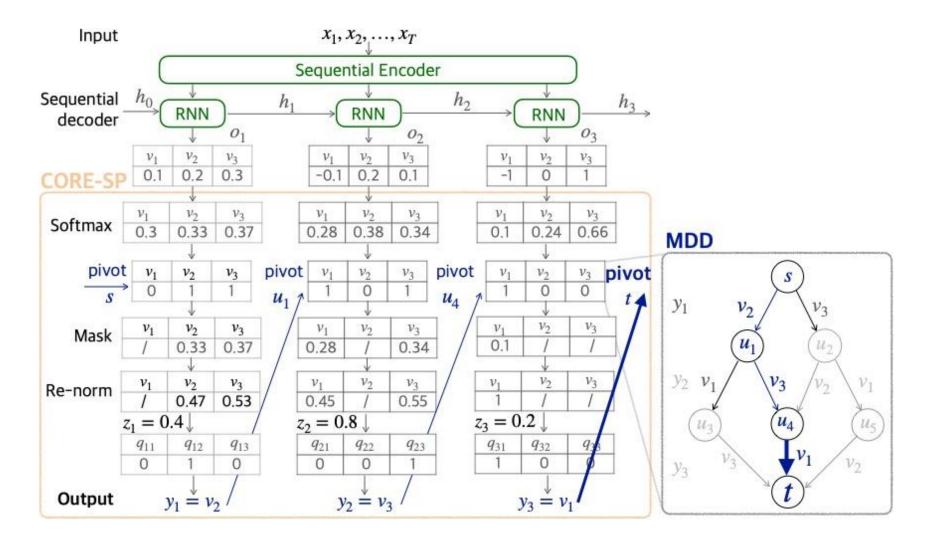
The MDD enforces Constraints C over output from the Seq2seq model.

CORE Filters Invalid Actions on MDD

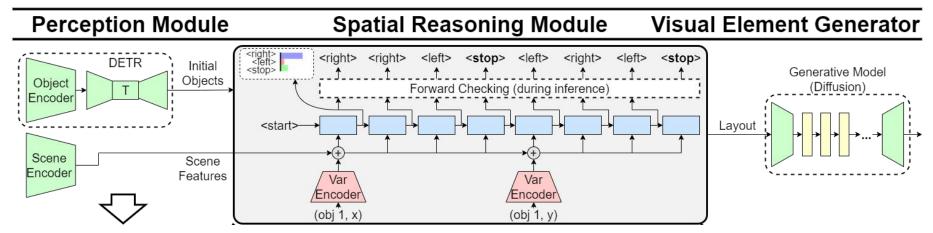


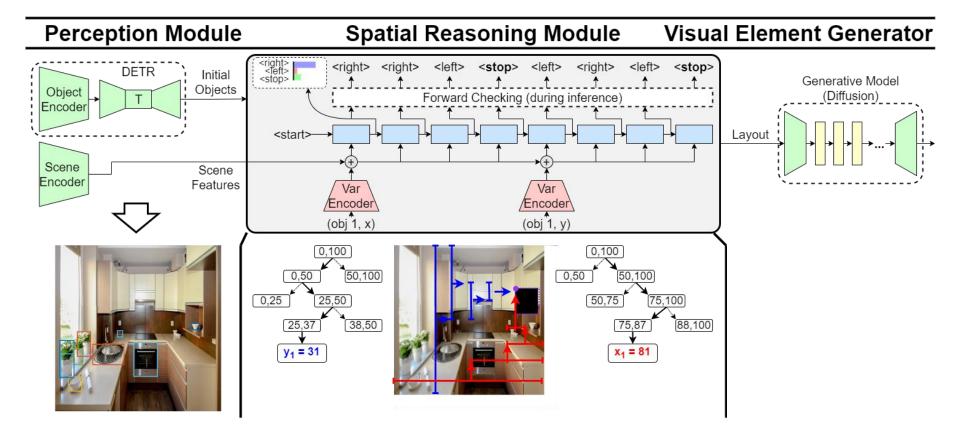
Pivot change from u_1 to u_4

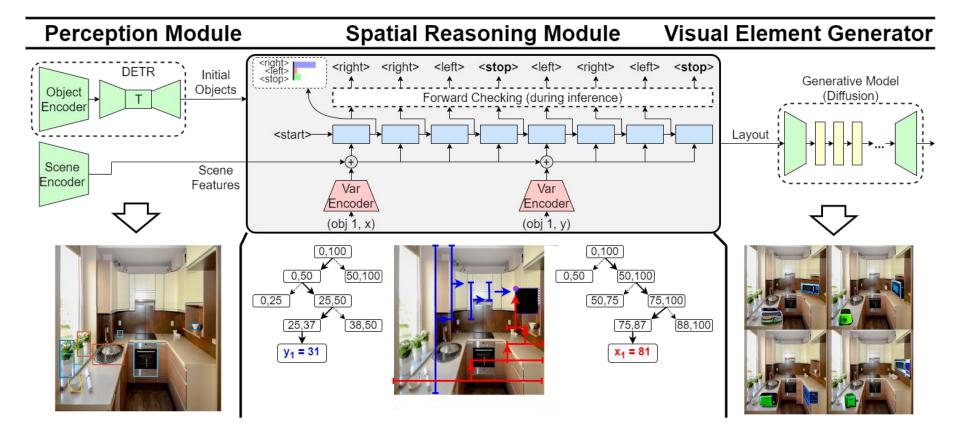
CORE Filters Invalid Actions on MDD



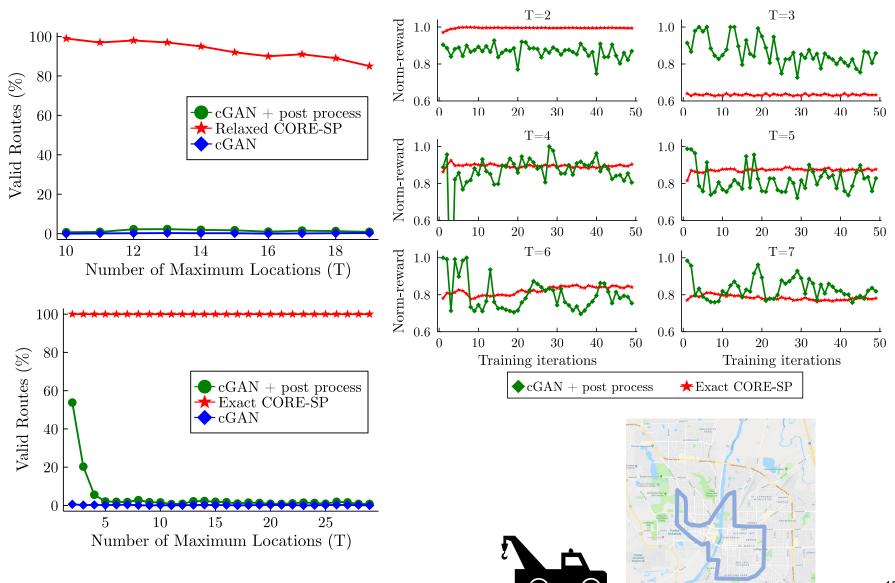
Pivot change from u_4 to t





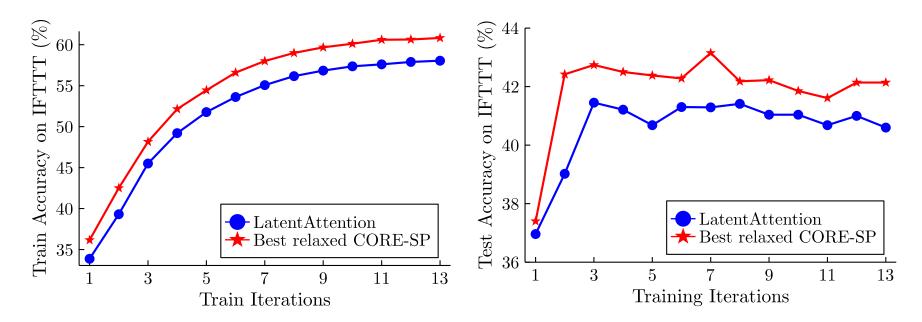


Service Vehicle Dispatching



If-then Program Synthesis

	IFTTT			Zapier			
Methods	Width	Accuracy	Valid (%)	Width	Accuracy	Valid (%)	
LatentAttention	N/A	42.17%	87.51%	N/A	31.74	88.00%	
+best relaxed CORE	80	44.12%	99.19%	1200	34.28	99.53%	
+ exact CORE	111	43.07%	100%	1353	32.83	100%	



Program Synthesis from Natural Language

Text2SQL Prediction:

Input Table:

	Player	No.	Position	School	
0	Antonio	21	Guard-Forward	Duke	
1	Voshon	2	Guard	Minnesota	
2	Marin	3	Guard-Forward	Butler CC	

Input Query:

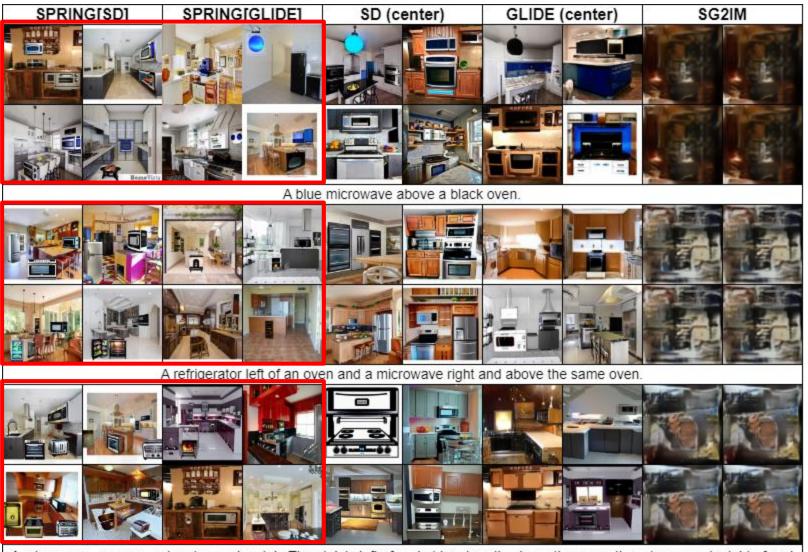
How many schools did player number 3 play at?

Output SQL Query:

SELECT COUNT "School" WHERE "No." = "3" ↑ ↑ ↑ ↑ ↑ agg-op sel-col cond-col cond-val

Accuracy			Moderate test set		Hard test set	
per component	SQLNova	Core-Sp	SQLNova	Core-Sp	SQLNova	Core-Sp
sel-col	96.3%	96.3%	96.4%	$\mathbf{97.0\%}$	96.6%	$\mathbf{97.7\%}$
agg-op	89.8%	89.7%	75.7%	77.8%	75.4%	$\mathbf{75.8\%}$
#WHERE	98.1%	97.9%	98.5%	$\mathbf{98.6\%}$	$\mathbf{98.9\%}$	98.5%
cond-col	93.6%	93.6%	94.0%	93.8%	93.6%	$\mathbf{93.7\%}$
cond-op	96.7%	96.9%	89.8%	$\mathbf{91.6\%}$	84.8%	$\mathbf{87.9\%}$
where-val-idx	94.5%	$\mathbf{94.8\%}$	89.4%	$\mathbf{92.3\%}$	86.7%	$\mathbf{87.5\%}$
where-val	94.7%	94.9%	89.3%	92.2%	86.4\$	87.1%
	Full test set		Moderate test set		Hard test set	
Overall Accuracy	SQLNova	Core-Sp	SQLNova	Core-Sp	SQLNova	Core-Sp
Logical Accuracy	79.3%	79.9%	61.6%	65.8%	58.3%	62.5%
Execution Accuracy	85.5%	86.1%	75.4%	79.1%	76.1%	78.0%
Valid SQL	99.3%	100.0 %	94.3%	100%	83.7%	$\mathbf{100\%}$

CORE for Design Generation



A microwave, an oven, a toaster, and a sink. The sink is left of and at least partly above the oven, the microwave is right of and above the oven, and the toaster is below the microwave.

- Presented three application domains which need tight integration of machine learning with automated reasoning
 - Data-driven Operational Research
 - Program Synthesis from Natural Language
 - Al-driven Design Generation
- Demonstrated CORE as a hybrid learning + reasoning approach to
 - Generation structures satisfying constraints
 - Boost learning performance (higher accuracies, learning faster generalizing better)
- Future directions
 - Explore richer set of constraints; e.g., constraints stated in natural language
 - Complex constraint satisfaction problems beyond reach of exact decision diagrams.