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Abstract 

We study problems in multiobjective optimization, in 
which solutions to a combinatorial optimization problem 
are evaluated with respect to several cost criteria, and we 
are interested in the trade-oflbetween these objectives (the 
so-called Pareto curve). We point out that, under very gen- 
eral conditions, there i s  a polynomially succinct curve that 
€-approximates the Pareto curve, for any E > 0. We give 
a necessary and suflcient condition under which this ap- 
proximate Pareto curve can be constructed in time poly- 
nomial in the size of the instance and l/c In the case 
of multiple linear objectives, we distinguish between two 
cases: When the underlying feasible region is convex, then 
we show that approximating the multi-objective problem is 
equivalent to approximating the single-objective problem. 
r f ;  howevel; the feasible region is discrete, then we point out 
that the question reduces to an old and recurrent one: How 
does the complexity of a combinatorial optimization prob- 
lem change when its feasible region is intresected with a 
hyperplane with small coeficients; we report some interest- 
ing newjndings in this domain. Finally, we apply these 
concepts and techniques to formulate and solve approxi- 
mately a cost-time-quality trade-ofs for optimizing access 
to the world-wide web, in a modeljrst studied by Etzioni et 
a1 [EHJ+] (which was actually the original motivation for 
this work). 

1. Introduction 

Suppose that you want to retrieve a list of records from 
the world-wide web. The desired records reside in n known 
sites, but each site contains a random subset of them. Each 
site has associated with it a cost ci for accessing the records, 
a time delay ti for obtaining them, and a quality qi (in- 
tuitively, the probability that one particular record will be 
found in site i). We will end up accessing a subset S 
{ 1,2, . . . , n} of the sites. The total cost will be 

ci, 
iES 

the total delay will be 

maxt i ,  
i € S  

and the overall quality of the result will be 

Which subset S should we choose? We call this the WEB 

The WEB ACCESS PROBLEM is a problem of multi- 
objective optimization, a research area in the interface be- 
tween Operations Research and Microeconomics that has 
been under intense study since the 1950s. (The particu- 
lar model is a variant of that proposed, and solved in vari- 
ous alternative single-objective formulations, in [EHJ+].) In 

ACCESS PROBLEM. 
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multiobjective optimization we are interested not in a single 
optimal solution, but in a complicated object capturing the 
notion of a “trade-off” and called the Pareto curve, the set 
of all feasible solutions whose vector of the various objec- 
tives is not dominated by the vector of another solution. The 
Pareto curve captures the intuitive notion of a “trade-off.” 
Unfortunately, it is typically exponential in size. Because 
of t h i s  difficulty, computational approaches to multiobjec- 
tive optimization are usually concerned with less demand- 
ing goals, such as optimizing lexicographically the various 
criteria. 

In this paper we study an interesting approximate ver- 
sion of this concept, the e-approximate Pareto curve. In- 
formally, it is a set of solutions that approximately domi- 
nate all other solutions, i.e. for every other solution, the set 
contains a solution that is at least as good approximately 
(within a factor 1 + e )  in all objectives. We show (Theo- 
rem 1) that, under very general conditions, for all E > 0 
there is a polynomially (in the size of the instance and :) 
succinct e-approximate Pareto curve. €-approximate Pareto 
curves are not new; there had been sporadic work in the 
more computationally-oriented multiobjective optimization 
literature on constructing the eapproximate Pareto curve 
for specific problems, starting with Hansen’s pioneering re- 
sult on bicriteria shortest paths [Han]. However, with the 
exception of certain straight-forward results in [CJK], the 
complexity issues raised had not been addressed systemat- 
ically -apparently, neither had the simple existence proof 
of Theorem 1 been noted. 

A polynomially small e-approximate Pareto curve al- 
ways exists, but it is hard to construct in general. We give a 
necessary and sufficient condition for its efficient (polyno- 
mial in the size of the instance and $) construction in terms 
of the complexity of an appropriately formulated computa- 
tional problem, which turns out to be precisely the multiob- 
jective analog of the gap problem used in the study of the 
complexity of ordinary approximation (Theorem 2). 

The above two results apply to any multi-objective opti- 
mization problem. Of particular interest, however, are the 
problems with multiple linear objectives. We seek general 
results which relate the complexity of constructing the e- 
approximate Pareto curve in problems with multiple linear 
objectives to the complexity of the single-objective prob- 
lem. If the underlying feasible region is convex (typi- 

COST FLOW, the convex closures of discrete problems, etc.), 
we show that the eapproximate Pareto curve can be con- 
structed efficiently iff the single-objective problem can be 
so approximated (Theorem 3). Thus, in this case multiple 
objectives add little to the complexity of the problem. We 
have two proofs of this theorem. One uses the ellipsoid 
method and duality, the second is a simple exhaustive (and 
slower, yet polynomial) algorithm with a rather subtle proof 

cal example Of such problem is MULTI-OBJECTIVE MIN- 

of correctness. 
Discrete optimization problems, with even two linear ob- 

jectives, (shortest path, maximum weight matching, mini- 
mum spanning tree, minimum cut) tend to be NP-hard (it 
is NP-hard even to maximize one objective while keeping 
the other fixed, because of KNAPSACK). Yet, there seems 
to be an interesting dichotomy: The three fist problems 
above have an FPTAS for calculating the €-approximate 
Pareto curve (some had been known, some are easy con- 
sequences of algorithmic ideas in the literature combined 
with our reduction in Theorem 4 explained below; for 
matching, the approximation scheme is not polynomial but 
RNC [MW]),  whereas the corresponding problem for BI- 
OBJECTIVE MIN-CUT is strongly NP-hard (Theorem 5).  We 
show (Theorem 4) that this phenomenon is related to a 
familiar if somewhat intricate issue in combinatorial opti- 
mization, first raised in [PY]: There is an FPTAS for con- 
structing the eapproximate Pareto curve for a given discrete 
optimization problem A if the following version of A, called 
EXACT A, is pseudopolynomial-time solvable: Given an in- 
stance of A, is there a solution with cost exactly K? (Seen in 
this light, our positive results for convex problems seem in- 
tuitive: The exact version of a convex problem is no harder 
than the original problem, because of convexity.) Of the 
four discrete problems we mentioned above (shortest path, 
maximum weight matching, minimum spanning tree, min- 
imum cut) the first three have polynomial exact versions. 
Consequently, for these problems we have FPTAS’s for con- 
structing the €-approximate Pareto curve, for any fixed num- 
ber of objectives. (As we mentioned in the previous para- 
graph, multi-objective min-cost flow also has an FPTAS, be- 

is strongly NP-hard, and thus no such FPTAS is possible 
unless P = NP (in fact, since the reduction is from BISEC- 
TION WIDTH, and is approximation-preserving, no approx- 
imation is probably forthcoming). 

Finally, we apply this theory to the WEB ACCESS PROB- 
LEM introduced above (which was our original motivation 
for studying this area). We show that for this problem the E -  

approximate Pareto curve (that is, a small collection of sets 
of sites S such that no other set of sites is better than every 
set in the collection by a factor of more than (1 + E) in some 
criterion) can indeed be constructed in polynomial time; we 
give a simple algorithm in Section 4 (Theorem 7). 

cause Of convexity.) In Contrast, BI-OBJECTIVE MIN-CUT 

2. Approximate Pareto Curves 

The basic ingredients of an optimization problem are its 
set of instances, solutions and objective function. An opti- 
mization problem has a set of instances, and every instance 
x has a set of feasible solutions F(z ) .  As usual, for a com- 
putational context, instances and solutions are represented 
by strings, and we assume that solutions are polynomially 
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bounded and polynomially recognizable in the size of the 
instance. The objective function is given by a polynomial 
time algorithm f, which given an instance x and a feasible 
solution s, computes its value f(x, s), a positive rational 
number. We seek, given x to find argmax f (x, s).’ 

We shall assume that our optimization problems are such 
that if f(z,s) > 0 then f(z,s) is between 2-p(l21) and 
2P(lzl) for some polynomial p; this is a consequence of the 
polynomial nature of the solutions and the objective func- 
tion f. 

In a multi-objective optimization problem we have in- 
stead k 2 1 objective functions fi, i = 1 , .  . . , k (all defined 
on the same set of feasible solutions). Typically the number 
of objectives is a small constant number k; we will usu- 
ally take k to be fixed for complexity consideration in the 
remainder. It is not immediately obvious what a computa- 
tional solution of such a problem should entail. In Theoreti- 
cal CS, in the past such problems were dealt with by bound- 
ing all but one objective and optimizing the other (see, e.g., 
[EHJ+]). In the multi-objective optimization literature on 
the other hand (eg. [Cli, Har]), there is general agreement 
that the right solution concept is that of the Pareto curve. 

Given an instance x of a multi-objective optimization 
problem, its Pareto curve P ( x )  is the set of all k-vector 
of values such that for each Y E P ( x ) ,  (1) there is a feasi- 
ble solution s such that fi(s) = vi for all i, and (2) there 
is no feasible solution s’ such that fi(z, s‘) 3 wi for all i, 
with a strict inequality for some i. As in ordinary (single- 
objective) optimization problems, we are not interested only 
in the values, but also in solutions realizing these values. We 
will often blur this distinction and refer usually to the Pareto 
curve P(z)  as a set of solutions which achieve these values. 
(If there is more than one solution with the same fi values, 
P(x)  contains one of them.) 

Intuitively, P ( x )  contains all undominated solutions, 
what in Theoretical CS we usually call “trade-offs.” This 
seems conceptually the right idea, but it is often computa- 
tionally problematic, since P ( x )  will typically be exponen- 
tially large for many reasonable problems. Furthermore, for 
even the simplest problems (matching, minimum spanning 
tree, shortest path) and even for two objectives, determining 

‘Notice that we assume for simplicity a maximization problem. The 
dichotomy of maximization vs. minimization is a well-known complica- 
tion that is usually technically inconsequential, but burdens the exposition 
and notation. As in this paper we deal with multi-objective problems, in 
which each objective can be independently either a maximization or a min- 
imization problem, the situation is exponentially more complicated. In this 
abstract we shall only deal with maximization problems in our general the- 
ory, while we shall take the liberty of also using minimization problems 
as examples. Notice also that we restricted the objective values to be a 
positive, since we will discuss approximation; this is the usual restriction 
in the context of approximation algorithms and ratios. The Pareto curve is 
defined of course more generally for arbitrary objective functions; one may 
use the absolute value of the objective functions in this case to approximate 
the Pareto curve. We will not diverge here. 

whether a point belongs to the Pareto curve P(z )  is NP-hard 
(one can reduce KNAPSACK to the problem of finding the 
shortest spanning tree of a graph consisting of pairs of par- 
allel edges in tandem, such that the weight of the spanning 
tree in another set of weights is bounded by a constant). 

It turns out that a good way to define a meaningful com- 
putational problem related to multi-objective optimization 
involves approximation: 

Given an instance x of a multi-objective optimization 
problem and an E > 0, an 6-approximate Pareto curve, de- 
noted l‘,(~), is a set of solutions s such that there is no 
other solution s‘ such that, for all s E P,(s) j ’ i (x ,  s‘) 3 
( 1  + ~)f i (x ,  s) for some i. 

That is, every other solution is almost dominated by 
some solution in l‘ ,(x),  i.e. there is a solution in P,(x) 
that is within a factor of E in all objectives. This is a rather 
attractive notion. If a succinct such set exists, it is obvi- 
ously a reasonable answer (if you wish, interface to present 
to a customer), if the optimization problem being solved has 
many objectives. Rather surprisingly, there is always an E- 
approximate Pareto curve which is polynomial in size: 

Theorem 1 For any multi-objective optimization problem 
and any E there is a Pe(x) consisting of a number of solu- 
tions that is polynomial in 1x1 and a (but exponential in the 
number of objectives). 

Sketch: Consider the k-dimensional space of all objectives. 
Their values range from 1/2p(Izl) to ~ ( 1 ~ 1 )  for some poly- 
nomial p. Consider now a subdivision of this cube into hy- 
perrectangles, such that, in each dimension, the ratio of the 
larger to the smaller coordinate is 1 +E. Obviously, there are 
O( q-) such subdivisions. We define P,(z) by choos- 
ing one point of P ( x )  in each hyperrectangle that contains 
such a point. It is easy to see that Pe(z) is indeed an E- 

The problem, however, is whether Pc(x) can be con- 
structed in polynomial time or not. It was first observed 
very early [Han] that, in the case of bicriteria shortest paths, 
this is possible for all E -a multi-objective FPTAS. This is 
done by a pseudopolynomial dynamic programming gener- 
alization of Dijkstra’s algorithm, converted to an I.’PTAS by 
standard techniques. More recently, [CJK] repeat this feat 
for certain bicriteria scheduling problems. (Apparently the 
simple general existence theorem above had not been ob- 
served in that field.) 

One question arises: Under what conditions can we ex- 
pect to have such an algorithm? Obviously, if the: underly- 
ing single-objective problem is inapproximable, then there 
is no hope. But what if it is polynomially approximable - 
or solvable? What are general conditions for the existence 
of a polynomial algorithm for constructing a P,(z)? In 
[CJK] certain straight-forward conditions were given, eval- 
uating the complexity of certain exhaustive algorithms for 

approximate Pareto curve. 0 
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constructing PE(.) in terms of the complexity of the sub- 
routines employed. However, there is no satisfactory, crisp, 
general condition in the literature. 

The following useful condition characterizes exactly the 
situation, in terms of a multi-objective generalization of the 
gap problem used to characterize approximability in the 
single-objective domain. 

Theorem 2 There is an algorithm for constructing a P, (x) 
in time polynomial in 1x1 and $ ifand only ifthe follow- 
ing problem can be so solved: Given x and a k-vector 
( b l ,  . . . , b k ) ,  either return a solution s with fi(x, s) 3 bi for 
all i, or answer that there is no solution s’ with fi(x, s’) 2 
bi(1 + 6). 
Sketch: (lfl Suppose that we are given x and E, and we 
wish a P,(x). Define 6‘ = - 1 x c/2, and subdi- 
vide the k-space of objectives into hyperrectangles as in the 
proof of Theorem 1, using E’, and for each corner call the 
gap problem. Keep (an undominated subset of) all solutions 
returned. It is not hard to see that this is a PE(x). 

(Only ifl Conversely, if we have an €-Pareto set, we can 
solve the gap problem for any given set of bounds, by look- 

The efficient constructibility of an approximate Pareto 
set P, for multiobjective optimization exhibits similar phe- 
nomena to the single objective case: it may be possible to 
construct such a set for all constant E > 0 (i.e. the problem 
has a PTAS ot FPTAS), or it may be possible to construct 
it for some E > 0 but not for some other (smaller) E > 0, 
or it may be impossible to construct it for any constant t: 
(assuming P # NP). Furthermore, it is possible in general 
that one can optimize separately each single objective func- 
tion of a multiobjective problem, but cannot approximate 
the Pareto set. On the other hand, it is also possible that the 
problem, which is often used in CS to study multiobjective 
optimization, of optimizing one of the objectives subject to 
bounds on the other objectives cannot be approximated effi- 
ciently, but yet the gap problem of Theorem 2 can be solved 
and hence an approximate Pareto set can be constructed ef- 
ficiently. 

As an example, consider the problem of finding many, 
short edge-disjoint paths from a source node s to a target 
node t in a network. There are two objectives here: the 
number of the paths (to be maximized) and the maximum 
length (or ‘delay’) of the paths (to be minimized). Clearly, 
we can optimize each objective separately in polynomial 
time. It is shown in [GK+] that, given bounds U and b, if 
there are a disjoint paths of length at most b, then for any 
6 > 0 we can find (1 - 6)u paths of length at most b/6.  It 
follows that we can construct a 1-approximate Pareto set PI. 
On the other hand, for some constant CY and ,B, it is NP-hard 
to find (Y . a paths of length at most b /@ [GK+], hence it is 

ing only at solutions in the set. 0 

NP-hard to construct P, for some fixed E > 0. Furthermore, 
it is also shown in [GK+] that if we place a strict bound b 
on the length of the paths, then the problem of finding the 
maximum number of edge-disjoint s - t paths with length at 
most b, cannot be approximated within any constant unless 
P=NP. 

3. Linear Objectives 

Let us restrict ourselves to the case in which all fi(x, s) 
are linear, that is, each s is a nonnegative n-dimensional 
vector and fi(x, s) = vi s, where the vi’s are IC nonega- 
tive n-vectors given in x. Armed with Theorem 2, we now 
wish to answer the following question: Is there a general 
technique that enables us to compute P,(x) whenever the 
underlying single-objective problem is tractable (or, even 
more ambitious, approximable)? 

As we shall point out, the answer depends on the precise 
nature of the feasible set. If it is a continuous convex set 
(e.g., the multi-objective min-cost flow problem, in which 
we are given a flow value and are interested in the tradeoff 
of several linear cost functions on the edges, and in which 
any convex combination of solutions is itself a solution), 
then the answer is “yes.” If it is discrete (e.g., minimum 
spanning tree, matching, shortest path, min-cut), then the 
answer is much more intriguing: It is usually “yes,” by ad 
hoc algorithms. This is inherent, because we show, by a 
pseudopolynomial reduction, that the existence of an Fp- 
TAS depends on the tractability of an intriguing (and stud- 
ied over the past 20 years [PY, MVV, BPI) “exact” version 
of A. 

3.1. The Linear Convex Case 

Let A be a tractable linear convex optimization prob- 
lem for which we have been given multiple linear objec- 
tives vl, . . . , V k .  Let it4 = r4k2/e]. Consider the following 
algorithm for choosing a subset of P(x): 

do 
given x, 
for each vector w E (0,. . . , 

find the optimum of x under objective v = xi wivi 
return all optima thus found 
It is not hard to see that all optima returned are in P(x). 

In fact, if it were possible to loop over all positive vectors, 
instead of these bounded integer vectors, then all of P(x)  
would be recovered. By restricting ourselves to small inte- 
ger vectors (growing as .E decreases), it is intuitive that we 
are going in the right direction. Indeed, this works in the 
case in which objectives do not differ by much. (In what 
follows, it is helpful to consider feasible solutions of A as 
k-vectors of objective values, not points in a convex set.) 
Let us call a feasible solution s E P(x)  balanced if all ob- 
jectives at s are within a ratio of 2 of each other. Let us call 
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it M-enabled if there is a vector w E (0, . . . , M } k  such that 
s is the optimum for the combined objective v = X i  wp,. 

Lemma 1 Suppose thata feasible solution s E P ( x )  is bal- 
anced and not M-enabled. Then there is a convex combina- 
tion of M-enabled solutions in P ( x )  that is within a factor 
of €from s in all objectives. 

We can use the lemma to show that, when A is a poly- 
nomially solvable convex problem, then its multiobjective 
problem has a polynomial algorithm (in 1x1 and l / ~ )  for 
constructing a p, (x): Set M = [41~2/~1. F~~ i, loop 
through the following values of wi: Starting with 0, in- 
crement wi by 1 until M ;  after that continue going only 
through the even numbers until 2M. Then go on with mul- 

Sketch: Let Y be the set of all M-enabled solutions, and 
consider the k-dimensional cone C defined by { w : w . s 2 
w . y, y E Y } ,  the set of all weights on the objectives for 
which s is better than all points in Y. We know that this 
cone is non-empty (since s E P(z)),  but it contains no 
point with coordinates 5 M. Consider now the maximum 
rotational cone R (all vectors whose angle with a particu- 
lar direction -R’s axis- is less than a fixed angle) that is 
inscribed in the cone C (this is the analog for cones of the 
maximum sphere inscribed in a polytope; ignore degenera- 
cies for this sketch). 

First, it is easy to see that the angle of R is less than 
&/M -otherwise R contains a point with coordinates be- 
tween 0 and M, and so does C, a contradiction. Consider 
the hyperplanes of C that R touches. They correspond to 
points in Y ,  call them y1, . . . , ym. Now consider s and the 
line segments L j  between s and the yj’s; they are normal 
to the hyperplanes that R touches. Consider also the hyper- 
plane H normal to the axis of R through s. It is clear that 
the lines Lj have angles less than f i / M  with H. The claim 
is now that there is a point that is a convex combination of 
the yj’s and is very close to s. 

To see why, notice first that the unit vectors e j  which are 
collinear with the s - yj’s have a convex combination 6 = 
Cj ajej that is a vector along the axis of R whose length 
is at most &/M. Therefore, we can scale this to show that 
the s - yj’s have a convex combination A = Cj p-, 
where C is a normalizing constant C = Cj f&,. It is 
clear that (A( = IS(/C. Then it follows that s‘ = s - A 
is a convex combination of the yj’s, as follows: s - A = 

We claim that s’ is the desired approximation of s. This 
Cj 
follows from this chain of inequalities: 

where J = argminj s-yj . Now the last expression is 

at most s(1 + fi), and, since s is balanced and YJ is 
a Pareto point (and thus must dominate s in at least one 
dimension), this latter expression is at most 2k&/M. 

Therefore, s is within a relative error of 2 k f i / ~  from 
s’, and, since it is balanced, all of its components are within 
a relative error of 4k2/M of the corresponding component 

T9 

of s‘, which was to be proved. 0 

tiples of 4 until 4M. Continue in this manner increas- 
ing the power of 2 until 22P(IzI)M. For each combina- 
tion of wi’s, find the optimum of x under a single objec- 
tive v = Xi wivi. There are 0 ( ( 8 p ( ~ ~ ~ ) k ~ / ~ ) ~ )  combi- 
nations. The optimal solutions computed for these combi- 
nations have the property that (the upper envelope of) their 
convex hull provides an E approximation to the Pareto curve. 
This follows from the Lemma because, with these scaled 
values for the wi, the objective values of any solution can 
be scaled so that they are all within a ratio of two. 

In fact, the result can be improved by assuming that A is 
efficiently approximable, not quite solvable. However, this 
can also be shown using the ellipsoid algorithm: 

Theorem 3 If A is a linear convex optimization problem, 
then there is a polynomial algorithm, in 1x1 and 1 / E  for con- 
structing P, (x), ifand only ifthe single-objective A can be 
approximated within E ,  also in time polynomial in 1x1 and 
1 / E .  

3.2. The Linear Discrete Case 

As we noted in the introduction, the discrete case is more 
intriguing. In the case of a single linear objective function, 
there is no difference between optimizing the function over 
a discrete feasible solution set or over its convex hull. In the 
multi-objective case there is a difference. There may well 
be points p of the Pareto curve that are dominated by the 
convex hull of two (or more) other points, i.e. Pareto solu- 
tions p that are strictly within (below) the upper envelope of 
the Pareto set. If we are not interested in such solutions, but 
rather wish to compute (approximately) the upper envelope, 
then this amounts to performing the optimization over the 
convex hull of the discrete feasible set; we can do this us- 
ing the method of the previous subsection. However, if we 
are interested in such points p ,  i.e. we want to approximate 
the discrete Pareto curve itself, then this is a harder prob- 
lem: as we shall see it can be intractable even in some cases 
where we can solve optimally the single objective function 
problem. 

Our general result for the discrete case is a reduction: 
Let A be a linear discrete optimization problem, that is, a 
problem in which, for each z, there is a set of nonnega- 
tive integer n-vectors F ( x )  called the feasible solutions. As 
is typical for combinatorial optimization problems, we will 
assume that the entries of the solutions are bounded by a 
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polynomial in n (for most combinatorial problems the en- 
tries are usually 0-1). We say that such a problem has a 
FPTAS for constructing Pe(z)  if, for any fixed k, Pc(z) for 
IC objectives can be constructed in time polynomial in 1.1 
and 1/e. The exact version of A is this problem: Given an 
instance z of A, and an integer B, is there a feasible solu- 
tion with cost exactly B? Recall that a pseudopolynomial 
algorithm is an algorithm that runs in polynomial time in the 
magnitude (as opposed to the number of bits) of the num- 
bers involved in the problem, in this case the coefficients of 
the objective function; equivalently, it runs in polynomial 
time if all numbers are written in unary notation. 

Theorem 4 There is an FPTAS for constructing an approx- 
imate Pareto curve for A, if there is a pseudopolynomial 
algorithm for the exact version of A. 

Sketch: B y  Theorem 2, an FPTAS exists iff there is an 
FPTAS for the “gap” problem: Given an instance and a k- 
tuple of bounds (b l ,  . . . , b k ) ,  either return a solution s with 
wi .s 2 bi for all i ,  or answer that there is no solution s’ with 
wi - s’ 2 bi(1 + e) .  Let m be the largest entry of a feasible 
solution; m is polynomial in n. Let r = [nm/e1. For each 
i, define a new objective function gi whose jth coefficient 
is min( [ w i j r / b i J ,  T ) .  

Consider a feasible solution s. Clearly, if gi(s) 1 r then 
fi(s) 2 bi, and on the other hand, if fi(S) 2 bi(1 + e) 
then g i ( s )  2 r .  Thus, it suffices to determine if there is a 
solution s with gi(s)  2 T for all i. Note that the maximum 
value of gi(s)  is rnm; let M = rnm + 1. 

Each of the inequalities g i ( s )  2 r can be reduced to the 
disjunction of polynomially many equalities. Furthennore, 
k equalities can be combined into one by multiplying the ith 
equality by M’-l and adding the results, i.e. g i ( s )  = li  for 
all i iff Mi-’gi(s) = Mi-l1i. The objective function 
C M’-lgi is a linear function with polynomially bounded 
coefficients, so this problem can be solved in polynomial 
time. (There is some redundancy in the computation out- 
lined above, but for simplicity we will not elaborate here.) 

0 

Corollary5 There are FPTAS’s for constructing an e- 
approximate Pareto curve for the multi-objective versions 
of these problems (in the case of MATCHING, afully poly- 
nomial RNC scheme): 

0 SHORTEST PATH 

0 MINIMUM SPANNING TREE 

0 MATCHING 

Sketch: The EXACT PATH problem is easily pseudopoly- 
nomial by dynamic programming. For EXACT SPANNING 

TREE, the problem was solved in [BPI. Finally, for MATCH- 
ING, the case of unary weights can be reduced to 0,l 
weights [PY], which can be solved in RNC [MW].  o 

The converse to the theorem does not hold in general be- 
cause the exact version does not differentiate between the 
minimization and maximization version of a problem: Con- 
sider for example the problem SHORTEST SIMPLE PATH. 
Clearly, since we consider nonnegative weight functions, 
the requirement of a simple path makes no difference for 
either the single or the multiple objective optimization prob- 
lem. However, the exact version of the simple path problem 
is NP-hard, since for example finding the maximum value 
includes the Hamiltonian path problem as a special case. 

A polynomial problem for which the exact version is 
strongly NP-complete (and thus the above Theorem does 
not apply) is MIN CUT. The reason is, simply, that it shares 
the same exact version with the “-hard MAX CUT. As 
it turns out, the multiobjective problem in this case is in- 
tractable. 

Theorem6 Unless P = NI) there is no FPTAS for con- 
structing an e-approximate Pareto curve for BI-OBJECTIVE 
S - t MIN CUT. 

Sketch: Reduction from BISECTION WIDTH. Given a 
graph G with 2n nodes, we add two new nodes, a source 
s and a sink t, and add edges from these two to the other 
nodes. Define three objective functions f 1 ,  fi, f3 (to be 
minimized) as follows: in f 1 ,  edges from s have weight 1, 
and the rest of the edges have weight 0; in f 2 ,  edges from t 
have weight 1 and the rest 0; in f3, edges of G have weight 
1 and the rest 0. We can also get away with two objective 
functions, by combining two of the them, for example let- 
ting g2 = n2 f 2  + f3 and g1 = f 1 .  It is easy to see that any 
FPTAS for constructing an e-approximate Pareto curve for 
this instance, for small enough e, would have to come up 
with the optimum bisection. 0 

4. An Algorithm for the Web Access Problem 

Recall the web access problem, described in the intro- 
duction. There is a set of n sites. Each site has associated 
with it a cost ci for accessing the records, a time delay ti for 
obtaining them, and a quality qi. We assume that all these 
numbers are given as rationals. A solution is a subset S 
{ 1,2 ,  . . . , n}  of the sites that is to be accessed, and there are 
three objective functions: The total cost C(S) = xiCS ci, 
the total delay T ( S )  = maxiCS ti and the overall quality 
of the result Q(S) = 1 - niEs(l - qi). Obviously the 
first two functions are to be minimized and the third is to be 
maximized. 
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Theorem 7 There is a polynomial algorithm in 1x1 (the in- 
put size) and l / E  for constructing the approximate Pareto 
curve P, (x) for  the web access problem. 

Sketch: First note that there are only n possible values for 
T (as is the case for objective functions of a bottleneck type, 
i.e. max or min). Order the sites in nondecreasing order by 
their delay. By Theorem 2 (adjusted for a mixture of min- 
imization and maximization functions), it suffices to solve 
the following problem: given bounds b l ,  b2, b3, find a solu- 
tion S with C(S) 5 b l ,  T ( S )  5 b2, Q(S) 2 b3, or de- 
termine that there is no solution with C(S) < bl(1  - e), 
T ( S )  5 b z ( l  - E ) ,  Q(S) 2 b s ( l  + E ) .  Actually we 
only need to approximate the costs; the other quantities 
can be exact. Let r = [+1. Modify each cost ci to 
c: = [c i r /b l l .  Clearly, if a subset S has modified cost 
C‘(S) 5 r ,  then its original cost is C(S) 5 b l ;  on the 
other hand, if C(S) 5 b l ( 1  - E ) ,  then C’(S) 5 r. We ap- 
ply now dynamic programming. Process in order the sites 
with delay at most b2. Compute in an array A[l ... r] the best 
quality of a solution using the processed sites for a given 
modified cost; i.e. after processing the first j sites, the en- 
try A[l] gives the maximum quality of a subset of ( 1 ,  . . . , j }  
with modified cost 1. Note that the entries are rationals with 
a bounded number of bits by the input. The array can be 
easily updated when processing a new site. Comparing the 
final entry A[r] with b3 solves the subproblem for the triple 
(b l ,  b2, b3 ) .  0 
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