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Abstract
Deep Learning (DL) models are increasingly used in many
cyber-security applications and achieve superior performance
compared to traditional solutions. In this paper, we study
backdoor vulnerabilities in naturally trained models used in
binary analysis. These backdoors are not injected by attackers
but rather products of defects in datasets and/or training pro-
cesses. The attacker can exploit these vulnerabilities by inject-
ing some small fixed input pattern (e.g., an instruction) called
backdoor trigger to their input (e.g., a binary code snippet for
a malware detection DL model) such that misclassification
can be induced (e.g., the malware evades the detection). We
focus on transformer models used in binary analysis. Given
a model, we leverage a trigger inversion technique particu-
larly designed for these models to derive trigger instructions
that can induce misclassification. During attack, we utilize a
novel trigger injection technique to insert the trigger instruc-
tion(s) to the input binary code snippet. The injection makes
sure that the code snippets’ original program semantics are
preserved and the trigger becomes an integral part of such
semantics and hence cannot be easily eliminated. We eval-
uate our prototype PELICAN on 5 binary analysis tasks and
15 models. The results show that PELICAN can effectively
induce misclassification on all the evaluated models in both
white-box and black-box scenarios. Our case studies demon-
strate that PELICAN can exploit the backdoor vulnerabilities
of two closed-source commercial tools.

1 Introduction

Rapidly advancing Deep Learning (DL) techniques have led
to unprecedented capabilities in many areas, such as Com-
puter Vision (CV), Natural Language Processing (NLP), and
Robotics. Many believe that similar new capabilities can be
developed for cyber-security applications. Recently, DL mod-
els are being increasingly used in a wide range of security
tasks, such as binary code disassembly for malware analysis
and code hardening [1–4], binary similarity analysis for mal-
ware detection, software fingerprinting, and code theft detec-
tion [5–11], decompilation including type inference [12–15],
function signature inference [12, 14–16], and function name

prediction [14, 17–19], APT attack forensics [20–24], and
intrusion detection [25–28]. These techniques demonstrate
superior performance compared to their traditional counter-
parts that are not based on DL models. The advantages of us-
ing such data-driven techniques are clear. In particular, many
cyber security tasks have substantial inherent uncertainty. For
example, a classic challenge in decompilation is to determine
variable types when symbolic information has been stripped
away. To recover such types, many heuristics have to be used,
leading to uncertainty. Such uncertainty can be naturally mod-
eled by probabilities [29] and reasoned by distribution anal-
ysis, which are the underpinnings of DL techniques. In ad-
dition, while rules and heuristics used in classic techniques
require substantial domain expertise, DL techniques can auto-
matically learn such rules from data. For example, XDA [1]
and DeepDi [2] are recent proposals that use DL models to
recognize function entries in binary executables and then
perform disassembly. They do not require any pre-defined
rules or heuristics. Instead, they train DL models from a large
code repository and achieve superior performance. Inspired
by these successes, many more DL based security solutions
will likely be developed and deployed in the near future.

However, recent research [30, 31] in the CV and NLP
domains have demonstrated that pre-trained clean DL models
are vulnerable to backdoor attack [32–37], which is a special
kind of adversarial attack [38–43]. A specific input pattern
called backdoor trigger can be derived such that samples
stamped with such trigger can cause the model to misbehave,
e.g., misclassify to some target label. These triggers are
usually model specific but not input specific. Examples of trig-
gers include a small patch (for vision models) and a special
word (for NLP models). In contrast, adversarial attacks [38,
40] derive unique perturbations for individual samples to
induce misclassification and hence are input specific.

The study of backdoor vulnerabilities in naturally trained
deep learning models used in binary analysis tasks is of
importance in the development of cutting-edge cyber-security
solutions. The exploitation of such vulnerabilities can have
severe consequences, particularly in malware analysis.
Despite the utilization of deep learning models, human
analysts still play a vital role in the analysis of malware
samples and tracing their origins. Security companies, such



as Mandiant [44], have made substantial investments in the
development of reverse engineering tools specifically for
use by human analysts, including tools for symbol recovery,
function annotation, binary code matching, and binary code
attribution. If these models were to be attacked and produce
incorrect labels, such as manipulated function names, it could
lead to human analysts overlooking critical attack behaviors
and ultimately failing in their analysis tasks. This highlights
the importance of ongoing research into potential attack
techniques and the improvement of the security of these
models. It is also worth noting that there is a substantial
body of existing work [32–37, 45–47] on injecting backdoors
into deep learning models through poisoned training data.
However, in our context, we are more focused on finding
backdoor vulnerabilities in models trained naturally, referred
to as natural backdoors. This is because security models
are usually trained by trusted parties. Existing attacks in
the vision and NLP domains cannot be easily adapted to
attack these models. Specifically, vision models deal with
a continuous input space, namely, input pixels can change
continuously. Hence, existing attacks often leverage gradient
descent to invert a backdoor trigger. In contrast, many
security DL models deal with discrete inputs, e.g., instruction
sequences and log entries. Continuous input changes unlikely
yield new valid inputs. For example, changing the encoding
of a ret instruction 0xC3 to 0xC4 does not yield a valid
instruction. NLP models deal with similar discrete inputs,
which need to be a sequence of legitimate words. Existing
attack methods in the NLP domain mitigate the problem by
inverting triggers in the continuous word embedding domain
instead of the discrete input domain and finding the input
that has the closest embedding to the inversion result [48, 49].
However, backdoor triggers generated for security models
often need to preserve strict semantic properties when in-
serted to an input. For example, a mov trigger instruction may
completely break the semantics of a malware when inserted.

In this paper, we develop a novel method to identify and
exploit backdoor vulnerabilities in DL models used in recent
binary analysis models. These models take binary executable
code as input and predict various things such as instruction
boundaries, function entries, function signatures, and code
similarities. They serve a wide range of downstream cyber
security applications. Our attack is effective and successfully
compromises all the models we study, including some closed-
source models that run as commercial online services. By
exploiting the backdoors identified by our technique, the at-
tacker can mutate their binaries accordingly (using our tool)
before releasing them to the wild and the mutated binaries
can fail model-based disassembly/decompilation efforts, dis-
rupt analysis, and so on. Our attack features a trigger inver-
sion method that can guarantee the generated triggers are
legitimate instruction sequences. It also has a novel trigger
insertion method that not only preserves the semantic of an
input binary, but also ensures that the trigger instruction be-

comes part of the original semantics after injection, instead of
inaccessible code that can be easily identified and removed.

Our contributions are summarized as follows.
• We study backdoor vulnerabilities in naturally trained

DL models used in binary code analysis. Our findings
suggest that such vulnerabilities widely exist and they
need to be properly mitigated due to their critical roles
in security applications.

• We develop a trigger inversion technique that can gener-
ate valid instructions as backdoor triggers.

• We devise a trigger injection technique that ensures the
trigger becomes an integral part of the original code’s
semantics and the injected (and patched) code has the
same semantics as before.

• We develop a prototype PELICAN and evaluate it on
5 binary analysis tasks and 15 models. Our evaluation
shows that PELICAN can achieve 86.09% attack success
rate (ASR) with only three trigger instructions. PELI-
CAN has 93.01% higher ASR than a baseline method
that adapts an existing NLP trigger inversion technique;
94.14% of injected triggers by PELICAN can evade de-
tection, whereas all the triggers injected by opaque pred-
icates [50] are detected. Our backdoor-injected bina-
ries have 204.23% lower runtime overhead compared
to those by opaque predicates. We also conduct a case
study of exploiting two closed-source commercial tools,
i.e., DeepDi [2] and BinaryAI [11], in the black-box sce-
nario. We have open-sourced a portion of PELICAN [51]
in response to ethical concerns raised by the reviewers.

Threat Model. We aim to exploit backdoors in naturally
trained models, not models that have injected backdoors by
data poisoning [32] or trojaning [52]. This is analogous to find-
ing vulnerabilities in regular software, not malware. We focus
on transformer models used in binary code analysis, which
are primitives for a wide range of cyber security applications:
malware analysis, vulnerability finding, software hardening,
decompilation, and forensic analysis. Transformers are the
most effective models in these analyses, out-performing other
models such as CNN, RNN, and LSTM. Note that attacking
models used in other applications, such as network traffic
based intrusion detection requires a completely different trig-
ger injection technique (in order to preserve traffic semantics).
We hence consider it out of the scope of this paper.

We consider two scenarios: white-box attack and black-box
attack. In the former, we assume the attacker has access to the
model such that gradient descent can be applied to generate
trigger instructions. Note that many binary analysis tools (and
hence the DL models used by these tools) [2, 53–55] are sup-
posed to run by the end users. It is hence reasonable to assume
the attacker can access these models. Even if these tools are
closed-source, the attacker can still leverage model reverse en-
gineering techniques [56–61] to acquire model copies. In the
black-box attack scenario, the attacker does not have access to
the subject model. We hence leverage the transferability [62,



typedef struct entry_t {
struct entry_t *next;
struct entry_t *prev;
int data;

} Entry;

void init_data(Entry *p, int x)
{ 
p->data = x; 

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

<init_data>:
push rbp
mov rbp, rsp
mov qword ptr [rbp–8], rdi # store p into a local variable 
mov dword ptr [rbp-12], esi # store x into a local variable 
mov rax, qword ptr [rbp-8]  # load p into register rax
mov edx, dword ptr [rbp-12] # load x into register edx
mov dword ptr [rax+16], edx # p->data = x 
pop rbp
ret

A1.
A2.
A3.
A4.
A5.
A6.
A7.
A8.
A9.

<init_auth_entry>:
movsxd rax, esi # store i into a register rax
lea rax, [rax+rax*2]        # rax *= 3 (rax = 3 * i)
shl rax, 3                  # rax <<= 3 (rax = 24 * i)
lea rdi, [rdi+rax]          # rdi = p = &s[i] (sizeof(*p)=24)
lea rsi, [rdi+24]           # rsi = q = &s[i + 1]
mov qword ptr [rdi], rsi # p->next = q
mov qword ptr [rsi+8], rdi # q->prev = p
mov esi, 0
call init_data # init_data(p, 0)
ret

B1.
B2.
B3.
B4.
B5.
B6.
B7.
B8.
B9.
B10.

(a) Source code of the motivation example

void init_auth_entry(
Entry at[], int i) 

{
Entry *p = &at[i];
Entry *q = &at[i + 1];
p->next = q;
q->prev = p;
init_data(p, 0);

}

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

(b) Assembly code of init_data compiled w/ O0

(c) Assembly code of init_auth_entry compiled w/ O3

Figure 1: Motivation Example

63] of these backdoor vulnerabilities. The assumption is that
many of these models tend to learn similar features, which are
rooted at the compiler behaviors, e.g., function epilogue and
prologue, leading to similar vulnerabilities. As such, the at-
tacker can derive a backdoor trigger on a model he has access
to, and then use that to exploit another model that he has no ac-
cess to. In addition, although not explored in this paper, black-
box attacks that utilize gradient approximation [64] can be
leveraged too. We will leave it to our future work. At the end,
we want to point out that our trigger injection technique is gen-
eral, applicable in both white-box and black-box scenarios.

Natural Backdoor and Universal Perturbation. Most exist-
ing backdoor attacks require data poisoning to inject a trigger.
During attack, stamping the trigger can universally cause mis-
classification for many inputs. We call the problems identified
in this paper natural backdoor as we can find a trigger in
naturally trained models that can be exploited in the same
way as those in injected backdoors. Natural backdoor shares
a similar nature as universal adversarial perturbations [65]
which was originally proposed in the CV domain. Specifi-
cally, a universal adversarial perturbation that is small and
pervasive can cause mis-classification of the subject model.
We call the backdoor that we study natural backdoor to raise
the alert level as it is analogous to vulnerabilities in software.

2 Motivation

We use an example to motivate our technique. In this exam-
ple, we use a transformer based technique StateFormer [12]

movsxd rax, esi
lea rax, [rax+rax*2] 
shl rax, 3
lea rdi, [rdi+rax] 
lea rsi, [rdi+24] 
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

void f2(struct *a1, int a2)

Step 2.
Normalize

Step 1. Tokenize Step 3. Predict 

Downstream Security Applications 

MOVSXD RAX , ESI
LEA RAX , [ RAX + RAX * NUM ] 
SHL RAX , NUM
LEA RDI , [ RDI + RAX ]
LEA RSI , [ RDI + NUM ]
MOV QWORD PTR [ RDI ] , RSI
MOV QWORD PTR [ RSI + NUM ] , RDI
MOV ESI , NUM
CALL NUM
RET

MOVSXD RAX , ESI
LEA RAX , [ RAX + RAX * 2 ] 
SHL RAX , 3
LEA RDI , [ RDI + RAX ]
LEA RSI , [ RDI + 24 ]
MOV QWORD PTR [ RDI ] , RSI
MOV QWORD PTR [ RSI + 8 ] , RDI
MOV ESI , 0
CALL init_data
RET

Assembly Code

Assembly Sequence Normalized Assembly Sequence

Figure 2: Pipeline of StateFormer

to reverse engineer the function signatures (i.e., function pa-
rameters and their types) of code snippets from the leaked
Linux.Mirai malware [66]. It is an important step for down-
stream tasks, such as malware behavior understanding and
classification. We then show how a naive attack adapted from
an existing transformer attack in the NLP domain has difficul-
ties and how PELICAN addresses these challenges.

Figure 1 (a) presents a source code snippet from the mal-
ware [66], which is simplified for the illustrative purpose.
We show the source code just for better understanding and
all the tools in this paper work directly on stripped binaries.
Specifically, lines 1-5 declare a doubly linked list. Function
init_data (lines 7-10) updates the data field of *p by a given
integer x. On the right side, function init_auth_entry() ini-
tializes the i-th element of a given Entry array at (lines
11-12), linking it with the (i+ 1)-th element in at and set-
ting its data field to 0. Figure 1 (b) and Figure 1 (c) show
the assembly code of init_data() and init_auth_entry(),
respectively. We comment each instruction with its corre-
sponding source code information for interested readers. We
compile init_data() with O0 and init_auth_entry() with
O3. We will show that we can exploit a backdoor to cause
StateFarmer to produce wrong function signatures for both
functions without changing their semantics.

Transformer Pipeline of StateFormer StateFormer is a
transformer-based binary type inference technique that can
recover precise function signatures from stripped binaries.
It is highly resilient to compiler obfuscation. Fig 2 de-
picts the pipeline. A piece of assembly code, e.g., the
init_auth_entry() function, is fed to StateFormer as input
and tokenized as an assembly sequence at step 1. Each assem-
bly instruction is split into multiple tokens during tokeniza-
tion, e.g., the first instruction movsxd rax, esi is tokenized
to four tokens “MOVSXD”, “RAX”, “,”, and “ESI". At step 2, to
avoid a prohibitively large vocabulary size, StateFormer ab-
stracts away all the immediate values in instructions, e.g., the
token “2” in the second instruction lea rax, [rax+rax*2]
is normalized as “NUM”. Note that the token “init_data” in
instruction call init_data has also been normalized, since



MOV MOV MOV [ [ [ RDX RDX RDX RDX
PUSH RBP
MOV RBP , RSP 
MOV QWORD PTR [ RBP – NUM ] , RDI
MOV DWORD PTR [ RBP – NUM ] , ESI
MOV RAX , QWORD PTR [ RBP – NUM ] 
MOV EDX , DWORD PTR [ RBP – NUM ]
MOV DWORD PTR [ RAX + NUM ] , EDX
POP RBP 
RET

void f1(struct *a1, int a2, void *a3)

MOV MOV MOV [ [ [ RDX RDX RDX RDX
MOVSXD RAX , ESI
LEA RAX , [ RAX + RAX * NUM ] 
SHL RAX , NUM
LEA RDI , [ RDI + RAX ]
LEA RSI , [ RDI + NUM ]
MOV QWORD PTR [ RDI ] , RSI
MOV QWORD PTR [ RSI + NUM ] , RDI
MOV ESI , NUM 
CALL NUM
RET

void f2(struct *a1, int a2, void *a3)

(a) Backdoored sequences of init_data (b) Backdoored sequences of init_auth_entry

Figure 3: Natural Backdoor Generated by An Existing NLP
Trigger Inversion Technique

function addresses are encoded as immediate values in the
machine code. A transformer model then predicts the function
signature from the normalized assembly sequence at step 3.
Natural Backdoor in StateFormer by Existing Attack
Technique. As demonstrated by recent studies [30, 67], natu-
ral backdoors are prevalent in the computer vision and NLP
domains, even in naturally trained clean models. It is often due
to the model being overfitted on some low-level features [30]
We speculate similar vulnerabilities may exist in models used
in binary analysis. Intuitively, mainstream compilers tend to
introduce specific code patterns, e.g., field accesses are per-
formed by first loading the base address of data structure to a
register, and then adding the field offset to the register. These
low-level syntactic code patterns are prevalent in the training
set, likely causing overfit.

We first adapt a state-of-the-art adversarial attack for trans-
former models in the NLP domain [68] to scan for possi-
ble natural backdoors in StateFormer. The technique uses
gradient descent to invert some tokens that can cause the
model to misbehave on all the given input samples when
they are stamped with the tokens. Figure 3 presents the in-
verted trigger, where Figure 3 (a) and Figure 3 (b) show the
backdoored assembly sequences for functions init_data()
and init_auth_entry(), respectively, with the trigger high-
lighted in red at the beginning and the mis-predicted function
signatures at the bottom. Note that although we only present
two functions, the inverted trigger can alter the results for over
90% of functions. Compared with the ground truth, the mis-
predicated function signature contains an extra void *a3.

With further inspection, we find that register rdx is used
to pass the third argument (i.e. a3) in the x64 calling conven-
tions [69]. We further observe that an assembly instruction
with a “MOV” token and a bracket token always performs
a dereference of memory address, e.g., mov [rax], rbx.
Hence, it is likely that StateFormer mistakenly associates
these low-level syntactic features with a pointer being passed
as a3, without considering real program semantics.

However, even though tokens can be found to cause model
misbehaviors, the inverted triggers are not legitimate instruc-
tions and hence unable to launch a real-world attack, not to
mention preserving input code semantics.

Our technique. PELICAN is inspired by two insights.
First Insight: different from natural languages and high-level
programming languages (e.g., Java), assembly code has rel-

MOV QWORD PTR [ RSI - NUM ] , <REG>

MOV QWORD PTR [ RSI - NUM ] , RDI
PUSH RBP
MOV RBP , RSP 
MOV QWORD PTR [ RBP – NUM ] , RDI
MOV DWORD PTR [ RBP – NUM ] , ESI
MOV RAX , QWORD PTR [ RBP – NUM ] 
MOV EDX , DWORD PTR [ RBP – NUM ]
MOV DWORD PTR [ RAX + NUM ] , EDX
POP RBP 
RET

void f1(struct *a1, void *a2)

MOV QWORD PTR [ RSI - NUM ] , RSI
MOVSXD RAX , ESI
LEA RAX , [ RAX + RAX * NUM ] 
SHL RAX , NUM
LEA RDI , [ RDI + RAX ]
LEA RSI , [ RDI + NUM ]
MOV QWORD PTR [ RDI ] , RSI
MOV QWORD PTR [ RSI + NUM ] , RDI
MOV ESI , NUM 
CALL HEXVAR
RET
void f2(struct *a1, void *a2)

Backdoor Trigger:

(a) Effectiveness of semantic-breaking trigger injection

void f1(struct *a1, void *a2)

xchg rsi, rsp
mov qword ptr [rsi–8], rdi
mov dword ptr [rsi-12], esp
mov rax, qword ptr [rsi-8] 
mov edx, dword ptr [rsi-12]
mov dword ptr [rax+16], edx
xchg rsi, rsp
ret

push   rbp
mov rbp, rsp
mov qword ptr [rbp–8], rdi
mov dword ptr [rbp-12], esi
mov rax, qword ptr [rbp-8] 
mov edx, dword ptr [rbp-12]
mov dword ptr [rax+16], edx
pop    rbp
ret

void f1(struct *a1, int a2)

(b) Effectiveness of semantic-preserving trigger injection for init_data

movsxd rax, esi
lea    rax, [rax+rax*2] 
shl rax, 3
lea    rdi, [rdi+rax]
lea    rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0 
call   init_data
ret

movsxd rax, esi
lea    rax, [rax+rax*2] 
shl rax, 3
lea    rdi, [rdi+rax]
lea    rsi, [rdi+24]
mov qword ptr [rsi-24], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0 
call   init_data
ret

void f1(struct *a1, void *a2)void f1(struct *a1, int a2)

(c) Effectiveness of semantic-preserving trigger 
injection for init_auth_entry

Figure 4: Natural Backdoor Generation and Semantics-
preserving Trigger Injection by PELICAN

atively simple syntax. Taking the syntax into account during
backdoor generation can produce legitimate trigger instruc-
tions without sacrificing the efficacy. The syntax of assembly
code imposes constraints largely within a single instruction.
Our empirical study shows that an individual x64 instruction
only comprises 9 tokens on average and 17 tokens at most.
As such, we devise a syntax-aware trigger inversion tech-
nique taking advantage of a pre-defined instruction dictionary.
The instruction dictionary is collected from the SPEC2000
dataset (compiled with a large number of different options)
and contains 119640 normalized instructions. The trigger op-
timization is performed over the instruction dictionary instead
of individual tokens, and hence intrinsically follows the syn-
tax of assembly code. Figure 4 (a) presents the instruction
sequence with our inverted trigger. The trigger and the mis-
predicted function signatures are highlighted at the top and
the bottom of the figure, respectively. Observe the second
argument is misclassified. In real-world scenarios, three or
more trigger instructions may be needed to launch an effective
attack (see Section 6), preventing a naive approach of enumer-
ating all instructions in the dictionary, as the complexity of
enumerating three instructions is 1196403 ≈ 1.7×1015.

Second Insight: the injected triggers should not only preserve
the program semantics but also become an integral part of
the semantics. With triggers in the form of valid instructions,



A small set of clean binaries

Victim Model

Syntax-aware 
Trigger Inversion

Semantic-preserving 
Trigger Injection

Backdoor 
Trigger

Arbitrary
Binary

Backdoored
Binary

Figure 5: Framework of PELICAN

a naive approach to injecting these triggers is to add them
as dead-code (and hence having the original input semantics
preserved), e.g., using opaque predicates [50]. However, such
dead code can be easily detected and eliminated [70–76]. We
hence propose a novel injection technique. It is driven by
a randomized micro-execution technique that describes pro-
gram semantics by a set of constraints, and a solving-based
synthesis technique that generates code satisfying both the
requirements of preserving semantics and injecting triggers
(see Section 5). Figure 4 (b) and Figure 4 (c) illustrate the
generated code of init_data() and init_auth_entry(), re-
spectively, after the semantic-preserving trigger injection. We
use red to denote the triggers and blue to denote the other en-
tailed patches. In Figure 4 (b), to inject the trigger mov qword
ptr [rsi-8], rdi, the first instruction in blue exchanges
the values of registers rsi and rsp. The next four instructions
retain their original functionalities of manipulating the local
variables using rsi (in blue) as the stack frame pointer. The
seventh instruction remains unchanged and the eighth one (in
blue) exchanges registers rsi and rsp back before returning
to the caller. Observe that the trigger becomes a natural and
integral part of the program data flow and hard to remove.
In Fig 4 (c), mov qword ptr [rsi-24], rsi is the trigger
instance and also the only change compared with the original
code, in which the memory operand changes from [rdi] to
[rsi-24]. The modification is guaranteed to be correct since
the constraint of rsi= rdi+24 has been derived from the
previous instruction lea rsi, [rdi+24]. This illustrates
the sophistication of our injection method.

3 Design Overview

The overall design is illustrated in Figure 5. Given a small
set of clean binaries and a victim model, PELICAN reverse-
engineers the backdoor trigger using gradient descent. The
trigger inversion procedure is syntax-aware. That is, each gen-
erated trigger instruction follows the proper assembly syntax.
PELICAN achieves this goal by constructing an instruction
dictionary, where instructions serve as the backdoor trigger
candidates. It then leverages gradient descent to search for
the trigger instructions that can induce misclassification. The
search by its nature is a discrete optimization problem and
cannot be directly solved through gradient descent. PELICAN
performs a linear relaxation and defines a convex hull for
feasible optimization. See detailed discussion in Section 4.
With the generated backdoor trigger, the next step is to inject
it into some binary without altering the binary’s original se-

[[0.0, 1.0, …]
…]

Inverted Vector !"Backdoor Instructions

[[1.0, 0.1, …]
…]

17×768

[[0.1, 0.3, …]
[1.3, 2.8, …]

…]
Sequence of Instructions

Instruction Dictionary

120k

17×768

[[0.2, 0.1, …]
…]

120k

Weight Vector "

[[0.1, 0.3, …]
[1.0, 0.1, …]
…
[1.3, 2.8, …]

…]
Trigger-injected Input

Trigger Inversion

17×768

Figure 6: Workflow of syntax-aware trigger inversion

mantics. Particularly, given an arbitrary binary, PELICAN first
introduces a randomized micro-execution process to extract
higher order semantics of the given binary, which are repre-
sented by program state changes (e.g., register value changes).
These changes are encoded by symbolic constraints. They are
resolved together with constraints representing the injection
of the trigger and the synthesis of needed patches (to preserve
semantics), using Z3 [77] (see details in Section 5). Finally,
PELICAN produces a backdoored binary with the trigger in-
jected and the same semantics as the original binary. It can
induce the desired misclassification on the victim model.
Use Cases of PELICAN. PELICAN operates on assembly
code. It leverages datalog disassembly [78], a state-of-the-art
binary reassembling tool which has demonstrated its success
on thousands of commonly used binaries, to produce reassem-
bleable assembly code from binary. After trigger injection,
PELICAN reassembles the code to binary. When source code
is available for attackers (e.g., malware developers), PELICAN
can also be applied as part of the compilation tool chain, by
modifying the intermediate assembly code.

4 Syntax-aware Trigger Inversion

Figure 6 illustrates the workflow of our syntax-aware trigger
inversion. Given an input binary, it is first mapped to the em-
bedding space with 17×768 dimensions for each instruction,
where value 17 denotes the number of tokens in an instruction
and value 768 the embedding size of a token. The resultant
matrix is shown on the top left in Figure 6. PELICAN aims
to invert a backdoor trigger at the instruction level, which
is syntax-aware. We construct an instruction dictionary with
119640 instructions and each instruction is represented by a
17×768-dimension embedding as shown on the bottom left.
PELICAN uses a weight vector γ to denote the trigger, whose
size is u×119640 (where u is the number of instructions in
the trigger and 119640 is the dictionary size). By multiplying
the dictionary with γ, PELICAN obtains the trigger instruction
embeddings in the middle of Figure 6, which is then injected
to an input sample on the top right. PELICAN leverages gra-
dient descent to optimize the weight vector γ such that it can
induce misclassification for a set of samples. Ideally, the in-
verted vector γ̂ has only one dimension with 1 that denotes
the trigger instruction and the others with 0. For example,
the second dimension having value 1 means that the inverted
trigger is the second instruction in the dictionary.



4.1 Trigger Generation
The trigger generation aims to produce a small piece of binary
code that can induce misclassification on the subject binary
analysis model. A straightforward idea is to directly generate
code tokens, such as operators, registers, etc. Such a method
however cannot guarantee the generated trigger code snippet
following the proper syntax of assembly code. As discussed
in Section 2 and shown in Figure 3, the backdoor trigger gen-
erated by an existing NLP inversion technique is ill-formed.

In PELICAN, we construct an instruction dictionary col-
lected from the SPEC2000 [79] dataset containing 119640
normalized instructions. This provides us with a large pool of
feasible trigger candidates. We hence make use of a gradient
descent method to search for the possible combination of in-
structions as the backdoor trigger, which can induce misclassi-
fication for a set of input binary samples on the subject model.
Assume a subject model f : X 7→ Y , the instruction dictionary
d (i.e., a large table of embeddings), and a discrete variable c∈
Nu×v
+ , where u is the number of instructions in the trigger and v

is the size of the dictionary d (i.e., the number of instructions).
The trigger generation process can be written as follows.

argmax
c

E
(x,y)∼{X ,Y }

L
(

f
(
x⊕d(c)

)
,y
)
, (1)

where (x,y) is a sample from the set {X ,Y } that we use for
trigger generation. We assume x has already been mapped to
the embedding space for discussion simplicity. L is the loss
function. Operator ⊕ denotes the trigger stamping. Operation
d(c) looks up the instruction embeddings for index c in the
dictionary. Observe that index c is discrete and hence cannot
be directly optimized through gradient descent [80–82]. To
address the above non-differentiability problem, we construct
a convex hull to denote the input space.

Definition 4.1. Let S = [1,v] be the set of instructions in
the dictionary. The convex hull over the input space is H =
{∑

v
i=1 γid(i) | ∑

v
i=1 γi = 1,γi ≥ 0}.

An input t in the hull is essentially a weighted sum of all
instruction embeddings in the dictionary: t = ∑

v
i=1 γid(i) and

the sum of weights γi, i ∈ {1,2, ...,v} must equal to 1. To
satisfy the constraint, we introduce a weight vector p and
compute γ as the softmax over p like the following.

γi =
exp(pi)

∑
v
j=1 exp(p j)

. (2)

Note that with the projection, while p is unbounded (and
hence easy to optimize), γ can satisfy the constraint of sum-
ming up to 1. With the above formalization, we avoid optimiz-
ing in the discrete index space (variable c in Equation 1) but
rather focus on the weight vector p and hence γ in the convex
hull (which is differentiable). The trigger generation is thus
to solve the following optimization problem1.

1We use γ as the variable to optimize in the equation for notation simplic-
ity, whereas our true variable is p.

void f2(struct *a1, int a2, int a3)

movsxd rax, esi
lea    rax, [rdx+rax*2] 
lea    rax, [rax+rax*2] 
shl rax, 3
lea    rdi, [rdi+rax]
lea    rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0 
call   init_data
ret

movsxd rax, esi
mov rdx, rax
lea    rax, [rdx+rax*2] 
shl rax, 3
lea    rdi, [rdi+rax]
lea    rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0 
call   init_data
ret

void f2(void *a1, int a2)

(a) Before trigger injection (b) After trigger injection

Figure 7: Example trigger by per-instance adversarial attack

argmax
γ

E
(x,y)∼{X ,Y }

L
(

f
(
x⊕
{ v

∑
j=1

γi jd( j)
}u

i=1

)
,y
)
. (3)

In short, we use a linear combination of all the possible in-
structions in the dictionary as the potential trigger instruction
and allow the optimization to find the most promising instruc-
tion through gradient descent. The ideal ultimate γ has only
one dimension with value 1 and the others value 0. In practice,
the weight vector may not always converge to an ideal vector.
We hence sort the weight values in p in descending order and
select the top 5 instructions as the trigger candidates.
Token Vocabulary and Embedding. In the NLP domain, a
token vocabulary denotes a mapping that projects a token to
its embedding index. The resultant index is further converted
to an embedding vector by the embedding layer of the target
model. To support an end-to-end inference in the production
environment, modern NLP models, e.g., fairseq [83], usually
include the token vocabulary as one of their integral compo-
nents. Therefore, similar to existing attack techniques [30,
68, 84, 85], we assume the token vocabulary is available to
the attackers in the white-box attack. We also note that all the
models used in our evaluation are delivered with their token
vocabularies, allowing PELICAN to obtain the embedding
vector for any given instruction.
Synonym Instructions. We expand the pool of potential trig-
ger candidates by including synonymous instructions of the
backdoor trigger as well. In particular, synonymous instruc-
tions are derived from the original trigger instruction by substi-
tuting a terminal symbol with a different one. The substituted
symbols must be of the same token type, e.g., register tokens
“RDI” and “RSI”, operand size tokens “QWORD” and “DWORD”.
Location of Trigger Stamping. To invert position-
independent trigger instructions, PELICAN stamps triggers at
different locations upon different samples. Those locations
are randomly selected prior to the optimization step of trigger
inversion, and hence vary among samples. During injection,
the place of inserting the trigger instruction(s) is determined
by the constraint solver (Section 5).

4.2 Why Not Per-instance Adversarial Attack
A plausible idea is to generate per-instance perturbation as
in adversarial attack. For example, different extra instructions
may be generated using optimization to induce misclassifi-
cation for different inputs. However, one of our goals is to



movsxd rax, esi
lea rax, [rax+rax*2] 
shl rax, 3
lea rdi, [rdi+rax] 
lea rsi, [rdi+24] 
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

Constraint
Generator

Randomized
Micro-execution

MOV QWORD PTR [ RSI - NUM ] , <REG>

Backdoor Trigger

xchg rsi, rsp
mov qword ptr [rsi–8], rdi
mov dword ptr [rsi-12], esp
mov rax, qword ptr [rsi-8] 
mov edx, dword ptr [rsi-12]
mov dword ptr [rax+16], edx
xchg rsi, rsp

Generated Code
Z3

Constraint
Solver

Program 
States

Program 
States

Program 
States

Constraints

Constraints

Constraints

Instruction Dictionary

Figure 8: Workflow of semantic-preserving trigger injection

ensure the perturbation does not change the original binary’s
semantics such that it cannot be easily discarded by sanitiza-
tion. The trigger injection process hence requires preserving
the semantics of the binary through transformation (discussed
in Section 5). The triggers generated by per-instance
adversarial attacks may not be effective after the injection
procedure. Figure 7 shows an example trigger generated
by per-instance adversarial attacks. We use the same code
snippet as in Section 2 for trigger generation. Figure 7
(a) presents the assembly code with the directly inserted
trigger instruction and Figure 7(b) the assembly code after
semantic-preserving trigger injection. Observe that directly
inserting the trigger instruction can cause the subject model
to have the wrong prediction. But the trigger is not effective
any more after the semantic-preserving transformation. This
is because per-instance adversarial attacks are intended
solely to elicit misclassification for a given input, while the
injection process modifies said input, thereby rendering the
trigger ineffective. Our generated backdoor trigger, on the
other hand, is effective for a set of binary samples, and can
maintain its effectiveness on the transformed assembly code.

5 Semantic-preserving Trigger Injection

With the triggers in legitimate forms, a naïve approach is to
inject the triggers as dead code and hence have the semantics
preserved. However, such efforts become ineffective when
the input data is sanitized before use, e.g., discarding garbage
code or pruning non-critical program paths. Furthermore, a
popular technique to inject dead code, i.e., using opaque pred-
icates [50], usually incurs high runtime overhead, rendering
the attack infeasible for some performance-sensitive applica-
tions, e.g., crypto-mining malware. We hence propose a novel
trigger injection technique. It takes a subject basic block, a
backdoor trigger, and a pre-collected instruction dictionary
as inputs, and synthesizes a semantic-equivalent code snippet
that naturally includes the trigger. In PELICAN, we use a cus-
tomized block selection algorithm to find a basic block to in-
ject triggers. Specifically, given the control flow graph (CFG)
of the subject function, PELICAN first eliminates loops by re-
moving backward edges and sorts all basic blocks in the topo-

logical order. The block selection operates as follows. Once
the code synthesis upon a given block fails, which is very rare,
PELICAN moves on to the next block. Since these models are
usually quite vulnerable, the simple algorithm is sufficient to
generate successful attacks. We leave it to our future work to
devise a more advanced block selection algorithm.

Figure 8 depicts the workflow. Given a block, we start
multiple micro-executions to extract higher order semantics
of the code. The semantics are represented by program states
(i.e., the concrete value of each register and memory object)
before and after executing the basic block. The constraint
generator further transforms the program states to symbolic
constraints so that the trigger injection task is reduced to a
constraint solving problem. Z3 [77] is hence involved to solve
the constraints and synthesize the injected (and patched) code.
Note that the code synthesis with a single micro-execution
instance is very likely problematic. For example, mov rax,
12 can be synthesized while the ground truth instruction is
add rax, rax from a micro-execution result with rax being
6 before execution and 12 after. The problem can be avoided
with high probability when other micro-execution instances
are involved, e.g., having rax changed from 37 to 74.

Since the synthesis has only probabilistic guarantees, PEL-
ICAN further performs symbolic equivalence checking to en-
sure the synthesized code is equivalent to the original block.
The injection is performed on a different block if the valida-
tion is not successful (which is very rare).

An alternative to expressing program semantics is to
directly perform symbolic execution (instead of micro-
executions then constructing symbolic constraints on concrete
states like in PELICAN). However, this approach inevitably
introduces quantified formulas and array models (for memory
objects) in the generated constraints, inducing difficulties in
the downstream solver[86–90]. For example, the symbolic
constraint of a heap memory read entails an quantifier op-
eration on the symbolic address, which is further translated
inside the solver to numerous comparisons with all the pos-
sible addresses that have been written to. It is hence very ex-
pensive.PELICAN, on the other hand, leverages a randomized
concrete representation such that the derived constraints are
quantifier-free and can be effectively solved using a quantifier-
free bit-vector (QF_BV) theory [77].

Also note that PELICAN does not explicitly define tactics of
modification. Its transformations are driven by the SMT solver
and constrained by the objective requirements of preserving
semantic and injecting trigger instructions.

In the remainder of this section, we discuss details of indi-
vidual component and how we address practical challenges.

5.1 Randomized Micro-execution

The goal of randomized micro-execution is to have a low cost
method to concretize program semantics, i.e., how the values
of randomly initialized register and memory objects change



Λreg ∈ RegisterStore ::= Label → Register → Z Λmem ∈ MemoryStore ::= Label → Z→ Z Λ ∈ ProgramState ::= ⟨RegisterStore×MemoryStore⟩

Λ |= s1 ⇒ Λ′,Λ′ |= s2 ⇒ Λ′′

Λ |= s1;s2 ⇒ Λ′′ (1)

(Λreg,Λmem) = Λ

Λ′
reg = InitReg(InitReg(Λreg, l,r1), l,r2)

v = Λ′
reg(l)(r1) op Λ′

reg(l)(r2)
Λ′ = (Λ′

reg[next(l) 7→ Λ′
reg(l)[rd 7→ v]],Λmem)

Λ |= l : rd := r1 op r2 ⇒ Λ′ (2)

(Λreg,Λmem) = Λ

Λ′
reg = InitReg(Λreg, l,ra),va = Λ′

reg(l)(ra)
Λ′

mem = InitMem(Λmem, l,va),vv = Λ′
mem(l)(va)

Λ′ = (Λ′
reg[next(l) 7→ Λ′

reg(l)[rd 7→ vv]],Λ
′
mem)

Λ |= l : rd := R(ra)⇒ Λ′ (3)

(Λreg,Λmem) = Λ

Λ′
reg = InitReg(InitReg(Λreg, l,ra), l,rv)

va = Λ′
reg(l)(ra),vv = Λ′

reg(l)(rv)
Λ′

mem = InitMem(Λmem, l,va)
Λ′ = (Λ′

reg,Λ
′
mem[next(l) 7→ Λ′

mem(l)[va 7→ vv]])

Λ |= l : W(ra,rv)⇒ Λ′ (4)

r ∈ dom(Λreg(l))
Λ′

reg = Λreg

Λ′
reg = InitReg(Λreg, l,r) (5)

r ̸∈ dom(Λreg(l)),v = random()
Λ′

reg = Λreg[l 7→ Λreg(l)[r 7→ v]]
Λ′′

reg = Λ′
reg[L0 7→ Λ′

reg(L0)[r 7→ v]]

Λ′′
reg = InitReg(Λreg, l,r) (6)

va ∈ dom(Λmem(l))
Λ′

mem = Λmem

Λ′
mem = InitMem(Λmem, l,va) (7)

va ̸∈ dom(Λmem(l)),vv = random()
Λ′

mem = Λmem[l 7→ Λmem(l)[va 7→ vv]]
Λ′′

mem = Λ′
mem[L0 7→ Λmem(L0)[va 7→ vv]]

Λ′′
mem = InitMem(Λmem, l,va) (8)

Figure 9: Semantics of the randomized micro-execution. Given a basic block b ::= s, “⊥ |= s ⇒ Λ” denotes that s is evaluated to
Λ from an empty state.

⟨BasicBlock⟩ b ::= s
⟨Statement⟩ s ::= s1;s2 | l : i
⟨Instruction⟩ i ::= rd := e | rd := R(ra) | W(ra, rv)
⟨Expression⟩ e ::= r | c | e1 op e2
⟨Label⟩ l ::= L0 | L1 | L2 | . . .
⟨Register⟩ r ::= r0 | r1 | r2 | . . .
⟨Operator⟩ op ::= + | − | ∗ | ÷ | BitOp | . . .
⟨Constant⟩ c ::= Z

Figure 10: Language for branching-free assembly code block

after executing the code. To do so, the micro-execution needs
to calibrate objects that are accessed during execution, and
tracks the changes of these objects.

Language. To facilitate discussion, we introduce a low-level
language to model basic blocks in assembly code. The lan-
guage is designed to illustrate our key idea, and hence omits
many irrelevant details. The syntax is in Figure 10. A basic
block is constituted by a statement which is either a concatena-
tion of two statements or an instruction. We label the location
before an instruction as l (like a program counter). Instruction
rd := e denotes the computation and data movement among
registers and e denotes an expression. R(ra) and W(ra,rv)
model memory read and write operations, respectively, where
ra holds the memory address and rv holds the value to write.
Note that the language does not model branching instructions,
which will appear unchanged after injection and remain to be
the last instruction of a block.

Definitions. We briefly discuss the definitions used by
the semantics of the randomized micro-execution. The
formal definitions can be found at the top of Figure 9.
Specifically, we use Λreg and Λmem to denote the register
store and the memory store, respectively. Different program
points, distinguished by labels, have different register and
memory stores. For instance, the initial value of rax is
denoted as Λreg(L0)(rax) and the memory object [52] at the
program location L3 is denoted as Λmem(L3)(52). Register
and memory stores constitute the program state Λ.

Semantics. The overarching process is to concretely execute

the code and check every object before use. If the object is not
initialized, we assign it a random value and record the initial
value as part of the initial program state (i.e. Λreg/mem(L0)).
As such, the concertized semantics, i.e., which objects are
used and what their initial and final states are, can be deter-
mined by accessing the program states before and after the
execution (i.e., Λreg/mem(L0) and Λreg/mem(Ln+1) where Ln+1
denotes the last program point). We provide the formal rules in
Figure 9. For detailed explanations and a running example, in-
terested readers can refer to our supplementary material [51].

5.2 Constraint Generation
With the concretized program semantics (i.e., Λ), PELICAN
aims to generate a new code snippet that performs the same
state updates on register and memory objects, and injects
the trigger instructions. To do so, it first introduces a set of
boolean variables xk

i to guide the code synthesis, where i
denotes the instruction ID in the pre-collected dictionary, k
denotes the program location, and xk

i denotes whether the
k-th instruction (in the synthesized code) holds ID i (in the
dictionary). The code needs to satisfy a number of objective
constraints, e.g., ∀k,(∑i∈ID xk

i ) = 1 which guarantees there is
only one instruction placed at location k. We further encode
the state changes (on register and memory objects) as trans-
formations defined by xk

i . The changes are constrained to be
the same as the original code. Trigger injection is achieved
by (∑k xk

t )≥ 1 in which t is the ID of the trigger instruction,
that is, the trigger instruction is at least inserted once. As
such, we reduce the semantic-preserving trigger injection to a
satisfiability modulo theories (SMT) solving task, where the
trigger-injected code can be derived from a satisfying model
of xk

i , which essentially encodes the set of instructions placed
at individual locations, including the trigger instruction and
the needed patch instructions to make sure the semantics are
preserved after injection.

Figure 11 presents the details. It first defines the inputs



Input:
Λreg RegisterStore produced by the randomized evaluation
Λmem MemoryStore produced by the randomized evaluation
Ln The last instruction’s label of the subject block
Ω Instruction candidates used during code synthesis

Ω ::= ID → Instruction
t The ID of the trigger instruction, i.e., Ω(t) is the trigger instruction
m The target length (i.e. # of instructions) of the generated code

To Solve:
xk

i A boolean variable denotes whether the instruction (in Ω) with ID i is the
k-th instruction in the generated code

1 ≤ k ≤ m, i ∈ ID, xk
i ∈ {0,1}

Variables:
A Accessible memory objects, i.e., memory objects accessed by the subject

code
A= dom(Λmem(Ln+1))

Rk
r The value of register r after executing the first k generated instructions

0 ≤ k ≤ m, r ∈ Register
Mk

a The value stored in [a] after executing the first k generated instructions
0 ≤ k ≤ m, a ∈ A

T k Whether the k-th generated instruction accesses non-accessible memory
objects

1 ≤ k ≤ m, T k ∈ {0,1}

Constraint Construction:

Step 1. Initialization

1

( ∧
r ∈ dom(Λreg(L0))

R0
r = Λreg(L0)(r)

)
∧

( ∧
r ̸∈ dom(Λreg(L0))

R0
r = random()

)
2

∧
a ∈ dom(Λmem(L0))

M0
a = Λmem(L0)(a)

Step 2. Constructing Constraints by Induction
Assuming we have constructed the constraints for the first k−1 generated

instructions, i.e., we have constructed Rk−1
r , Mk−1

a , and T k−1

Temporary Variables:
iRk

r : The value of register r after executing the first k generated instructions if
the k-th one’s ID is i

iMk
a : The value stored in [a] after executing the first k generated instructions if

the k-th one’s ID is i
iT k : Whether the generated code accesses non-accessible memory after

executing the first k generated instructions and the k-th one’s ID is i

Construction Rules:
3 ∀i ∈ ID,s.t.Ω(i)≡ rd := r1 op r2 ⇒(

iRk
rd

= Rk−1
r1

op Rk−1
r2

)
∧
(

iT k = 0
)
∧

( ∧
r ̸=rd

iRk
r = Rk−1

r

)
∧
( ∧

a∈A

iMk
a = Mk−1

a

)
⋆ 4 ∀i ∈ ID,s.t.Ω(i)≡ rd := R(ra)⇒

if a = Rk−1
ra ̸∈ A then iT k = 1;

else
(

iRk
rd

= Mk−1
a

)
∧
(

iT k = 0
)
∧

( ∧
r ̸=rd

iRk
r = Rk−1

r

)
∧
( ∧

a∈A

iMk
a = Mk−1

a

)
⋆ 5 ∀i ∈ ID,s.t.Ω(i)≡ W(ra,rv)⇒

if a = Rk−1
ra ̸∈ A then iT k = 1;

else
(

iMk
a = Rk−1

rv

)
∧
(

iT k = 0
)
∧
(∧

r

iRk
r = Rk−1

r

)
∧

( ∧
a′ ̸=a

iMk
a′ = Mk−1

a′

)
6
(∧

r
(Rk

r = ∑
i∈ID

iRk
r × xk

i )

)
∧
( ∧

a∈A
(Mk

a = ∑
i∈ID

iMk
a × xk

i )

)
∧
(

T k = ∑
i∈ID

iT k × xk
i

)
Step 3. Constructing the Objective Constraints

7

( ∧
r ∈ dom(Λreg(Ln+1))

Rm
r = Λreg(Ln+1)(r)

)
∧

( ∧
r ̸∈ dom(Λreg(Ln+1))

Rm
r = R0

r

)
8

∧
a∈A

Mm
a = Λmem(Ln+1)(a) 9

∧
1≤k≤m

∑i∈ID xk
i = 1 10 ∑

1≤k≤m
T k = 0

11 ∑
1≤k≤m

xk
t ≥ 1 12

∧
1≤k≤m

∧
i ∈ ID

(
xk

i = 1∨ xk
i = 0

)
⋆ Rules 4 and 5 can be encoded as a sequence of (consecutive/nested) if-then-else

statements by enumerating all accessible addresses in A .

Figure 11: Rules of constraint construction

of the constraint generator. Λreg and Λmem are the register
and memory stores collected from the randomized micro-
executions. Ln denotes the last program location of the subject
block, i.e., Λreg/mem(Ln+1) denotes the final program state. Ω

and t denote the pre-defined instruction dictionary and the
ID of trigger instruction (in the dictionary), respectively. The
length of the generated block is pre-set as m. In practice,
starting from the length of the original code (i.e., n), we grad-
ually increase m until the synthesis succeeds or m reaches a
predefined length (n+20 in our setting).

Several auxiliary variables are introduced to help model the
state changes. A denotes the accessible memory objects (ob-
jects that have been accessed during micro-executions) which
can be derived from the final memory store (i.e., Λmem(Ln+1)).
Intuitively, semantic-equivalent blocks should access exactly
the same memory objects. Rk

r and Mk
a denote the values of

register r and memory object [a], respectively, after executing
the first k generated instructions. For instance, R0

r0
denotes

the initial value of register r0, and M2
12 denotes the value of

[12] after executing the first two synthesized instructions. We
introduce boolean variables T k to denote whether the k-th
generated instruction accesses any invalid memory object.
Note that all T k’s are constrained to be 0 during synthesis.

The constraints of keeping the same state changes are con-
structed by induction. At the initialization stage, we constrain
all R0

r and M0
a . Specifically, R0

r is set as the initial value of
r, if r has been initialized by the original code (constraint
1 )). Otherwise, R0

r is randomly selected (constraint 1 ) and
we constrain register r to keep the same value in the final
program state. This is reasonable as a code snippet accessing
additional registers but preserving their initial values is con-
sidered semantic-equivalent in our context. M0

a is set as the
initial value accordingly (constraint 2 ). For now, memory
behaviors are strictly constrained to be the same. Assuming
stage k−1 is done properly, i.e., Rk−1

r , Mk−1
a , and T k−1 are

well constrained, the next step is to construct Rk
r , Mk

a, and T k.
The overall idea is to enumerate all the instructions in the
dictionary and model Rk

r , Mk
a, and T k under the assumption

of a specific instruction i being selected. This is done by in-
troducing a few temporary variables iRk

r , iMk
a, and iT k. iRk

r
is defined as the value of Rk

r under the assumption that the
k-th generated instruction is i, and iMk

a and iT k are defined
in a similar fashion. Constraint 3 describes the construction
rule for rd := r1 op r2. iRk

rd
is updated as the outcome of the

expression among Rk−1
r1

and Rk−1
r2

, while other registers ex-
cept rd remain untouched, i.e., Rk

r inherits the value of Rk−1
r .

iT k stays false and all memory objects remain unchanged, as
memory is not involved. Constraint 4 describes the rule for
rd := R(ra). It first checks whether [Rk−1

ra ]≡ [a] is accessible.
If not, iT k is marked as true to indicate an access violation.
Otherwise, iRk

rd
and other objects are updated according to

the semantics. Likewise, constraint 5 defines the rule of the
memory write operations. Observe that constraints 4 and 5
are not typical bit-vector operations but can be encoded as sev-
eral if-then-else statements in Z3. Interested readers can find
a running example in our supplementary material [51]. After
enumerating all iRk

r , iMk
a, and iT k, variables xk

i are use to select



the proper Rk
r , Mk

a, and T k (constraint 6 ). For instance, Rk
r0

equals to ∑i∈ID
iRk

r0
× xk

i . Note that there is only one xk
i (i.e.,

xk
î
) solved as 1 and the rest 0, so that Rk

r0
is selected as îRk

r .
The objective constraints are listed at the bottom of the

figure. Constraints 7 and 8 guarantee the synthesized code
has the same outcomes. Note that any unused register r (by the
original code) needs to keep its initial value (to avoid global
side-effects). Constraints 9 , 10 , and 11 ensure that the
generated block is legitimate, shares exactly the same memory
behaviors, and has triggers injected, respectively. Note that
as mentioned in Section 4.1, we can have a pool of trigger
candidates after the trigger inversion. We do not explicitly
select the trigger from the candidate pool, but instead let the
solver decide which one to choose. Specifically, the constraint
11 originally guarantees a specific trigger instruction t is
injected. When having a pool of trigger instructions, i.e. P =
{t1, t2, . . . , tp}, we change the constraint to ∑t∈P,1≤k≤m xk

t ≥ 1,
i.e., at least one trigger instruction in the pool being injected.
The last constraint guarantees xk

i has a boolean value.

6 Evaluation
We evaluate PELICAN on 5 binary analysis tasks and 15 mod-
els. The evaluation studies the effectiveness of PELICAN in
inducing misclassification on subject models in both white-
box and black-box scenarios. We investigate the underlying
reason that backdoors exist in the pre-trained models. The ex-
periments are performed on a server equipped with a 48-cores
CPU (Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz), 256G
main memory, and 8 NVIDIA Quadro RTX 6000 GPUs.

6.1 Experiment Setup
Tasks and Models. We evaluate on 5 binary analysis tasks and
15 models, which are presented in Table 1. The first column
denotes the tasks. The second and third columns show the
techniques and their model architectures. The fourth and fifth
columns present the evaluation metrics used for measuring
the performance of the subject models and their values. The
last column denotes how the models are obtained. In total, we
have 10 Transformer-based models and 5 RNN-based models.
The performance of all the evaluated models is consistent with
that in the original papers. We chose to induce the misbehavior
of the instruction boundary detection model (i.e., XDA-call)
for a specific instruction type (i.e., call), to demonstrate a
real-world attack that the attacker tries to hide a few critical
instructions (e.g., calling a malicious function) instead of
completely breaking the disassembler.
Attack Settings. We randomly select 10% binaries from our
SPEC2000 dataset (around 2000 functions) to invert backdoor
triggers, and launch attacks with samples from the author-
provided test sets. This is similar to the real-world attack
scenario where the attackers can prepare their own dataset
for backdoor inversion without prior knowledge of the victim

model’s training process. The epoch number and the learning
rate of the trigger inversion are 50 and 0.1, respectively.
Computational Cost. As mentioned in Section 2, the
memory usage of PELICAN’s trigger inversion is dominated
by the 119640× 17× 768 matrix, which consumes around
6G GPU memory. Note that multiplying the dictionary
embedding matrix with the weight vector produces a small
matrix of size 17×768. We argue that it is within the capacity
of modern GPUs. And there are many attacks [91, 92] in CV
and NLP domains that consume much more resources but
remain feasible for modern GPUs. On average, PELICAN’s
trigger inversion takes 30 minutes to generate an effective
backdoor for each model.
Attack for Disassembly Models. The disassembly models
take bytes as input instead of assembly instructions. We hence
develop a dedicated attack for these disassembly models (i.e.,
BiRNN-func, XDA-func, and XDA-call). Specifically, the
backdoor triggers are inverted in form of bytes and injected
at locations that cannot be reached during runtime, e.g., the
preceding bytes before each function entrypoint.
Threats to Validity. In the context of attacking disassembly
models, the semantic-preserving syntax-aware effort is not
utilized, and the measurement of functionality preservation
reflects the efficacy of the underlying binary rewriting engine
rather than that of PELICAN. However, our intention in includ-
ing disassembly models in our evaluations is to demonstrate
the pervasiveness of backdoor vulnerability in various deep
learning binary analysis tasks. It is possible that other adver-
sarial machine learning techniques may achieve similar attack
success rates as PELICAN on disassembly models.

6.2 Attack Effectiveness

The attack results of PELICAN are shown in Table 2. The first
column presents the binary analysis techniques and the sec-
ond column the original performance of these techniques. We
apply PELICAN with different backdoor sizes, i.e., the num-
ber of instructions that can be injected to a binary function.
Note that all the binary analysis techniques are originally
evaluated at the function level. We hence follow the same
setting by injecting the backdoor trigger in each function to
induce misclassification. Columns 3-14 show the attack per-
formance of PELICAN with different backdoor sizes. Column
ASR denotes the attack success rate, i.e., the percentage of
functions that a subject model produces correct predictions
for before attack but wrong after. Column Score denotes the
performance of the subject model measured using its original
metric as shown in Table 1. Column Dis. presents the edit
distance between the trigger-injected function and its original
version. Note that the edit distance is presented as the ratio
to the size of original functions. For example, with x the edit
distance and y the original size, x/y is presented. Observe that
with only one injected instruction, PELICAN has already over
90% ASR on BiRNN-func, XDA-func, and XDA-call. The



Table 1: Summary of models used, along with how we col-
lect these models (i.e., Source). P, T , and O denote the
models are provided by the authors, trained with the author-
provided dataset, and trained with our own dataset, respec-
tively. The techniques named with a suffix ++ are enhanced
by PalmTree [93], an instruction embedding technique.

Task Technique Architecture Metric Score Source

Dis-
assembly

BiRNN-func3 [3] Bidirectional
RNN Precision 99.12% O

XDA-func3 [1] Transformer Precision 99.36% P

XDA-call4 [1] Transformer Precision 100.00% P

Function
Signature
Recovery

StateFormer [12] Transformer Precision 96.60% T

EKLAVYA [16] RNN Precision 70.29% T

EKLAVYA++ [16] RNN + TE1 Precision 74.25% T

Function
Name

Prediction

in-nomine [18] Transformer Precision2 33.97% P

in-nomine++ [18]
Transformer +

TE1 Precision2 25.26% T

Compiler
Provenance

S2V [7] RNN +
structure2vec Precision 73.06% T

S2V++ [7] RNN + TE1

structure2vec Precision 73.64% T

Binary
Similarity

Trex [5] Transformer Top@1 Acc 91.11% P

SAFE [6] Bidirectional
RNN Top@1 Acc 89.29% P

SAFE++ [6]
Bidirectional
RNN + TE1 Top@1 Acc 87.01% T

S2V-B [7] RNN +
structure2vec Top@1 Acc 81.10% T

S2V-B++ [7] RNN + TE1

structure2vec Top@1 Acc 82.78% T

1 The instruction embedding is generated by a transformer model [93].
2 We consider a prediction correct if there are more than 5% tokens correctly predicted.

3 BiRNN-func and XDA-func are to detect function boundaries.
3 XDA-call is to detect boundaries of all call instructions.

ASR on other models such as EKLAVYA++, SAFE, SAFE++,
and S2V-B are also reasonable, with an over 60% ASR when
only one instruction is injected. When the backdoor size is
increased to 5, PELICAN is able to break all the evaluated
models with over 80% ASR. The performance of these mod-
els measured by their corresponding metrics is only 5.38%
on average. The edit distance increases when injecting more
backdoor instructions. This is reasonable as PELICAN needs
to add more instructions in each function. One may notice
that the edit distance is relatively high for StateFormer. It is
because the functions from StateFormer’s test set are shorter
than others, rendering the ratio high. We find when the back-
door size is 3, PELICAN achieves a good balance with 86.49%
ASR and 11.14% edit distance on average.

6.3 Comparison with Baselines
We compare PELICAN with three baselines: using an adopted
NLP inversion technique to invert triggers, using opaque pred-
icates to inject triggers, and a state-of-the-art per-instance
adversarial attack that does not rely on trigger inversion.

Adopted NLP Trigger Inversion Technique. The base-
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Figure 12: Comparison between an adopted NLP trigger in-
version technique and PELICAN
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line method adopts an existing NLP trigger inversion tech-
nique [68]. During the trigger inversion, we gradually discard
the opcode tokens that take more operands, so that the baseline
method can eventually invert a legitimate one. For instance,
in the worst case, only nullary opcodes are available and any
inverted token is a legitimate nullary instruction. We use all
the 7 models that take tokenized assembly sequence as input,
and compare the baseline method’s attack performance to
PELICAN’s. The backdoor size is 3 and the result is shown
in Figure 12. Observe that the baseline method has at most
67.21% ASR on SAFE++, whereas PELICAN has 94.76%
ASR. The baseline performs worst on in-nomine++ with only
16.69%. PELICAN, on the other hand, still has 81.52% ASR.
This is because the target triggers, i.e., the ones that the mod-
els are undesirably overfitting to, are hard to invert when
the inversion technique does not take the assembly syntax
into account. Overall, PELICAN substantially outperforms the
baseline inversion method.

Trigger Injection by Opaque Predicates. Another baseline
method leverages opaque predicates to inject backdoor trig-
gers [94]. It aims to attack Android malware classifiers based
on code features, e.g., code size. It uses opaque predicates to
inject arbitrary bytes to subject malwares. Opaque predicates
are predicates whose true branches can never be taken. As
such, any instructions (or even arbitrary bytes) guarded by
these predicates will never be executed. Since our models are
not based on code size, their technique is not directly applica-
ble. We hence leverage its opaque predicate transformation
to inject the trigger instructions generated by our inversion
technique. We compare attack performance on the 12 models
that are not the disassembly ones. We additionally study the



Table 2: Attack effectiveness of PELICAN with different trigger sizes. ASR denotes the attack success rate and Score the model
performance. Dis. denotes the edit distance between the trigger-injected functions and the original versions over the originals.

Technique Original Score
Backdoor Size: 1 Backdoor Size: 3 Backdoor Size: 5 Backdoor Size: 7

ASR Score Dis. ASR Score Dis. ASR Score Dis. ASR Score Dis.

BiRNN-func 99.12% 91.24% 8.50% 0.15% 96.35% 3.39% 0.46% 98.12% 1.62% 0.76% 98.12% 1.62% 1.06%
XDA-func 99.36% 93.44% 6.53% 0.15% 98.31% 1.68% 0.46% 98.32% 1.67% 0.76% 98.32% 1.67% 1.06%
XDA-call 100.00% 99.49% 0.51% 3.95% 99.57% 0.43% 6.59% 99.57% 0.43% 9.23% 99.57% 0.43% 11.86%

StateFormer 96.60% 45.09% 53.78% 11.73% 77.52% 21.73% 35.19% 89.51% 10.66% 58.65% 94.88% 4.89% 82.11%
EKLAVYA 70.29% 55.33% 32.91% 2.76% 84.43% 12.88% 7.16% 92.93% 6.45% 12.84% 96.11% 3.73% 16.15%

EKLAVYA++ 74.25% 60.49% 31.85% 2.12% 89.63% 8.51% 6.36% 92.63% 8.05% 10.60% 93.81% 6.75% 14.83%

in-nomine 33.97% 42.85% 19.42% 2.44% 68.25% 10.79% 8.56% 83.75% 5.52% 15.89% 85.42% 4.95% 19.55%
in-nomine++ 25.26% 47.26% 13.32% 1.83% 81.52% 4.67% 6.72% 87.65% 3.12% 11.61% 92.25% 1.96% 17.72%

S2V 73.06% 42.64% 42.64% 5.90% 73.73% 19.51% 17.71% 83.66% 12.12% 29.52% 89.66% 7.64% 41.33%
S2V++ 73.64% 32.87% 51.71% 4.78% 73.68% 19.91% 14.35% 85.28% 11.06% 23.92% 90.88% 6.81% 33.48%

Trex 91.11% 59.32% 37.83% 1.74% 89.89% 9.50% 5.22% 96.40% 3.39% 8.70% 98.30% 1.60% 12.18%
SAFE 89.29% 74.18% 23.68% 5.09% 94.44% 5.20% 15.26% 98.04% 1.84% 27.98% 98.99% 0.96% 38.15%

SAFE++ 87.01% 64.75% 31.58% 3.82% 94.76% 4.98% 11.45% 98.79% 1.15% 19.08% 99.71% 0.30% 26.71%
S2V-B 81.10% 89.55% 8.86% 4.52% 96.58% 3.09% 13.57% 98.14% 1.66% 22.62% 98.94% 1.02% 31.67%

S2V-B++ 82.78% 59.36% 34.52% 6.03% 78.68% 18.19% 18.09% 86.12% 11.93% 30.16% 89.97% 8.79% 42.22%

Average 78.46% 63.87% 26.51% 3.80% 86.49% 9.63% 11.14% 92.59% 5.38% 18.82% 95.00% 3.54% 26.01%

impact of data sanitization (e.g., remove instructions that are
not covered during execution) and the runtime overhead of
trigger-injected binaries.

Attack Success Rate. Figure 13 presents the ASRs of the two
methods. PELICAN achieves comparable ASRs with the base-
line methods on all the models. Observe that the baseline
attack performs slightly better for function signature recover-
ing tasks (i.e., StateFormer, EKLAVYA, and EKLAVYA++).
This is because it always just injects triggers at the beginning
of functions, achieving the maximum attack effects on func-
tion signature recovery models. However, this may backfire.
Observe that the baseline has only 30.81% ASR on S2V++,
while PELICAN’s still reaches 73.73%. Overall, compared to
the baseline, our attack is just as effective and more stable.

Input Sanitization. Many existing research works [94–97]
have emphasized the importance of inconspicuousness and
hence aim at generating stealthy backdoored/adversarial
samples. Malware Makeover [95], a state-of-the-art malware
evasion technique, further asserts the possible defense of
pruning out crafted bytes in unreachable regions of the
binary. De-obfuscation techniques [98–100] are also largely
adapted by the RE community. We hence study possible
defense by sanitizing input binaries. One possible approach
is to dynamically execute the program and eliminate the
uncovered code. Note that although one cannot discard
unexecuted code in general, in the context of de-obfuscation
(before passing an executable to a malware classifier), it
is justifiable to suppress the un-executed instructions [101,
102]. We inject different triggers (which are inverted from 12
subject models) into the SPEC2000 programs and study the
trigger coverage (i.e., the percentage of dynamically covered
trigger instructions). We use the reference input set provided
by SPEC2000 to collect runtime information. Note that we
cannot collect the trigger coverage for the author-provided
test programs due to the lack of valid input data. Figure 14

details the coverage. Observe that even in the worst case,
PELICAN still achieves 87.12% trigger coverage, i.e., almost
all triggers injected by PELICAN are dynamically executed
(and hence an integral part of the sanitized programs). On
the other hand, triggers injected by the baseline method can
be easily eliminated since the dead code is never executed.

We additionally implement a naïve opaque predicate de-
tector inspired by [76]. It is a hybrid static-dynamic tech-
nique without considering complex program semantics. The
results show 54.84% opaque predicates are detected, indicat-
ing that more than half of injected triggers can be eliminated.
Many other state-of-the-art opaque predicate detection tech-
niques [70–75, 103] are believed to have better performance.

Runtime Overhead. We use SPEC2000 programs to study the
runtime overhead of backdoor-injected binaries by different
trigger injection methods. To avoid the randomness from each
execution, we run all the binaries for 3 times and obtain the
average. On average, the binaries with PELICAN’s injected
backdoors have 4.36%, 8.21%, 10.98%, and 15.13% runtime
overhead when the trigger size is 1, 3, 5, and 7, respectively.
The baseline opaque predicates, on the other hand, has around
200% runtime overhead, rendering the attack infeasible for
performance-sensitive applications. Recall that we adapt the
settings of an existing work [94], where opaque predicates
are to validate if a set of random values satisfy a preset 3-SAT
formula, to avoid being easily determined as a bogus predicate
(by a static analysis). The runtime overhead is mainly caused
by the execution of opaque predicates [50]. Detailed results
are provided in our supplementary material [51].

Instance-specific Attack. Malware Makeover [95] (here-
inafter referred to as MalMakeover) is a state-of-the-art
per-instance attack against malware classifiers. For a
given malware sample, MalMakeover iteratively applies
semantics-preserving transformations upon the sample
until the resultant variant induces misclassification. To



efficiently guide the transformations, MalMakeover proposes
an optimization algorithm which, at each iteration, only
selects a transformation that can entail a lower attack
CW loss [40] (compared to the current malware variant).
MalMakeover achieves a high evasion rate against DL-based
malware detectors [95]. It is hence interesting to compare
its performance on binary analysis models with ours.
Experiment Configuration. In our modifications to the origi-
nal version of MalMakeover, we have made two significant
alterations. Firstly, we have reduced the scope of mutation
from an entire program to a single function. In contrast to the
original MalMakeover, which selected functions to mutate in
an iterative manner, our variant focuses exclusively on a given
function. This modification was necessary as our subject mod-
els accept input in the form of a single function, as opposed to
the original MalMakeover, which took malware binaries as in-
put. Secondly, we have replaced the disassembling frontend of
MalMakeover with a custom implementation that accepts text-
form assembly code as input. This change was required as the
test sets provided by the authors of the subject models did not
consist of complete programs, but rather individual functions.
To accomplish this, we utilized Keystone for assembly and
Capstone for disassembly, which provided the necessary infor-
mation at the instruction-level. Additionally, since the original
MalMakeover relied on a register liveness analysis, which is
not supported by Capstone, we developed such an analysis
ourselves. Our variant of MalMakeover supports both in-place
randomization and displacement. It is worth noting that the
original design of MalMakeover was intended for models that
accept a program as input and output a predicted label, which
is essential for the use of CW loss. However, for the disas-
sembly and binary similarity tasks, the output is in the form
of sequences and embedding vectors, respectively, making
them incompatible with the original design of MalMakeover.
Furthermore, MalMakeover calculates the difference of input
embeddings before and after mutation. The S2V and S2V++
models, which take CFG-like graphs as inputs, pose a chal-
lenge in this regard as the embedding difference cannot be
easily calculated after displacement mutation, which signifi-
cantly alters the CFG. Consequently, we exclude disassembly
models, binary similarity models, S2V, and S2V++ from our
evaluation. In our study, we examine the efficacy of untargeted
attacks (i.e., causing the model to misclassify a sample to any
other label), the performance of targeted attacks (i.e., causing
the model to misclassify a sample to a specified label), and
the runtime overhead of mutated binaries.
Untargeted Attack. Table 3 presents the ASRs of untargeted
attacks performed by PELICAN and MalMakeover. The first
two columns denote the subject models and the attack tech-
niques, respectively. Columns 3-6 present the ASRs with
backdoor sizes of 1, 3, 5, and 7. It is important to note that
MalMakeover does not reverse trigger instructions, thus the
metric of backdoor size is not directly relevant. To make a
meaningful comparison, for each function sample, we guaran-

Table 3: Attack success rates of untargeted attacks

Model Tool
Backdoor Size

1 3 5 7

EKLAVYA PELICAN 55.33% 84.43% 92.93% 96.11%
MalMakeover 29.07% 57.31% 70.34% 76.64%

EKLAVYA++ PELICAN 60.49% 89.63% 92.63% 93.81%
MalMakeover 25.82% 58.13% 67.80% 75.61%

in_nomine PELICAN 42.85% 68.25% 83.75% 85.42%
MalMakeover 41.15% 67.85% 83.38% 85.37%

in_nomine++ PELICAN 47.26% 81.52% 87.65% 92.25%
MalMakeover 41.81% 85.19% 87.18% 91.22%

StateFormer PELICAN 45.09% 77.52% 89.51% 94.88%
MalMakeover 50.82% 84.30% 84.34% 84.41%
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Figure 15: Attack success rates of targeted attacks

tee that the edit distances of the function variants generated by
PELICAN and MalMakeover are equivalent with respect to the
original function. To calculate the edit distance, we compare
the original assembly sequence of the subject function to the
mutated sequence and consider each instruction as a unit for
the purposes of counting. Observe that PELICAN and Mal-
Makeover achieve comparable ASRs for untargeted attacks.
Specifically, MalMakeover slightly outperforms PELICAN on
in_nomine++ with a backdoor size of 3 and on StateFormer
with 1 and 3, while PELICAN achieves superior ASRs in the
other settings. Also note that for StateFormer, although Mal-
Makeover gets better ASRs with backdoor sizes of 1 and 3,
its attack performance reaches an upper bound ASR of 85%
when the backdoor size is larger than 3, while the ASR of PEL-
ICAN is close to 95% with a backdoor size of 7. We have also
conducted a comprehensive evaluation of the average time re-
quired by PELICAN and MalMakeover to launch a successful
untargeted attack. The parameters for backdoor size and the
number of micro-execution instances were set to 5 and 3, re-
spectively. Our results demonstrate that PELICAN requires an
average of 19.23 seconds per function to achieve a successful
untargeted attack, whereas MalMakeover requires only 7.68
seconds. It is worth noting that PELICAN necessitates an addi-
tional 30 minutes to generate an effective backdoor for each
model through trigger inversion. We have carried out further
investigation to understand the factors contributing to Mal-
Makeover’s efficient performance in this regard. We observe
that code displacement [104] is the most effective transforma-
tion. It moves a branching-free code piece to a new executable
section and fills the original place by a leading jmp instruction
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Figure 16: The relation between ASR and the underlying
training bias. R1 and R2 scores denote the sample-level and
feature-level bias, respectively. Random denotes a baseline
method that randomly selects trigger instructions.

(to redirect the control flow to the displaced code) and a set of
semantic-nop instructions (i.e., instructions that cumulatively
do not affect the memory or register values and have no side
effects). This is mainly because, when pre-processing data,
these binary analysis models do not take control-flow informa-
tion into consideration. Instead, they assume all instructions
of a function are contiguous in memory, and therefore con-
secutively collect instructions from the function entrypoint,
until the first instruction that belongs to another function. De-
spite being valid in most cases, the contiguity assumption is
broken by code displacement, where several instructions are
displaced to a distinct memory space. As a result, these binary
models can only access non-displaced instructions and under-
standably have an inferior performance. The success of Mal-
Makeover in untargeted attacks also suggests the de-facto ne-
cessity of a proper data pre-processing step when developing
binary analysis models, e.g., restoring displaced instructions.
Targeted Attack. Figure 15 depicts the performance of tar-
geted attacks against 5 models. The green, red, and gray bars
denote the ASRs of PELICAN, MalMakeover, and a baseline
approach that randomly selects backdoor instructions to inject
without trigger inversion, respectively. The target label of
EKLAVYA, EKLAVYA++, and StateFormer is “int", and that
of in_nomine and in_nomine++ is “init". We adapt the setting
of backdoor size 7. Observe that the best ASR MalMakeover
can achieve is close to 60% and its ASRs on in_nomine and
StateFormer are 3.92% and 1.24%, respectively. In compari-
son, PELICAN always achieves an ASR above 85% for all the
subject models. The baseline method performs the worst. We
further investigate the underlying reason of the superiority
of PELICAN in targeted attacks. As mentioned in Section 2,
many models undesirably learn some low-level syntactic
features. For example, StateFormer overfits on “add [r8],
esi" and always predicts a function’s first argument as “int"
as long as the function contains that add instruction (i.e.,

the trigger instruction). Note that PELICAN can effectively
identify trigger instructions via the syntax-aware trigger
inversion. Meanwhile, PELICAN’s semantic-preserving
trigger injection is able to inject arbitrary inverted trigger
instructions into the subject binary. On the other hand,
MalMakeover mutates binaries by performing a set of
pre-defined semantics-preserving transformations. These
pre-defined transformations can introduce a few typical types
of instructions (e.g., nop, push, and pop) into the subject
binary, while those in the trigger are beyond this scope. For
example, it is less likely for these transformations to precisely
produce the “add [r8], esi" instruction, rendering a
suboptimal ASR of MalMakeover on StateFormer.

6.4 Functionality Preservation
PELICAN employs a semantic-preserving trigger injection
technique to ensure that the functionality of the mutated bi-
naries is retained. In this study, we have conducted an em-
pirical examination of the preservation of functionality in
backdoor-injected binaries. Our dataset consists of binaries
from SPEC2000 [79], SPEC2006 [105], Binutils 2.39 [106],
and Coreutils 8.25 [107]. These datasets are well-suited for
our purposes as they come equipped with a large number
of comprehensive test cases. For each binary, we have ap-
plied 12 backdoor triggers (inverted from 12 non-disassembly
models), resulting in a total of 1800 mutated binaries. Our
attacks were executed under two distinct scenarios: with and
without access to the source code. In the former scenario,
PELICAN was integrated into the compilation toolchain and
inserted backdoor instructions into the compiler-generated
assembly code, which was then converted into binary form
by the default assembler. In the latter scenario, the subject
binaries were first disassembled into reassembleable assembly
code using datalog disassembly [78] and then instrumented
by PELICAN. The results show that, in the source-assisted
setting, all the mutated binaries produce the expected outputs
on the benchmark test cases, demonstrating the effectiveness
of PELICAN’s semantic-preserving trigger injection. In the
binary-only setting, 93.3% of the mutated binaries produce
the expected outputs, while the rest of them crash or produce
incorrect outputs. These failures are due to limitations in the
datalog disassembly process.

6.5 Why Backdoors Exist in These Models?
In this section, we investigate the underlying reason that back-
doors exist in the models of three classification tasks (i.e.,
function signature recovery, function name prediction, and
compiler provenance). The binary similarity models are not
used as their outputs are embedding vectors instead of some
specific labels. For each task, we select two models and a few
classes. Particularly, we study the relation between the attack
success rate and the training bias evaluated by two metrics:
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Figure 17: F1 score of the function boundary identification
by DeepDi [2], a closed-sourced commercial disassembler

sample-level bias and feature-level bias. The sample-level
bias (R1) calculates the ratio of target class samples in the
whole training set. The feature-level bias (R2) measures the ra-
tio between two computed percentages: the percentage of sam-
ples containing backdoor instructions in the target class, and
the percentage of samples containing backdoor instructions in
other classes. For instance, assuming there are n training sam-
ples, na class-A samples, k1 class-A samples containing the
inverted trigger instructions, and k2 non-class-A samples con-
taining the triggers, R1 = na

n and R2 = k1
na
/ k2

n−na
. The results

are shown in Figure 16. The x-axis denotes different target
classes where random denotes a baseline method that the
trigger instruction is randomly selected rather than inverted
by PELICAN. The y-axis presents the ratio values. The bars
show the ASRs on the test sets when using the correspond-
ing class as the target during trigger generation. The dashed
brown and blue lines show the results for the sample-level
bias (R1) and the feature-level bias (R2), respectively. We
have normalized the R1 and R2 scores for better visualization.
In Figure 16 (a), observe that the R2 line has a similar trend
as the ASR bars, indicating EKLAVYA overfits on a few dis-
tinctive instructions in each class. Specifically, for the target
class int, both ASR and R2 are high, meaning EKLAVYA
largely relies on the backdoor instructions (e.g., mov ebx,
edx) for predicting class int. Similar observations can be
made for other models as shown in Figure 16 (b)(c)(d)(e)(f).
The R1 line has the same trend but the trend is less signif-
icant, indicating a smaller contribution of the sample-level
bias. To better understand the root cause of the vulnerabil-
ities, we investigate a concrete case of EKLAVYA. Recall
that the trigger instruction of “mov ebx, edx" is able to mis-
guide EKLAVYA to incorrectly predict the subject function’s
third argument as an integer. According to the x64 calling
conventions [69], register rdx (i.e., the 64-bit extension of
edx) is used to pass the third argument, which is however
call-clobbered. Meanwhile, register rbx (i.e., the 64-bit ex-
tension of ebx) is a call-preserved general purpose register.
To consistently use the argument’s value, mainstream compil-
ers tend to load it into a call-preserved register. As a result,
“mov ebx, edx" is frequently used by functions whose third
arguments are 32-bit integers. It hence introduces natural bias
into the training dataset, where such “mov" instructions are
prevalent in the aforementioned functions but relatively rare
in the rest of the dataset. Without the awareness and a proper

remediation of such a bias, EKLAVYA undesirably relies on
the low-level syntactic features (i.e., the presence of “mov
ebx, edx") to make prediction, regardless of the underlying
program semantics. Also observe that the baseline attack (i.e.
random) performs poorly, rendering the importance of the
syntax-aware trigger inversion. Overall, this study suggests
that these models may focus on a few very distinctive in-
structions for prediction instead of relying on input semantics.
PELICAN can hence diagnose and exploit the vulnerability
by inverting the trigger instructions and injecting the triggers
back to the subject functions.

6.6 Additional Evaluation
We conducted additional evaluations to explore how the gen-
erated backdoor on one subject model can transfer to other
models and to study how the number of micro-execution in-
stances affects PELICAN’s performance. We also carry out
an adaptive defense where pre-trained models are hardened
(adversarially trained) with backdoor-injected data. Details
can be found in our supplementary material [51].

7 Case Study
In this section, we present a case study of a black-box attack
in which we launch transfer attacks on proprietary binary
analysis models. Specifically, we investigate the security of
DeepDi [2], a recently-proposed commercial disassembler.
Our results have been disclosed in a responsible manner, and
the authors of DeepDi have acknowledged the issue and are
working to improve their product.

DeepDi. DeepDi is a state-of-the-art GNN-based disassem-
bler, proposed by DeepBits Technology [108]. It achieves low
false positive and negative rates on both normal and obfus-
cated code. In this case study, the backdoor trigger is gener-
ated from XDA and the subject binaries are from SPEC2000.
The trigger comprises 3 bytes and is injected as padding bytes
before each function entrypoint. Figure 17 presents DeepDi’s
F1 score for function boundary identification. The green and
red bars denote benign and backdoor binaries, respectively.
The x-axis denotes the compilation flags, and the last two
columns show the average numbers. The y-axis denotes the
F1 score. Observe that our attack is most effective for binaries
compiled by O0, where the F1 scores have decreased from
99.19% to 2.13% and from 90.99% to 1.04% for 32-bit and
64-bit programs, respectively. On average, the F1 scores drop
from 91.64% to 16.67% after the backdoor attack, demonstrat-
ing the effectiveness of black-box attack. Note that DeepDi,
as a GNN-based model, is originally not within the scope of
PELICAN (i.e., sequence models). However, the hypothesis of
models overfitting on compiler-generated syntactic patterns
holds, which enables such a transfer attack towards DeepDi.
Further investigation shows that, the trigger, i.e., "85 e6 74”,
can be decoded as "test esi, esp; je XX” if followed by



an arbitrary byte "XX”. Note that test and je constitute a
common code pattern of encoding conditional statements,
inducing the misbehavior of DeepDi.

BinaryAI. We additionally launch transfer attacks on Bina-
ryAI [11], a binary code clone detection platform, and provide
detailed information on these attacks in our supplementary
material [51]. We responsibly reported these issues and were
informed that BinaryAI has recently implemented a new ar-
chitecture that is not affected by the reported issue.

8 Related Work
Backdoor Attacks. Backdoor attacks are a prominent secu-
rity threat to deep learning models. Researchers have demon-
strated launching such attacks against image recognition [32–
34], natural language processing [35–37], federated learn-
ing [109–113], reinforcement learning [114, 115], etc. Back-
doors can be injected in those systems through model poi-
soning [45–47] and neuron hijacking [52], or generated on
clean/benign models [30, 31]. PELICAN falls in the last cate-
gory, where the adversary has only the access to a pre-trained
model with a few samples. Existing natural backdoors mainly
focus on the computer vision domain. PELICAN targets the
binary code analysis task, which is orthogonal.

Adversarial Attacks against Malware Classifiers. Recently,
security vulnerabilities in DL-based malware classifiers have
drawn considerable attention. Researchers have proposed at-
tacks against malware classifiers, including backdoor attacks
via poisoning training dataset [96, 97, 116] and evasion at-
tack by generating adversarial samples [95, 117]. Compared
with these techniques, PELICAN explore the backdoor vulner-
abilities in naturally trained DL models for binary analysis,
another pivotal task in the cyber-security domain. Similar to
existing techniques, PELICAN advocates to use learning-based
techniques for security tasks with utmost care.

Program Synthesis. Program synthesis generates desired
programs according to partial specifications such as user-
provided input-output examples known as programming by
example (PBE) [118, 119], or complete specifications such as
reference programs [120]. Existing approaches utilizes SMT
solvers [121], Enumerative search [122], (Counterexample
Guided Inductive Synthesis) CEGIS [120], Syntax-Guided
Synthesis (SyGuS) [123] or conflict-driven [124]. Different
from their goal to synthesize a general program with user-
defined functionalities, ours is to synthesize a trojaned pro-
gram while ensuring the semantic equivalence.

9 Conclusion
We study the security of DL models used in binary code anal-
ysis, which have a lot of downstream security applications.
Our study shows that these models are quite vulnerable and
can be exploited by attackers. Our attack features a trigger
generation technique for these models that produces instruc-

tions causing the models to misclassify, and a trigger injection
technique that can preserve input program semantics.
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