
D-ARM: Disassembling ARM Binaries by
Lightweight Superset Instruction Interpretation and

Graph Modeling
Yapeng Ye†, Zhuo Zhang†, Qingkai Shi†, Yousra Aafer‡, Xiangyu Zhang†

†Purdue University, ‡University of Waterloo
{ye203, zhan3299, shi553}@purdue.edu, yousra.aafer@uwaterloo.ca, xyzhang@cs.purdue.edu

Abstract—ARM binary analysis has a wide range of appli-
cations in ARM system security. A fundamental challenge is
ARM disassembly. ARM, particularly AArch32, has a num-
ber of unique features making disassembly distinct from x86
disassembly, such as the mixing of ARM and Thumb instruc-
tion modes, implicit mode switching within an application,
and more prevalent use of inlined data. Existing techniques
cannot achieve high accuracy when binaries become complex
and have undergone obfuscation. We propose a novel ARM
binary disassembly technique that is particularly designed to
address challenges in legacy code for 32-bit ARM binaries. It
features a lightweight superset instruction interpretation method
to derive rich semantic information and a graph-theory based
method that aggregates such information to produce final results.
Our comparative evaluation with a number of state-of-the-
art disassemblers, including Ghidra, IDA, P-Disasm, XDA, D-
Disasm, and Spedi, on thousands of binaries generated from
SPEC2000 and SPEC2006 with various settings, and real-world
applications collected online show that our technique D-ARM
substantially outperforms the baselines.

I. INTRODUCTION

ARM is one of the two most popular architecture families
(the other is x86). Since it was introduced in the 1980s, it grad-
ually prevails due to its excellent balance between performance
and resource consumption. It dominates in mobile computing
as 95% of high-end smartphones are based on ARM [1]
and is also widely used in high performance computing [2].
With the extreme popularity of ARM devices, securing ARM
applications on such devices is hence critical. Just like x86
binary analysis is a key enabling technique for x86 software
security, ARM binary analysis is critical for ARM application
security. It serves a large number of downstream applications
such as ARM malware analysis [3], [4], ARM application
fuzzing [5], [6], ARM rewriting for application hardening [7],
[8], and ARM code debloating that reduces the footprint of an
application to achieve a smaller attack surface [9], [10].

A fundamental challenge in ARM binary analysis is ARM
disassembly, which is the critical first step of any binary
analysis. Compared to x86, ARM, particularly AArch32, poses
a number of unique challenges. For example, it supports
two instruction modes in the same 32-bit application, ARM
and Thumb, with the former high performance and the latter
compact. In other words, some instructions in a binary are
in ARM and the others are in Thumb. The mode switching
may be implicit, depending on values computed in registers

at runtime. It can occur anywhere and any time. The byte
sequence starting at an address can be decoded to different
instructions depending on the mode. In addition, inlined data
are more prevalent in both 32-bit and 64-bit ARM binaries.
ARM/Thumb instructions have fixed lengths that are much
smaller than x86 instructions. They hence have limited room to
encode immediate values (i.e., constants). As a result, such val-
ues are often present in memory as inlined data. Disassemblers
may have difficulty recognizing them and falsely disassemble
them to instructions.

There is a body of mature and effective works for x86
disassembly [11], [12], [13], [14], [15], [16]. However, they
have limited effectiveness when applied to ARM binaries. The
traditional linear sweeping disassemblers such as objdump [16]
and recursive control flow traversal based disassemblers, such
as IDA [11] and Ghidra [12], have difficulties handling
inlined data, implicit mode switching, and indirect control
flow transfer. P-Disasm [14] considers that each address may
potentially start an instruction and uses a probabilistic method
to compute posterior probabilities of addresses denoting true
instructions. The probabilities are computed based on a num-
ber of hints such as the number of definition-use relations
encountered. However, as shown by our results (Section VI),
the probabilities can hardly be used to correctly decide if an
instruction should be ARM or Thumb. Machine learning based
disassemblers such as XDA [13] learn how to disassemble
a binary by training on a huge set of samples. However,
they largely depend on the syntactic patterns in these samples
whereas implicit instruction mode switching is a complex
semantic property. As such, they may not work well when
binaries become complex (e.g., with obfuscation). Its F1 score
on obfuscated binaries can be as low as 2.83% (Section VI).

In this paper, we propose a novel technique for ARM binary
disassembly. We observe that a key challenge of recognizing
instruction mode switching can hardly be handled by syntax
based analysis. In addition, ARM code heavily uses load
and store instructions, causing substantial memory aliasing
and rendering simple local program analysis ineffective. We
hence propose a lightweight static analysis to collect rich
semantic information. The static analysis works on a superset
of instructions, meaning that it disregards the true mode for
a code address, which is unknown, and decodes the address
to instructions in both modes and interprets them accordingly

in an abstract domain. Here, we call the multiple instructions
(in different modes) that can be legally decoded at an address
the superset instructions for the address. The semantic infor-
mation derived by the static analysis (e.g., register, memory
dependencies, and indirect control flow) is further leveraged
by a phase of graph analysis to produce the final results. We
model the program as a graph, with multiple nodes created
for each address, denoting that the address shall be considered
as an ARM instruction, a Thumb instruction, and data bytes,
respectively. Edges are introduced between these nodes to
denote their inter-constraints based on the analysis results,
such as an address cannot be an ARM instruction and a
Thumb instruction at the same time and an ARM instruction
must be followed by another ARM instruction if there is no
mode switching. Then the disassembly problem is reduced to a
maximum weight independent set (MWIS) problem [17] that
maximizes the total weight while respecting the constraints.
Our contributions are summarized as follows.

• We develop a disassembly technique for ARM binaries.
It features a novel lightweight static analysis technique
that can interpret a binary without even knowing how to
correctly disassemble the binary.

• We also propose a novel graph modeling method for
ARM binaries. We formally prove that with the graph
model, we can reduce the ARM disassembly problem
to an MWIS problem, which is NP-hard. An existing
approximate solution then can be leveraged to derive the
final results.

• We implement a prototype D-ARM. We evaluate it on
more than 5000 binaries, including those compiled from
SPEC2000 and SPEC2006 with different compilation
options, architecture and instruction set configurations,
those collected online, and those undergone obfusca-
tion. We compare it with six baselines: Ghidra [12],
IDA [11], P-Disasm [14], XDA [13], D-Disasm [15],
and Spedi [18]. Our results show that D-ARM is almost
always the best performing tool, with an F1 score higher
than 95% in most cases. In the presence of substantial
obfuscation, the other tools have only 2.83-56.45% F1
scores whereas D-ARM still has 78.16-88.72%. Our case
study also shows that D-ARM can benefit downstream
binary rewriting with fewer execution failures and incor-
rect coverage reports. D-ARM is publicly available [19].

II. BACKGROUND

ARM is a family of Reduced Instruction Set Computing
(RISC) architectures, which are quite different from the Com-
plex Instruction Set Computing (CISC) architectures such as
the Intel x86 families. In this section, we introduce the main
features of ARM that may affect its disassembly.

A. Multiple Instruction Sets

There have been several generations of ARM architectures
in the past decades. Different architectures have different
features and support mixed instruction sets. The early ARM
versions are of 32-bit architecture (AArch32) and only use

the 32-bit ARM instruction set (A32). Since ARMv4T, the
Thumb instruction set is supported. It is 16-bit and aims
to improve compiled code density [20]. Since ARMv6T2,
additional 32-bit instructions are also introduced to extend the
Thumb instruction set (T32). ARMv8a provides an optional
64-bit architecture named “AArch64”, and also an associated
new ARM instruction set (A64) to provide the access to 64-bit
general-purpose registers. At the same time, it still maintains
compatibility with 32-bit architectures and inherits A32 and
T32. When an application is executed on an ARMv8 processor,
it could be in either the AArch32 state (using A32 or T32
instructions) or the AArch64 state (using A64 instructions). In
total, there are three instruction sets used by ARM binaries,
i.e., A32, T32, and A64. For discussion simplicity, we will
focus on the 32-bit ARM architecture, which uses A32 and
T32 instruction sets, while our system also supports A64.

Unlike x86/x64 that uses a single instruction set, a 32-bit
ARM binary usually contains both A32 and T32 instructions.
Note that T32 contains both 16-bit and 32-bit instructions. As
the A32 and T32 instructions share the same encoding space,
a sequence of four bytes could be decoded as either an A32
instruction or as one or two T32 instructions. This makes ARM
disassembly challenging.

B. ARM/Thumb Interworking

The A32 and T32 instructions provide almost the same
functionality. An ARM binary usually uses both instruction
sets together to achieve both high performance and better code
density. Although the A32 and T32 instructions do not overlap,
they may interleave. An ARM processor in operation can be
in the ARM mode, executing the A32 instructions, or in the
Thumb mode, executing the T32 instructions. The mode is
determined by the T bit in the Current Program State Register
(CPSR). When T is 0, the processor gets into the ARM mode,
1 the Thumb mode. The T bit can be set by the least significant
bit of a branch target in a branch instruction, e.g., by the branch
with link and exchange instruction (blx) and the branch and
exchange instruction (bx). Switching between the two modes
can be achieved explicitly or implicitly. For example, the
instruction blx label always changes the current mode,
while blx rm and bx rm set the T bit as the least significant
bit of the branch target in the register rm and may or may not
trigger the mode change. Some other instructions such as pop,
ldr/ldm and some arithmetic instructions may also change
the instruction mode implicitly, when writing into the program
counter register pc and causing a control transfer. With these
implicit mode switches, the instruction mode could only be
determined at runtime, which makes static disassembly very
challenging.

C. Inlined Data

Inlined data may cause a lot of false positives and false
negatives for disassembly. In x86/x64, it is believed that
inlined data is not prevalent [21] and, hence, may not be
that problematic in practice. However, this is not true in
ARM. As described above, the instructions in ARM binaries

are only 16 or 32 bits long. Constants in instructions, e.g.,
operands that are immediate, must be encoded as part of the
16 or 32 bits, which limit the range of constants that can
be used in a single instruction. When a constant cannot be
encoded as an immediate operand, ARM usually loads it from
memory and moves to a register as an operand. Thus, data are
commonly inlined in code sections and load/store instructions
are frequently used in ARM. In Section VI-A, we show that on
average 4.7% of an ARM binary is inlined data, substantially
more than an x86 binary, which usually has only 0-1% of
inlined data [21]. Note that, although 64-bit ARM binaries do
not have interleavings, AArch64 is still a RISC architecture
and introduces lots of inlined data.

III. MOTIVATION

In this section, we use an example to show the limitations
of existing disassembly techniques and motivate ours.

A. Motivating Example

Figure 1(a) presents a code snippet from bzip2 in
SPEC CPU2000, compiled with GCC -marm -O1
-march=armv7-a but slightly modified for the illustration
purpose. Its functionality is irrelevant. As mentioned in
Section II, A32 and T32 instructions are either 2-byte or
4-byte aligned. We list the 2-byte aligned virtual addresses
and the corresponding raw bytes in the hex form in the first
and the second columns, respectively. In the third and fourth
columns, we show all the instructions that could be legally
decoded starting from each address, respectively. Observe that
except the four bytes starting at 0x2dc20 that could not be
decoded as A32 instructions, all the other 4-byte sequences
could be decoded by both instruction sets.

The ground truth of the snippet, that is, the true instruction
sequences, is highlighted by the green boxes. It consists of
two code sections, one in ARM and the other in Thumb,
and an interleaved data section (in the second column starting
at 0x2dc20). The code starts in the ARM mode. In ARM,
individual A32 instructions can be used for conditional exe-
cution to save code space whilst improving performance. An
instruction with a conditional code suffix, e.g., the eq suffix,
reads the corresponding flag in the CPSR register, e.g., the
equivalence flag, to determine whether or not to be executed.
For example, the first cmp instruction (at address 0x2dbf8)
compares the value of register r6 and zero and sets the
corresponding conditional flag(s) in the CPSR register. The
pl suffix of the next instruction addpl at address 0x2dbfc
means “positive or zero”. It is executed only if the N (Negative)
flag in CPSR is disabled, i.e., r6 ≥ 0 in the first cmp
instruction. The eq suffix in the following instructions means
equivalence in a similar strain of denotation.

Within the conditional code zone (in the ARM box), the
instruction add r5, r7, r8, lsl #1 computes the re-
sultant value of r7 + r8 << 1 and stores it into r5. The
movw and movt instructions at addresses 0x2dc00 and
0x2dc04 set the lower and higher 16 bits of r6 separately to
make it 0x2dc25. The subsequent two instructions first set

r1 as the value pointed to by r5 via mov r1, r5, and then
store r6 into the target address in r1 via str r6, [r1].
Now the bytes at the memory address denoted by [r1] (also
[r5]) is 0x2dc25. Next, sub r6, #5 updates the value of
r6 to 0x2dc20 by subtracting it by 5, and ldr r6, [r6]
reads the 4-byte value located at r6, i.e., 0x2dc20, which
is actually the starting address of inlined data. At the end of
the ARM section, ldr r0, [r5] sets the value of r0 as
the bytes at [r5], which is 0x2dc25 according to the str
instruction at address 0x2dc0c. The target destination of the
instruction bx r0 is hence 0x2dc25, whose least significant
bit is 1. As mentioned in Section II-B, it branches to address
0x2dc24 and also switches to the Thumb mode.

B. Limitation of Existing Techniques

A variety of strategies and algorithms have been proposed
for binary disassembly. However, almost all of them [15],
[13], [14] are designed for x86/x64 binaries and could not
work well for ARM binaries in consideration of the features
we discussed in Section II. In this subsection, we show that
the interleaving of the two modes and the inlined data in
the example in Figure 1 (a) pose great challenges to existing
disassembly techniques.
Linear Sweep Disassembly. Linear sweep disassemblers,
such as Objdump, simply scan code sections and disassemble
instructions following the address order. However, it cannot
tell which instruction set to use even given the correct start ad-
dress of a code section, not to mention the complex instruction
set interleaving within instruction sequences. Also, inlined data
cannot be detected, incurring a lot of false positives (i.e., data
bytes are recognized as instructions). In our example, a linear
sweep disassembler may decode all bytes as T32 instructions.
Recursive Traversal Disassembly. Recursive traversal dis-
assembly starts from function entries and disassembles in-
structions following control flow edges. Many popular disas-
semblers, such as IDA [11] and Ghidra [12], are based on
this strategy to reduce false positives. However, the major
disadvantage of this strategy is that code blocks may be missed
if they are reached through indirect jumps or calls. In ARM,
this problem becomes more prominent due to the limited
immediate target range that could be used for direct branching,
as we discussed in Section II-C. For example, in Figure 1
(a), the recursive traversal disassembly may miss the Thumb
instructions starting at address 0x2dc24, as it is reached by
an indirect branch bx r0 at 0x2dc1c.
Probabilistic Disassembly. Probabilistic disassembly (P-
Disasm) [14] is a recent approach for binary disassembly
and rewriting. It generates a superset of instructions [22]
by considering each address in the code space as the start
address of some instructions, and then computes a probability
for each address to indicate its likelihood of being a true
positive instruction. Probabilities are computed from a set
of hints, including control flow convergence, control flow
crossing, and register definition-use relation. Its experiments
show that it has no false negatives and only 3.7% false
positives on x86 binaries.

cmp r6, #0

addpl r5, r7, r8, lsl #1

movweq r6, #0xdc25

movteq r6, #2

moveq r1, r5

streq r6, [r1]

subeq r6, #5

ldreq r6, [r6]

ldreq r0, [r5]

bx r0

<bad encoding>

andhs fp, r8, r8, lsl #10

0x2dbf8
0x2dbfa
0x2dbfc
0x2dbfe
0x2dc00
0x2dc02
0x2dc04
0x2dc06
0x2dc08
0x2dc0a
0x2dc0c
0x2dc0e
0x2dc10
0x2dc12
0x2dc14
0x2dc16
0x2dc18
0x2dc1a
0x2dc1c
0x2dc1e
0x2dc20
0x2dc22
0x2dc24
0x2dc26

ARM (0.99)
N.A. (0.98)
ARM (0.86)
Thumb (0.92)
Thumb (0.98)
N.A. (0.85)
Thumb (0.59)
N.A. (0.95)
ARM (1.00)
N.A. (1.00)
ARM (0.99)
N.A. (1.00)
ARM (0.97)
N.A. (1.00)
ARM (0.90)
N.A. (1.00)
ARM (0.58)
N.A. (1.00)
ARM (0.91)
N.A. (1.00)
Thumb (1.00)
Thumb (0.99)
N.A. (0.97)
Thumb (0.99)

00 00
56 e3
88 50
87 50
25 6c
0d 03
02 60
40 03
05 10
a0 01
00 60
81 05
05 60
46 02
00 60
96 05
00 00
95 05
10 ff
2f e1
1b 68
98 f8
08 65
08 20

Thumb (1.00)
Thumb (1.00)
Thumb (0.50)
Thumb (0.50)
ARM (0.50)
N.A. (0.50)
ARM (0.84)
N.A. (0.84)
Thumb (0.50)
Thumb (0.50)
ARM (0.50)
N.A. (0.50)
ARM (0.67)
N.A. (0.67)
ARM (0.73)
N.A. (0.73)
ARM (0.80)
N.A. (0.80)
ARM (0.94)
N.A. (0.94)
Thumb (1.00)
Thumb (0.99)
Thumb (1.00)
Thumb (1.00)

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

A

A

A

A

A

A

A

A

A

A

A

Address Data
Byte

ARM Decoding Thumb Decoding P-Disasm XDA D-ARM

movs r0, r0
b #0x6b2
str r0, [r1, r2]
str r7, [r0, r2]
ldr r5, [r4, #0x40]
lsls r5, r1, #0xc
str r2, [r0]
lsls r0, r0, #0xd
asrs r5, r0, #0x20
lsls r0, r4, #6
str r0, [r0]
lsls r1, r0, #0x16
str r5, [r0]
lsls r6, r0, #9
str r0, [r0]
lsls r6, r2, #0x16
movs r0, r0
lsls r5, r2, #0x16
vrhadd.u16 d14, d0, d31
b #0x2de80
ldr r3, [r3]
ldrb.w r6, [r8, #0x508]
push {r3, lr}
movs r0, #8

(a) Example Code Snippet (b) Baseline Tools’ Results (c) D-ARM
Fig. 1: Motivating example

In the superset instructions, there exist a lot of occluded
instructions that overlap with each other. P-Disasm is based
on an assumption that occluded instruction sequences tend
to quickly converge on true instructions (usually within four
instructions). Intuitively, it means that if the tool starts to
disassemble at the wrong address, it can quickly correct itself
and find a true starting address. This is a unique property of
x86 instruction set design. However, this is not true in ARM
binaries. As mentioned in Section II, both ARM and Thumb
instructions have fixed instruction lengths (2-byte aligned or
4-byte aligned). If initially the mode is wrong, such a mis-
take can carry on forever, without any self-correction ability.
To make the situation worse, the incorrectly disassembled
instruction sequences also have substantial control flow and
data flow hints that make them look legitimate. For example
in Figure 1(a), although the instructions from 0x2dbf8 to
0x2dc1f (20 bytes in total) are in the ARM mode, if
one disassembled them in Thumb, the resulting instructions
look legitimate. For example, there is a definition-use relation
between the instructions at 0x2dc0a and 0x2dc0c, and
between 0x2dc0e and 0x2dc10. Since these are hints
used by P-Disasm to decide validity, they cause substantial
confusion for the tool. We call the situation instruction set
occlusion, which exists for the entire code sections.

In Figure 1(b), the left column shows the outcomes of P-
Disasm, presented in the form of “type (prob)” where
prob is the computed posterior probability for the instruction
set type of that address, with N.A. for non-instruction. The
false positives are highlighted in red. We can see that, in
the Thumb instruction sequence, the general register r0 and
r5 happen to be defined and used for many times, which
makes many Thumb instructions (0x2dbf8 to 0x2dbfe and
0x2dc08 to 0x2dc0a) achieve high probabilities and causes

a lot of false positives. The lengthy occluded sequences also
make it more difficult for the probability computation to reach
a fixed point. In Section VI, our experiments show that the
ARM version of P-Disasm terminates for many binaries due
to memory explosion.

Another type of error is caused by inlined data. The false
instructions decoded from the inlined data could also have
many hints, supporting their legitimacy. This can lead to false
positives. In this case, the data section is decoded as two
Thumb instructions (0x2dc20 and 0x2dc22) by P-Disasm.
XDA. Besides the traditional rule-based algorithms, some
machine learning (ML) models have also been explored for
disassembly. XDA [13] is a recently proposed disassembly
framework based on transfer learning. It takes the raw bytes
as input and uses masked language modeling to learn machine
code dependencies. Then the pretrained model is further
finetuned for different downstream tasks, such as disassembly
and function boundaries recovery.

However, as a common issue of ML-based methods, it is
hard to interpret the models, which more often use syntactic
patterns instead of semantics when making predictions. For
example, the right column of Figure 1(b) shows the results of
XDA. Although the first two ARM instructions (0x2dbf8 and
0x2dbfc) are correctly identified, the Thumb instructions at
the following addresses (0x2dbfe to 0x2dc04) are falsely
given higher probabilities. This is possibly because the str
and ldr Thumb instructions are very common and learned
by the model. However, these errors could be avoided if
semantics were considered, as the ARM instruction add r5,
r7, r8, lsl #1 at 0x2dbfc does not change the mode
and the following instructions should stay in ARM. Even if
XDA learned some semantics, such information would be
very local. This is because XDA splits all bytes into fixed

length sequences (e.g., 512 bytes) as input and decodes these
sequences separately, which means the instructions along some
non-trivial control flow path may be cut into sequences and
the cross-sequence semantics are lost. Similar to P-Disasm,
XDA also decodes the 4 data bytes at 0x2dc20 as Thumb
instructions. When inlined data happens to share syntactic
forms with common instructions, e.g., the ldr instruction at
0x2dc20, they are likely classified as instructions by XDA.

C. Our Technique

Insights. Our tool is inspired by two important insights. The
first insight is that rich semantic constraints can be leveraged.
Specifically, the true instructions should satisfy certain con-
straints, e.g., two true instructions should not overlap with each
other, and instructions should or should not be decoded at the
same time. For example in Figure 1 (a), if the ARM instruction
cmp r6,#0 at 0x2dbf8 is true, the two Thumb instructions
movs r0, r0 and b #0x6b2 at the same addresses must
be false as they overlap with the ARM instruction. Also, at
the address 0x2dbfc, the ARM add instruction should be
decoded and the two Thumb str instructions should not,
because the prior cmp instruction does not change the mode
and it should hence still be in the ARM mode. Similarly, all the
following ARM instructions will be decoded until it reaches
the branch instruction bx r0 at 0x2dc1c. If we know the
value stored in r0 is 0x2dc25 (as explained in Section III-A),
the Thumb instruction push r3, lr at 0x2dc24 should
be decoded as the mode changes. There are also constraints
between instructions and inlined data. For example, if the
ARM instruction ldr r6, [r6] at 0x2dc14 is true, the
bytes at 0x2dc20 must be data when the memory address
denoted by r6 can be determined as 0x2dc20 (explained
in Section III-A), and the Thumb instruction at this address
hence false.

The second insight is that interpreting complex program be-
haviors can help find true instructions. As a RISC architecture,
ARM tends to use memory to store temporary variables. Such
memory behaviors usually occur within a local context (i.e.,
a consecutive instruction sequence without loop or recursion)
and can provide a wealth of information regarding indirect
branching, instruction mode switching, and data regions. For
example, if we can correctly interpret the ARM instructions
as the way we discuss in Section III-A, the memory address
for the ldr instruction at 0x2dc14 and the bx instruction
at 0x2dc1c can be determined, and also the corresponding
constraints mentioned above. In addition, lengthy occluded
sequences imply a large number of bogus hints, such as
the register definition and use hints used by P-Disasm. In
contrast, interpreting memory behaviors allows finding false
instruction sequences. For example, in the false Thumb in-
struction sequences in Figure 1 (a), the str instruction at
0x2dc10 overrides the same memory region after the str at
0x2dc0c (highlighted in blue) without any reading operation.
This meaningless behavior degrades the probability of the two
Thumb instructions and even other instructions in the sequence
being true.

ARM
Binary Instruction

Interpretation and
Analysis

Graph
Construction
and Solving

Binary w/
Semantic

Information

Disassembly
Results

Fig. 2: Architecture of D-ARM

Our Idea. Inspired by the above insights, we devise a two-
staged disassembly technique for ARM binaries. The archi-
tecture of D-ARM is shown in Figure 2. In the first stage,
a lightweight static analysis is used to interpret all superset
instructions and collect rich semantic information such as
memory accesses, indirect control flow, and dependencies.
In the second stage, we model the binary as a graph. For
each address, we define three nodes to denote that it could
be an ARM instruction, a Thumb instruction, or data. For
our example, as shown in Figure 1 (c), each address (e.g.,
0x2dbf8) has three nodes, namely, A denoting the address
being an ARM instruction, D data bytes, and T a Thumb
instruction. A weight value is derived for each node by
counting the number of semantic relations in which the node is
involved. Edges are further introduced to denote the semantic
correlations across nodes derived by the instruction interpreta-
tion. For example the edge between the A nodes at addresses
0x2dbf8 and 0x2dbfc denotes the control flow dictated
by the instruction order. The edge between A @0x2dc00
and D @0x2dc20/0x2dc22 denotes a memory access and
that between A @0x2dc1c and T @0x2dc24 denotes an
indirect control transfer. Here, only a subset of the edges
are shown for simplicity. Details of graph construction and
examples can be found in Section V. The disassembly problem
is then reduced to the problem of finding a maximum weight
independent set (MWIS) [17] in the graph. The MWIS
contains the richest semantic information and respects all
constraints denoted by the graph edges. It hence represents
the disassembly results. The graph problem can be solved
by a greedy algorithm. In our example, D-ARM successfully
identifies the two code regions and the inlined data.

IV. SUPERSET INSTRUCTION INTERPRETATION

The goal of the static analysis is to have a low-cost method
to model the behaviors of the target binary, especially its
memory behaviors. That is, a load from an address should
return the value defined by the closest store. As such, the
values at each instruction can be derived accurately, which is
critical for extracting higher-order semantic properties, such
as implicit instruction mode switches, memory dependencies,
and indirect control transfer targets. However, since addresses
are statically unknown, memory behavior modeling is very
difficult by conventional static analysis, e.g., a sound abstract
interpretation would produce over-approximation that leads
to a lot of bogus information, degrading our analysis. Our
overarching idea is to have lightweight modeling that facil-
itates derivation of program properties important for correct
disassembly over all superset instructions. Our analysis results
are neither over-approximation nor under-approximation. In

particular, it disregards if an instruction is true, which is
unknown. Instead, it pretends it is true and interprets it anyway.
We hence call it superset interpretation. It captures part of
memory behaviors at a low cost. We then rely on the graph
analysis stage to aggregate such partial information across
the whole program. The aggregation substantially suppresses
errors in the analysis stage and allows the true disassembly re-
sults to stand out. Intuitively, one can think of the second stage
as a massive voting step driven by the graph structure inherent
in the program, each superset instruction having its own vote
and all votes being aggregated following the graph structure.
Note that since the analysis is on all superset instructions,
including the false instructions, it produces a certain amount
of bogus information, i.e., infeasible program behaviors.

The static analysis is driven by a lightweight instruction in-
terpretation technique on an abstract domain. We use an affine
expression over a set of symbolic values to denote the abstract
values produced by the interpretation of a superset instruction.
When D-ARM cannot decide the abstract value at an instruc-
tion, e.g., when the instruction loads an external value or loads
from an address whose affine expression does not match the
expression of any preceding store (for example, because it is
not a true instruction), a symbolic value is introduced to denote
the value at that instruction. Any following computation using
this value leads to an affine expression with the symbolic
value. Two values are considered identical only when their
affine expressions are the same. This is somehow incomplete,
that is, equivalent values may have different affine expressions.
However, as discussed earlier, this is reasonable in our context
as errors can be tolerated in the graph analysis stage.

We derive rich semantics from the affine expressions. For
an indirect control transfer, we reduce/concretize an expression
of the target register to a set of constant values denoting the
possible targets. By identifying loads and stores that have
the same address value (and no intermediate stores to the
same address), we extract memory dependencies. However,
in most cases, the affine expressions do not directly provide
instruction mode information because the least significant bit
can hardly be statically determined if any symbolic value is
involved (except in some special cases, e.g., when it can be
determined that the values denoted by the symbolic expression
are divisible by 2). We hence leverage the control flow and
memory dependencies information in the later graph analysis
phase to infer instruction mode.

A. Language and Abstract Domain

Abstract Language. To facilitate discussion, we introduce a
low-level but abstract language to model ARM binaries. The
language is designed to illustrate our key ideas and, hence,
omits many irrelevant features of ARM. The implementation
of D-ARM, on the other hand, fully supports disassembling
real-world ARM binaries. The syntax of the language is
presented in Figure 3. A binary is denoted by a mapping from
⟨Address,InstrSet⟩ to an instruction where D-ARM
uses a non-negative integer Address to denote the virtual ad-
dress and a Boolean variable InstrSet to distinguish the dif-

⟨Binary⟩ B ::= ⟨a, i⟩ → I
⟨Instruction⟩ I ::= r :=E | r :=R(ra) | W(ra, rv)

| goto(a, i) | if rc goto(a, i)
| i-goto(rt) | if rc i-goto(rt)

⟨Expression⟩ E ::= r | c | r1 op r2 | r op c
⟨Register⟩ r ::= {sp, r0, r1, r2, . . . }
⟨Operator⟩ op ::= + | − | ∗ | ÷ | BitOp | . . .
⟨Const⟩ c ::= Z≥0

⟨Address⟩ a ::= Z≥0

⟨InstrSet⟩ i ::= 0 (ARM) | 1 (Thumb)

Fig. 3: A simple language for pre-disassembling binaries

ferent instruction modes of ARM. R(ra) and W(ra, rv) model
the memory read and write operations, respectively, where
register ra holds the memory address and rv holds the value
to write. A direct control transfer is modeled by goto(a, i).
The transfer target address is denoted by a and the instruction
mode after transfer is explicitly denoted by i. The guarded
goto, represented as if rc goto(a, i), models a conditional
statement in which the predicate outcome in register rc dictates
the transfer. Handling indirect control flow is particularly
challenging for disassembly (e.g., bx r0 in Figure 1(a)). D-
ARM uses i-goto(rt) and if rc i-goto(rt) to model
indirect jumps and conditional indirect jumps, respectively.
Register rt holds the target address of i-goto and the CPU
determines the new instruction mode by examining the last bit
of rt.

Abstract Domain. We describe D-ARM’s abstract domain
in the following. We introduce a symbolic value type called
address descriptor (AD).

Definition IV.1 (AD). An address descriptor AD⟨a, i⟩, where
a ∈ Address is a valid address in the virtual space of the given
binary B, and i ∈ InstrSet is a constant instruction mode,
denotes the value computed by the instruction I ≡ B [a, i].

Intuitively, AD⟨a,i⟩ is introduced when the abstract value
of instruction B [a, i] cannot be determined statically. Such
symbolic value can be used in the interpretation of following
instructions that rely on the result of this instruction.

Example. Table I presents a crafted example for the illustration
purpose. Above the table is a source code snippet taking an
integer array p and an index i as parameters and returning the
element p[i]. The three columns present the assembly code
decoded as A32 instructions, D-ARM’s low-level language
representation, and the evaluation results during the interpre-
tation, respectively. Each A32 instruction is preceded by its
address. Specifically, the address of p and the value of i are
held by r0 and r1, respectively. The first instruction loads
the value of p into r2 while the second one loads i into r3.
The third and fourth instructions compute the offset between
p[i] and p and store it into r4. In particular, r4 is first set
as 4, the size of an integer, and then multiplied by r3 (i.e.,
i). By adding r2 to the computed offset at address 10, r4 is
set to the memory address of p[i], namely &(p[i]). The
last instruction performs a pointer dereference of r4 to get
the value of p[i].

Observe that the value held by register r0 at address 00
cannot be determined statically because it is from the external

TABLE I: Example of abstract values
Source code:

int f(int p[], int i){ return p[i]; }
Assembly Code (ARM) Trace Evaluation Results

00. mov r2, r0 r2:=r0 AD⟨0,0⟩

04. mov r3, r1 r3:=r1 AD⟨4,0⟩

08. mov r4, #4 r4:=4 4

0c. mul r4, r3, r4 r4:=r3× r4 4× AD⟨4,0⟩

10. add r4, r4, r2 r4:=r4 + r2 AD⟨0,0⟩ + 4× AD⟨4,0⟩

14. ldr r0, [r4] r0:=R(r4) AD⟨14,0⟩

pc ∈ ProgramCounter ::= Address× InstrSet
EI ∈ ExploredInstr ::= { Address× InstrSet }
RS ∈ RegisterStore ::= Register → AbstractValue
MS ∈ MemoryStore ::= AbstractValue → AbstractValue
PS ∈ ProgramState ::=

⟨Address× InstrSet⟩ → ⟨RegisterState× MemoryState⟩
Fig. 4: Definitions for semantic rules

parameter p. D-ARM uses AD⟨0,0⟩ to represent the evaluation
outcome, where the first 0 denotes the address and the second
0 determines the instruction set is ARM. AD⟨4,0⟩ at address
04 represents i in a similar strain of denotation. □

Linear operations are faithfully interpreted such that the
abstract value for each (superset) instruction must be an affine
expression over a set of symbolic values. For operations
that we do not model, such as multiplications of operands
with non-constant affine expressions, new symbolic values are
introduced. Note that this is sufficient to model memory behav-
iors as address computations are linear. For instance, offsets
can be represented as affine expressions of index variables.

Definition IV.2 (V). An abstract value V is an affine expres-
sion over address descriptors, denoted by V ≡ c0 +

∑
k ck ×

AD⟨ak, ik⟩.

Example Continued. In Table I, “08. mov r4, #4” as-
signs a constant value to r4. Hence its abstract value is 4.
At address 0c, r3 is multiplied by r4, where r3 holds an
unknown external input i with an abstract value AD⟨4,0⟩. The
evaluation result is hence 4×AD⟨4,0⟩. Another unknown input
p is added to r4 at address 10. Hence the abstract value is
AD⟨0,0⟩ +4×AD⟨4,0⟩. The last pointer dereference at address
14 yields a new address descriptor AD⟨14,0⟩ as there is no
preceding store to the address AD⟨0,0⟩+4×AD⟨4,0⟩. □

B. Overall Procedure

Given a binary, the analysis selects a (superset) instruction
with the lowest address value that has not been interpreted
and performs interpretation. It then follows the control flow
behavior of the instruction to interpret the next until it reaches
an instruction that has been interpreted before. It then repeats
the process until all superset instructions have been interpreted.
This implies D-ARM interprets each loop body only once. If
the branch outcome of a conditional instruction cannot be de-
termined, D-ARM randomly chooses one, otherwise it follows
the program semantics. The interpretation process models both
register and memory reads and writes, e.g., supporting writing
an abstract value to an abstract address. Recall that ARM, as

Vx +Vy = (cx0 + cy0)+

∑
j

cxj ×AD⟨ax
j , ixj ⟩ +

∑
k

cyk ×AD⟨ay
k
, i

y
k
⟩


Vx −Vy = (cx0 − cy0)+

∑
j

cxj ×AD⟨ax
j , ixj ⟩ −

∑
k

cyk ×AD⟨ay
k
, i

y
k
⟩



Vx×Vy =


cx0 × cy0 +

∑
j c

x
j × cy0 ×AD⟨ax

j , ixj ⟩ if Vy = cy0
cx0 × cy0 +

∑
k cyk × cx0 ×AD⟨ay

k
, i

y
k
⟩ if Vx = cx0

⊤ otherwise

Vx÷Vy =


cx0 ÷ cy0 +

∑
j c

x
j ÷ cy0 ×AD⟨ax

j , ixj ⟩

if Vy = cy0 ∧ cy0 | gcd(cx0 , cx1 , . . .)
⊤ otherwise

BitOp(Vx, Vy) = ⊤
Fig. 5: Arithmetic operations over affine expressions. Without
loss of generality, we have Vx = cx0 +

∑
j c

x
j ×AD⟨ax

j , i
x
j ⟩ and

Vy = cy0 +
∑

k c
y
k ×AD⟨ay

k, i
y
k⟩.

a RISC architecture, tends to use memory to store temporary
variables, which often takes place within a local context (e.g.,
within a basic block or nearby basic blocks). The loop- and
recursion-free strategy allows the process to be lightweight.
The overall algorithm is elided due to its simplicity. Note that
our technique does not require a perfect control flow graph.
Instead, it just aims to interpret all instructions, including those
incorrectly disassembled, such that semantic information can
be collected for the later graph analysis. In particular, the static
analysis tries to traverse along a control flow path as far as
possible and concretizing indirect jump targets is just one of
such efforts. It does not hurt if jump targets are missing as the
analysis will select an uncovered address for the next round
of interpretation.

C. Abstract Semantics

In this section, we discuss the semantics of instruction inter-
pretation, that is, how individual instructions are interpreted.
Figure 4 introduces a number of definitions that are used in
the semantic rules. We use pc, namely program counter, to
denote the location of a superset instruction. In our context, pc
contains an additional constant instruction mode InstrSet,
to distinguish the different instructions (in different modes) at
the same address. EI denotes the set of interpreted superset
instructions. RS denotes the register store that maps a register
to its abstract value, and MS denotes the abstract memory store
that maps an abstract memory address value to an abstract
value (stored at that address). Program state, denoted by PS,
includes both the register and memory stores.

Figure 5 presents the rules for arithmetic operations over
abstract values (i.e., affine expressions), where we assume
two operands Vx and Vy . Addition and subtraction operations
are interpreted as the addition and subtraction of the affine
expressions of the operands. It is easy to infer that the
resulting abstract value is still affine. Multiplication can only
be interpreted if one of the operands is a constant c·0. The
result is the abstract value of the other operand multiplied by
c·0. Otherwise, the multiplication yields an unknown value ⊤

TABLE II: Interpretation rules
Rule Statement Actions

READ r := R(ra)
EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; v :=RS[ra]; RS[r] := (v≡⊥∨MS[v]≡⊥ ? ADpc : MS[v]);
pc :=pc.next(); PS[pc] :=⟨RS,MS⟩;

WRITE W(ra, rv)
EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; v :=RS[ra];
if (v ̸≡⊥) {MS[v] := (RS[rv] ≡ ⊥ ? ADpc : RS[rv]) ; }; pc :=pc.next(); PS[pc] :=⟨RS,MS⟩;

EXPR r := r1 op r2
EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; if (RS[r1]≡⊥∨RS[r2]≡⊥∨RS[r1] op RS[r2]≡⊤)
{RS[r] :=ADpc} else {RS[r] :=RS[r1] op RS[r2]}; pc :=pc.next(); PS[pc] :=⟨RS,MS⟩;

GOTO goto(a, i) EI :={pc} ∪ EI; if (B[⟨a, i⟩] ̸≡ ⊥) {PS[⟨a, i⟩] :=PS[pc]; pc :=⟨a, i⟩;} else {pc :=nil; };
I-GOTO i-goto(rt) EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; if (RS[rt]≡c0) {goto(c0 − c0 mod 2, c0 mod 2);} else {pc :=nil; };

IF-GOTO if rt goto(a, i)
EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; if (B[pc.next()] ̸≡⊥) {PS[pc.next()] :=⟨RS,MS⟩;};
if (B[⟨a, i⟩] ̸≡⊥) {PS[⟨a, i⟩] :=⟨RS,MS⟩; }; if (RS[rc] ̸≡c0) {pc :=(rand() ? pc.next() : ⟨a, i⟩)}
else {pc :=(RS[rc]≡0 ? pc.next() : ⟨a, i⟩)};

IF-I-GOTO if rc i-goto(rt) EI :={pc} ∪ EI; ⟨RS,MS⟩ :=PS[pc]; if (B[pc.next()] ̸≡⊥) {PS[pc.next()] :=⟨RS,MS⟩;};
if (RS[rc] ̸≡c0) {pc :=nil}; if (RS[rc]=0) {pc :=pc.next()} else {i-goto(rt)); };

which will be replaced by a new address descriptor during
interpretation. Note that the result is still an affine expression.
Division is similarly interpreted only when the divisor is a
constant and the coefficients of the dividend are all divisible
by the constant. Other operations are not interpreted and the
resulting value is ⊤.
Semantic Rules. The semantic rules are presented in Table II.
Upon interpreting an instruction, the current pc is marked
as interpreted, then RS and MS at the current program point
are updated based on the semantics of the instruction. After
the interpretation of an instruction, pc is first set as the
location of the next instruction (with the same instruction
mode) and the current RS and MS are then propagated to
the new pc, unless otherwise stated. Note that although D-
ARM interprets instructions in an abstract domain, it is
different from conventional abstract interpretation [23], which
performs join operations and usually weak updates due to
its soundness requirement. In contrast, D-ARM is unsound
and even interprets bogus instructions. The goal is to derive
sufficient semantic information for correct disassembly. Rule
READ describes the semantics of memory read. It first queries
the abstract address value v in register ra, denoted as RS[ra]. If
the value of register ra or the memory at the abstract address v
is not defined, a symbolic value ADpc is assigned to the target
register r, otherwise MS[v], the content at address v. Rule
WRITE describes the semantics of memory write. Similar to
memory read, it first examines the value v in register ra. If
v is valid, the memory MS[v] is updated as RS[rv] or ADpc

depending on whether register rv is defined or not. Note that
when v is not defined, a conventional abstract interpretation
technique [24] becomes remarkably onerous by updating the
memory content for all possible addresses, introducing a
large number of bogus memory behaviors and rendering the
interpretation results largely useless. The rationale is that
traditional analysis has to be conservative for its applications
such as compiler optimizations. However, in our context, we
prefer to suppress bogus behaviors, even with the cost of
missing some behaviors. Rule EXPR evaluates an assignment
with expression evaluation. If either register r1 or r2 is not
defined, or the evaluation results cannot be represented by an
affine expression over address descriptors, ADpc is assigned to
register RS[r]. Otherwise, it is set as the evaluation result of
the operation, following the rules in Figure 5. Rule GOTO sets
the program counter to the target location ⟨a, i⟩. Note that the

current MS and RS are propagated to the target location instead
of pc.next(). Rule I-GOTO describes the semantics of
indirect jumps. If the abstract value of register rt does not
contain any symbolic value, i.e., it is a constant c0, D-ARM
derives a goto(c0 − c0 mod 2, c0 mod 2) statement (i.e., by
simulating the behaviors of ARM CPU) and then interprets it.
Otherwise, D-ARM sets pc as nil and terminates this round
of interpretation. Note that even though D-ARM terminates
interpretation when the control transfer target is not constant,
the instructions at the target address will nonetheless be
interpreted, driven by the overall algorithm, which interprets
all superset instructions. In Rule IF-GOTO, D-ARM validates
the two outgoing branches and propagates the current RS and
MS to the valid one. If RS[rc] is not a constant, indicating
that D-ARM cannot determine the branch outcome statically,
a random branch is chosen. D-ARM resorts to the program
semantics otherwise. Similar to Rule IF-GOTO, Rule IF-I-
GOTO first examines the predicate RS[rc] and derives an
i-goto(rt) for further interpretation. A running example of the
analysis is presented in Appendix A.

V. GRAPH ANALYSIS

In the second stage, the binary is modeled as a graph. The
semantic information derived from the previous stage is de-
noted as edges and node weights. The disassembly problem is
hence reduced to a maximum weight independent set (MWIS)
problem in graph theory [17], aiming at finding an optimal
sub-graph that can satisfy a set of given constraints and
have the largest aggregated weight, i.e., expressing maximum
semantic information. The sub-graph denotes the disassembly
results. In the following, we first define the graph and then
explain how we solve it.

A. Nodes

For each address a, we introduce a node ⟨a, 0⟩ to denote
that it is an ARM instruction, a node ⟨a, 1⟩ to denote that
it is a Thumb instruction, and a node ⟨a,−1⟩ to denote a is
not an instruction, but rather inlined data. We denote all the
ARM (superset) instructions as NA, all the Thumb (superset)
instructions as NT , and all the data nodes as ND.

The node set N of the graph is hence the following.

Definition V.1 (N). N = NA ∪NT ∪ND.

... ...

0x2dbfc

!" !# !$

0x2dbfe

0x2dc00

0x2dc1c

0x2dc1e

0x2dc20

0x2dc22

0x2dc24

0x2dc26

......

%&&'ess

Fig. 6: Graph for the example in Figure 1(a)

Example. Figure 6 shows the generated graph model for the
bytes from address 0x2dbfc to 0x2dc26 in the motiva-
tion example in Figure 1(a). Only part of the edges are
displayed in Figure 6 for explanation simplicity. The ARM
node ⟨0x2dbfc, 0⟩, i.e., the node at the 0x2dbfc row and
NA column, represents the ARM add instruction at 0x2dbfc
in Figure 1(a). The Thumb node ⟨0x2dbfc, 1⟩, i.e., the
node at the 0x2dbfc row and NT column, represents the
Thumb str instruction at the same address. The inlined data
starting at address 0x2dc20 are represented as two data nodes
⟨0x2dc20,−1⟩ and ⟨0x2dc22,−1⟩.

B. Edges

We introduce two kinds of edges: implication edges EI

and conflict edges EC . The former is directed and the latter
undirected. An implication edge is from a node to another
if the former implies the latter. For example, the ARM
node ⟨0x2dbfc, 0⟩ in Figure 6 implies the ARM node
⟨0x2dc00, 0⟩, denoted by the solid directed edge between
the two, because if address 0x2dbfc is decoded to an ARM
instruction, the next address 0x2dc00 must be an ARM
instruction too as the former does not change the mode.

A conflict edge is introduced from a node to another node if
both cannot be true at the same time. For example, the ARM
node ⟨0x2dbfc, 0⟩ in Figure 6 conflicts with the Thumb node
⟨0x2dbfc, 1⟩ and with the data node ⟨0x2dbfc,−1⟩, de-
noted by the dashed undirected edges among them. Implication
edges are derived from the following three kinds of semantic
information acquired from the previous stage.

1. Explicit Control Flow Transfer. For most non-branching and
direct branching instructions, the next instruction and its mode
are explicit. As such, implication edges are introduced from
an instruction to its explicit control flow successor.
2. Implicit Control Flow Transfer. The static analysis may
disclose indirect control transfer targets. For example, the
target of bx r0 at 0x2dc1c in Figure 1(a) is known to
be 0x2dc25 as discussed in Section IV, thus an implication
edge is introduced in Figure 6 from node ⟨0x2dc1c, 0⟩ to
⟨0x2dc24, 1⟩.
3. Memory Access. An implication edge is added from an
instruction node to a data node if the former accesses the latter.

TABLE III: Ten representative program properties used for
counting the vertex weight

Type Property Explanation

Se
m

an
tic

s

Memory dependency A load instruction accesses the memory stored by
a preceding store instruction.

Array-like access An instruction accesses memory in the form
of “base + index × scale”.

Consecutive accesses A set of instructions access consecutive addresses.

Multi-level pointer
dereference A multi-level pointer dereference.

Temporary variable
loads

An instruction accesses a memory that is frequently
accessed by others.

Indirect jump target An instruction is the target of some indirect jump.

Sy
nt

ax

Register define-use An instruction defines the value of a register and
another instruction uses the register.

String-like data Consecutive data bytes constitute a null-terminated
and human-readable string.

Common jump target Multiple direct jump instructions share the same
target.

The edge set E of the graph is hence the following.

Definition V.2 (E). E = EI ∪ EC .

C. Node Weights
We discuss how the weight of each node is computed in

the following. Observe that the more semantic behaviors an
instruction exhibits, the more likely it is a true instruction.
Ideally, the weight value of a node should reflect the number
of semantic behaviors that it is involved in. To achieve this,
we count the number of semantic relations derived by the
static analysis in which the node is involved. Table III presents
the semantic relations that we consider. The three columns
present the type, either syntactic or semantic, the relation,
and the explanation, respectively. In particular, we consider
six semantic relations as follows. Memory dependency is a
basic relation indicating a pair of load and store instructions
access the same memory location. Note that such relations can
be derived by comparing abstract values in address operands.
Array-like access models the behavior of accessing an array
element by a specific addressing expression (e.g., p[i] in
Table I). The intuition is that false instructions are unlikely
to have such expressions. Note that this relation can be easily
determined by checking if an address operand has an affine
abstract value. Consecutive accesses are a relation across
instructions if they access consecutive addresses. It is common
in memory traversal functions (e.g., memcpy and strcpy),
but highly uncommon in false instructions. D-ARM also
considers multi-level pointer dereference, describing that a
pointer is dereferenced multiple times (e.g., int ***p).
Moreover, recall that ARM binaries tend to use temporary
variables. This is reflected by frequent loads from the same
memory location. We hence consider the temporary variable
loads relation denoting such accesses. Finally, the indirect
jump target relation describes instructions whose addresses
are indirect jump targets, as disclosed by the static analysis.
Note that different from P-Disasm, D-ARM’s static analysis
provides rich semantic constraints.

We also consider a few syntactic relations that can be
derived without interpretation. The register define-use relation
describes that an instruction defines a register and another

instruction uses the register. The string-like data relation
denotes a sequence of consecutive null-terminated and human-
readable date bytes, a common machine-level representation of
constant strings. Common jump target models an instruction
being the target of multiple direct control transfers.
Example. In Figure 1(a) the true ARM instruction at address
0x2dc18 is in a semantic memory dependency relation with
the instruction at 0x2dc0c (the green shadowed ones), and
in two syntactic relations, i.e., the register define-use relation
with the instructions at addresses 0x2dbfc and 0x2dc1c.
Hence, its weight is 3. □

D. Graph Problem and Solution

With the definitions, we reduce ARM disassembly to a con-
strained node selection problem in graph theory. Specifically,
each time a node is selected, two requirements should be satis-
fied. First, all the reachable nodes by implication edges should
also be selected. Second, all the adjacent nodes by conflict
edges must not be selected together. There may be more than
one satisfying solution. In this case, the selected nodes with
the maximum total weight denote a solution with the richest
semantics. We hence use that as the disassembly results. The
formal definition of the problem is given as follows.

Definition V.3 (AD). The ARM Disassembly task (AD) is to
find a subset N ′ ⊆ N with the maximum total weight p =∑

ni∈N ′ w(ni) such that:
• For each node ni ∈ N ′, all its reachable nodes by EI are

also in N ′. That is, ∀ni → nj ∈ EI , nj ∈ N ′ if ni ∈ N ′

• For each node ni ∈ N ′, all its adjacent nodes by EC are
not in N ′. That is, ∀ni, nj ∈ N ′, (ni, nj) /∈ EC

We reduce AD to a well-studied graph problem, maximum
weight independent set (MWIS) [17], and then leverage an
existing algorithm to find the (approximately) optimal solution.
MWIS tries to find a maximum-weighted subgraph G′ whose
nodes are not adjacent to each other in the original graph G.

Definition V.4 (MWIS). Given an undirected graph G =
(N,E), an independent set of the graph is a set of nodes such
that any pair of these nodes are not adjacent. That is, a subset
N ′ ⊆ N is an independent set if ∀ni, nj ∈ N ′, (ni, nj) /∈ E.
The Maximum Weight Independent Set problem (MWIS) is to
find the independent set with the maximum total weight in a
node-weighted undirected graph.

To reduce AD to MWIS, we replace directed implication
edges with undirected conflict edges. Intuitively, given an
implication edge that node ni implies node nj , node ni inherits
all the conflicts of node nj . Therefore, we replace the edge
ni → nj with edges from ni to all the conflicts of nj (and of
the other reachable nodes from ni). This is illustrated by an
example in Figure 7. The implication edge a0 → a4 in red on
the left is replaced with the two red dashed edges on the right.

Theorem V.1. The optimal solution of MWIS is equivalent to
the optimal solution of AD.

The proof of Theorem V.1 is given in Appendix B.

𝑁! 𝑁" 𝑁# 𝑁! 𝑁" 𝑁#
𝑎$

𝑎% 𝑡% 𝑑%

𝑎$

𝑎% 𝑡% 𝑑%

Fig. 7: Example of the graph transformation

MWIS is NP-hard. However, there are many approximate
solutions [17], [25], [26]. Considering the efficiency require-
ment, we adopt a greedy algorithm [25], which iteratively
selects a node of minimum weighted degree and removes it
and its neighbors. It was proved that the algorithm can achieve
a lower bound of max(W/(dw+1),W/(δw+1)), where W is
the total weight, dw is the weighted average degree, and δw is
the weighted inductiveness of the graph. Since the algorithm
is not our contribution, details are elided.

VI. EVALUATION

The evaluation of D-ARM addresses the following research
questions:

• RQ1: How does D-ARM compare to existing disassem-
blers with respect to precision, recall, and efficiency?

• RQ2: How does the static analysis improve the effective-
ness of our disassembler?

• RQ3: Is D-ARM still effective when disassembling
obfuscated binaries?

• RQ4: Can D-ARM benefit the downstream security
application of binary rewriting?

A. Experiment Setup

The SPEC Dataset. As shown in Table IV, our experi-
ments are conducted over a set of binaries built from SPEC
CINT2000 [28] and SPEC CINT2006 [29], two standard
benchmark suites widely used by prior works [30], [13]. Each
of the two suites contains twelve programs. For the first two
research questions, we build three groups of binaries, SPEC-
Basic, SPEC-Data, and SPEC-Inter, using two compilers, i.e.,
GCC-5.5 and Clang-11, with five optimization levels, i.e., from
O0 to O3, and Os. The benchmark programs are compiled to
binaries in two instruction sets, i.e., ARM and Thumb, with
the compiling options -marm and -mthumb. Considering the
various ARM architecture versions, we also choose two CPU
architectures, i.e., ARMv5t and ARMv7a, where the Thumb
instructions are 16-bit only in the former and 16/32-bit mixed
in the latter. Thus, we have 40 combinations of compiling
options and obtain a total of 480 binaries for SPEC CINT2000
and SPEC CINT2006, respectively.

As discussed in Section III, inlined data and ARM/Thumb
interleaving are the two main challenges for ARM disassembly
and the default compilation configurations of SPEC (SPEC-
Basic) are too simplistic to disclose the challenges. Real-world
ARM binaries are usually used in commercial devices and
applications, which are not public. It is difficult to acquire the
ground truth information needed in controlled experiments.
We hence generate two special SPEC datasets by different
compiling strategies to showcase the challenges. First, due to

TABLE IV: SPEC dataset information

Dataset Benchmark Architecture ISA Compiler # Binaries # Bytes and Percentage
of Inline Data

Basic SPEC 2000 ARMv5t, ARMv7a A32, T32 GCC-5.5, Clang-11 480 6,179,256 (4.6%)
SPEC 2006 480 14,246,186 (4.8%)

Data SPEC 2000 ARMv5t, ARMv7a A32, T32 GCC-5.5, Clang-11 480 21,187,922 (14.3%)
SPEC 2006 480 94,212,922 (25.0%)

Inter SPEC 2000 ARMv5t, ARMv7a A32, T32 GCC-5.5, Clang-11 480 6,188,036 (4.6%)
SPEC 2006 480 14,290,306 (4.8%)

AArch64 SPEC 2000 ARMv8a A64 GCC-5.5, Clang-11 110 141,760 (0.5%)
SPEC 2006 120 439,920 (0.5%)

Obfuscation SPEC 2000 ARMv5t, ARMv7a A32, T32 Clang-11 720 135,713,528 (31.9%)
SPEC 2006 717 327,412,564 (33.2%)

AOSP[27] Android libraries aosp arm-eng A32, T32 Clang-6 669 7,173,708 (6.9%)

the limitation of small binary size, the binaries in SPEC-Basic
may not contain substantial inlined data. Thus, we build SPEC-
Data with some special processing. That is, after compiling
every single source code file to an object file, we revise the
object file by renaming the data section (i.e., the .rodata
section) to .text.xxx, where xxx denotes a random char-
acter string. At link time, all data in the .text.xxx sections
will be merged into the code section. Thus, the produced
binaries contain substantial code and data interleavings. The
last column of Table IV shows that the binaries in SPEC-Data
contain 3.5× – 6.6× inlined data compared to SPEC-Basic.

Second, when building a program, SPEC compiles all files
with the same compilation options specified in its config file,
which makes each binary in SPEC-Basic and SPEC-Data
composed of instructions from a single instruction set, i.e.,
ARM by -marm or Thumb by -mthumb. However, a real
application may compile different parts separately with dif-
ferent instruction sets, considering the demand for either high
performance or better code density. Figure 13 (in Appendix)
depicts the ARM and Thumb breakdown for binaries from
real-world Android libraries, delineating the sheer quantity of
instruction mode interleavings in real-world applications. For
example, libneuralnetworks.so in AOSP is composed of 48%
ARM and 46% Thumb. There are 6250 bx/blx instructions that
could cause interleaving (3%). Thus, we also do some special
processing to build SPEC-Inter. Specifically, given a set of
source files, we compile them alternately using the options
-marm and -mthumb. The object files with ARM and Thumb
instructions are then linked together, producing binaries with
more ARM/Thumb interleavings. Note that we still follow
the normal compilation process without introducing additional
data or code. Compared to SPEC-Basic and SPEC-Data, the
binaries in SPEC-Inter have a better balance between ARM
and Thumb instructions. Both SPEC-Data and SPEC-Inter use
the same combination of compiling options as SPEC-Basic and
thus the same number of binaries as shown in Table IV. More
discussion about SPEC-Data and SPEC-Inter can be found in
our supplementary material [19].

In addition to the 32-bit architecture ARMv5t and ARMv7a,

we also build another group of binaries compiled for ARMv8a
(SPEC-AArch64), which is a 64-bit architecture and uses
the A64 instruction set. Except for one program in SPEC
CINT2000 that fails to be built for ARMv8a, we have 230
binaries in this dataset. With these binaries, we compare our
approach to a recent disassembler, D-Disam [15], which only
supports 64-bit ARM binaries.

For the third research question, we follow a seminal work on
obfuscation against disassembly [31] to obfuscate the binaries
in SPEC-Basic. The obfuscation works by injecting random
junk bytes after each direct branch and after probabilistically
selected non-branch instructions. The bytes are injected in a
way that they never get executed. We use three obfuscation
levels, i.e., r = 0%, 50%, and 100%, denoting the probabilities
when selecting non-branch instructions, where the higher level
indicates more inserted junk bytes. Note that the obfuscation
technique used here is different from typical obfuscators,
e.g., O-LLVM [32], which aim to increase the difficulty
of decompilation instead of thwarting disassembly. Also, it
was shown that O-LLVM does not incur much trouble for
disassemblers [13], [31]. We implement the obfuscator on
LLVM. Thus, this experiment is only carried out with Clang,
not GCC.
Real-world Android Binaries. Besides the SPEC datasets, we
also evaluate our tool on a public dataset of real-world ARM
binaries [27]. It contains 667 Android libraries built from the
Android Open Source Project version 9.0.8 with the default
target device option aosp arm-eng [33].

Ground truth is collected based on mapping symbols[27].
Implementations and Baselines. In D-ARM, we use Cap-
stone [34] to generate the superset instructions. Our su-
perset instruction interpretation is implemented based on
radare2 [35]. We select two state-of-the-art disassemblers, P-
Disasm and XDA, as the representatives of rule-based methods
and ML-based methods, respectively. P-Disasm only supports
x86 and cannot be used for ARM directly [30]. We hence
implement an ARM version of P-Disasm. As the models
provided by XDA are trained on x86/x64 binaries, we strictly
follow its settings and train two models, one on SPEC-Basic

TABLE V: Precision (P, %), recall (R, %), and the F1 score (%) of disassembling AArch32 binaries

Instructions

Dataset Benchmark Ghidra IDA P-Disasm XDA D-ARM
P R F1 P R F1 P R F1 P R F1 P R F1

Basic SPEC 2000 99.97 93.39 96.44 99.98 97.27 98.58 93.13 93.41 92.81 99.98 99.99 99.99 99.99 99.97 99.98
SPEC 2006 99.72 89.73 94.13 99.93 97.30 98.53 94.45 94.68 94.25 99.80 99.93 99.86 99.92 99.82 99.87

Data SPEC 2000 99.65 92.96 96.07 99.72 97.05 98.34 80.05 91.54 85.06 90.69 99.99 94.98 98.61 98.48 98.53
SPEC 2006 99.18 89.37 93.74 99.54 96.32 97.83 86.92 94.28 90.07 89.25 99.92 94.17 98.06 98.26 98.14

Inter SPEC 2000 99.97 92.61 95.98 99.95 96.36 98.08 89.77 88.43 88.54 99.93 99.93 99.93 99.95 99.90 99.93
SPEC 2006 99.96 89.54 94.17 99.92 96.50 98.13 91.57 90.70 90.66 99.70 99.73 99.72 99.84 99.67 99.76

AOSP Libraries 99.75 92.34 95.90 99.96 98.90 99.43 85.91 86.45 86.18 99.57 99.75 99.66 99.79 99.86 99.82

Reachable Blocks

Dataset Benchmark Ghidra IDA P-Disasm XDA D-ARM
P R F1 P R F1 P R F1 P R F1 P R F1

Basic SPEC 2000 98.45 80.25 88.41 91.74 90.45 91.09 82.33 88.16 85.14 99.32 99.84 99.58 99.27 99.77 99.52
SPEC 2006 93.34 65.09 76.69 90.78 89.83 90.29 73.79 78.92 76.26 95.16 98.22 96.67 97.75 98.98 98.36

Data SPEC 2000 90.12 80.17 84.78 91.21 89.28 90.24 80.05 87.97 83.81 69.20 99.75 81.69 91.10 97.04 93.93
SPEC 2006 90.41 64.83 75.50 90.21 89.01 89.59 68.26 79.84 73.59 84.33 98.02 90.59 87.35 95.99 91.33

Inter SPEC 2000 98.53 80.33 88.48 91.42 89.24 90.32 63.23 80.18 70.64 95.35 98.97 97.12 98.59 99.08 98.83
SPEC 2006 96.74 64.84 77.60 90.57 88.80 89.66 49.97 74.75 59.82 88.13 96.10 91.94 96.48 97.74 97.11

AOSP Libraries 72.48 74.05 73.26 70.59 79.60 74.83 68.45 73.47 70.87 87.56 94.94 91.10 95.10 97.42 96.25

2000 and the other on SPEC-Basic 2006. We use the former
to evaluate the datasets built on SPEC 2006 and the latter for
the datasets built on SPEC 2000. We also compare D-ARM
with IDA Pro 7.5.2 and Ghidra 10.0.1.
Evaluation Metrics. We evaluate the efficacy of different
disassemblers using three metrics, i.e., precision, recall, and
the F1 score, at two different granularities, i.e., the granularity
of instructions and the granularity of reachable blocks. Here,
a reachable block means a reachable control flow sub-graph
following explicit edges. Note that if a disassembly technique
cannot identify the entry point of a sub-graph, it misses the
entire reachable sub-graph. This metric hence aims to count
the missing sub-graphs. Precision is the ratio of the number of
correctly disassembled instructions/blocks to the total number
of disassembled instructions/blocks. Recall is the ratio of the
number of correctly disassembled instructions/blocks to the
total number of true instructions/blocks. F1 is computed from
the two.
Environment. All the experiments are run on a server
equipped with a 48-cores CPU (Intel(R) Xeon(R) Silver 4214
CPU @ 2.20GHz) and 188G memory. We set a fixed timeout
of 2 hours for the disassembly of each program.

B. RQ1: Accuracy and Efficiency

1) Comparing D-ARM with Ghidra, IDA, P-Disasm, and
XDA: Table V shows the precision, recall and the F1 scores
of the state-of-the-arts as well as our approach on the SPEC
datasets and AOSP. The highest F1 scores in each row are
highlighted. We can observe that D-ARM outperforms other
tools in almost all settings except for XDA on the simplest
dataset, SPEC2000-Basic, on which both XDA and D-ARM
achieve an F1 score close to 100%. Note that, although XDA

achieves high recall on SPEC-Basic and SPEC-Inter at the
instruction level, its precision degrades a lot on SPEC-Data,
which shows that XDA disassembles data bytes as instructions.
Also, its performance on reachable blocks proves that XDA
may not be able to consider sufficient semantics when making
predictions, as we discussed in Section III-B.

IDA and Ghidra have higher precision than recall, which
implies that they are better because they do not interpret data
as instructions. Actually, IDA utilizes a large set of manually
crafted rules in disassembly and is closed source. Based on
our experience and observations, IDA combines recursive and
linear disassembly. It finds function entries and then follows
control flow to disassemble, which leads to high precision.
However, if a function entry is not successfully identified, e.g.,
one can only be reached by indirect branches, it will generate
false negatives and degrade the recall. The strategy of starting
from function entries performs well on SPEC-Data, where
the inlined data lie between functions. However, in complex
binaries, e.g., the obfuscation discussed in Section VI-D, when
there are more inlined data within functions, IDA decodes
data as instructions and its precision degrades significantly.
D-ARM can deal with these challenging cases by solving the
implication constraints and conflict constraints in the graph
model. We have similar observations on Ghidra, while its
recall and F1 are lower than IDA and our approach.

In addition, we perform a sensitivity study regarding com-
pilation options, architecture versions, and instruction modes,
using SPEC-Basic and SPEC-Data. The results are shown
in Figure 8. D-ARM is insensitive to these settings and
consistently the best performing tool.

2) Comparing D-ARM with D-Disasm and Spedi: We
also compare D-ARM with two other disassemblers, D-

TABLE VI: F1 scores of recovering instruction boundaries and reachable blocks on obfuscated binaries

Dataset Obf. Level Instruction Boundary F1 (%) Reachable Blocks F1 (%)
Ghidra IDA P-Disasm XDA D-ARM Ghidra IDA P-Disasm XDA D-ARM

SPEC 2000
r=0 96.95 90.69 88.37 89.03 99.39 88.94 33.66 51.27 26.16 96.89

r=50 94.80 77.67 82.62 68.71 98.82 57.01 16.02 17.57 7.28 94.25
r=100 94.84 70.64 74.40 56.11 97.74 46.57 11.71 10.10 4.00 88.72

SPEC 2006
r=0 93.30 89.75 91.95 86.41 99.22 78.88 32.02 32.59 19.03 96.45

r=50 93.63 76.63 83.66 63.73 98.17 76.88 16.04 11.28 5.86 91.10
r=100 92.73 70.94 77.34 48.65 95.94 56.45 12.75 8.35 2.83 78.16

0.50

0.60

0.70

0.80

0.90

1.00

O0 O1 O2 O3 Os

Ghidra IDA P-Disasm XDA D-ARM

(a)

0.50

0.60

0.70

0.80

0.90

1.00

ARM Thumb

Ghidra IDA P-Disasm XDA D-ARM

(b)

0.50

0.60

0.70

0.80

0.90

1.00

ARMv5 ARMv7

Ghidra IDA P-Disasm XDA D-ARM

(c)
Fig. 8: The F1 scores (Y-axis) at different optimization levels (X-axis in (a)), for different instruction sets (X-axis in (b)), and
under different architectures (X-axis in (c)).

0

0.5

1

1.5

2

2.5

3

Ghidra IDA P-Disasm XDA D-ARM

Fig. 9: Time cost taken by different tools. Each value on Y-
axis is in log scale (log10(t+ 1), t is time in seconds).

Disasm [15] and Spedi [18], which are only able to disas-
semble a partial of our datasets. The evaluation results are
shown in Appendix C.

3) Efficiency: Figure 9 shows the time cost taken by D-
ARM and the baseline approaches on the AOSP dataset, which
is composed of real-world binaries. All the binaries (with
the largest 8.9MB) take D-ARM less than 650 seconds to
disassemble. Note that P-Disasm fails in disassembling more
than half of the binaries due to its high memory cost. The
failure rates are shown in the supplementary material [19].

C. RQ2: Effectiveness of the Static Analysis

To measure the effectiveness of our static analysis, we
conduct an ablation study where we disable the static analysis
from D-ARM and replace the instruction weights with those
produced by P-Disasm and XDA. We use P-Disasm+Graph
and XDA+Graph to denote the approaches where the interpre-
tation is replaced. Figure 10 shows the F1 scores of running
P-Disasm+Graph, XDA+Graph, and D-ARM over the three
datasets, SPEC-Basic, SPEC-Data, and SPEC-Inter. Observe
that D-ARM performs the best — the F1 score is always close

0.50

0.60

0.70

0.80

0.90

1.00

SPEC-Basic SPEC-Data SPEC-Inter

P-Disasm + Graph XDA + Graph D-ARM

Fig. 10: Results of the ablation study: the F1-scores (Y-axis)
obtained over different datasets (X-axis).

to 100%. In contrast, the F1 scores of both P-Disasm+Graph
and XDA+Graph degrade to below 90% on SPEC-Data and
P-Disasm+Graph degrades to below 90% on SPEC-Inter. This
indicates the importance of our static analysis.

D. RQ3: Effectiveness on Obfuscated Code

Obfuscating binary code is one of the main methods to
evade disassemblers. In this experiment, we evaluate how
well the tools can penetrate obfuscation. Table VI shows the
evaluation results (F1 scores) on the obfuscated code. At the
instruction level, the F1 score of D-ARM is consistently
higher than 95% and up to 99.39%, which is the best among
all disassemblers. In contrast, the F1 scores of most other
tools drop below 90%, even less than 50%, exhibiting weak
resistance to obfuscation. At the block level, the advantage of
D-ARM is more apparent as our F1 score is 9% to 2118%
higher than other tools. As an example, the F1 score of Ghidra,
the best performing tool among recent works, drops below
50% on SPEC 2000 (r = 100) while our F1 score is 88.72%.
This is because D-ARM is semantics oriented, due to its
instruction interpretation component.

0%

20%

40%

60%

80%

100%

Ghidra IDA P-Disasm XDA D-ARM

Correct Incorrect Feedback False Execution

Fig. 11: Percentages (Y-axis) of execution failure, incorrect
feedback, and correct binaries after rewriting with different
tools (X-axis).

E. RQ4: A Case Study on Binary Rewriting

We also conducted a case study to demonstrate the potential
improvement that our tool can bring to downstream security
applications. Specifically, static binary instrumentation plays
a crucial role in many security scenarios including binary-
only fuzzing [36], dynamic taint analysis [37], and COTS
program hardening [38]. Pathcerex [39] is a state-of-the-art
ARM-compatible instrumentation tool, originally developed
for DARPA’s Cyber Grand Challenge [40]. In the study, we
replace the underpinning disassembler in Patcherex with D-
ARM to perform static binary instrumentation. We evaluate
the new Patcherex on the SPEC2000 binaries and the real-
world Android daemons. The results show that the D-ARM-
based Patcherex has greater potential to safely rewrite binaries
and collect precise runtime information for fuzzing, compared
with the counterparts driven by other disassembly tools.

Patcherex adapts a trampoline-based instrumentation
method. That is, at each patch point, Patcherex patches a
set of instructions to detour the control flow to another
code region. The code region can be arbitrarily manipulated,
and hence the instrumentation code is executed there. The
control flow is detoured back after that. In this study,
we leverage Patcherex to realize the instrumentation of
AFL. AFL instruments a piece of code before every basic
block to monitor the path coverage, which further guides
seed mutation and, hence, is essential to gray-box fuzzing.
The instrumentation is built upon the assumption that
the upstream disassembler can correctly identify all the
instructions. However, such an assumption may not hold
in practice due to the limitation of existing disassemblers
described in Section III-B. Intuitively, incorrect disassembly
results can lead to both incorrect path coverage (e.g., some
basic blocks are not monitored due to false negatives of
disassembly) and execution failures (e.g., trampoline code in
ARM is patched inside Thumb or data regions).

We conduct experiments on two datasets, the SPEC2000
programs and the Android daemons. Note that all binaries in
the two datasets are produced with their default build system
without any change of the compilation tool-chains.
SPEC. First, we instrument the SPEC2000 programs, i.e., the
SPEC-Basic dataset used in Section VI-A, with the disassem-
bly results provided by different disassemblers. Then, we test

TABLE VII: Rewriting results for binaries compiled with
O3+mthumb+v7a

Binary Ghidra IDA P-Disasm XDA D-ARM
Exe FB Exe FB Exe FB Exe FB Exe FB

164.gzip ✓ ✗ ✓ ✗ ✗ - ✗ - ✓ ✓
175.vpr ✓ ✓ ✗ - ✓ ✗ ✗ - ✓ ✓
176.gcc ✓ ✗ ✗ - ✓ ✗ ✗ - ✗ -
181.mcf ✓ ✗ ✓ ✗ ✗ - ✓ ✓ ✓ ✓
186.crafty ✓ ✗ ✗ - ✓ ✗ ✗ - ✓ ✓
197.parser ✓ ✗ ✓ ✓ ✓ ✗ ✗ - ✓ ✗
252.eon ✗ - ✗ - ✓ ✗ ✗ - ✗ -
253.perlbmk ✗ - ✗ - ✓ ✗ ✗ - ✓ ✗
254.gap ✗ - ✓ ✓ ✓ ✗ ✗ - ✓ ✓
255.vortex ✓ ✗ ✗ - ✓ ✗ ✗ - ✓ ✓
256.bzip2 ✓ ✗ ✓ ✗ ✗ - ✗ - ✓ ✓
300.twolf ✓ ✗ ✗ - ✗ - ✗ - ✓ ✓

Success Rate 0.75 0.08 0.42 0.17 0.67 0.00 0.08 0.08 0.83 0.67

the rewritten binaries with all the test cases provided by SPEC.
According to the execution status and outputs, each binary is
labeled as one of the following.
1. Execution Failure. The binary is considered to fail in
execution if it crashes or generates inconsistent outputs with
the standard outputs provided by SPEC.
2. Incorrect Feedback. If the binary executes correctly, we
then compare the collected path coverage with the coverage
by instrumenting the ground-truth binaries (i.e., those correctly
disassembled). If they are different, the instrumented binary is
considered to provide incorrect feedback.
3. Correct. Otherwise, the binary is considered correct.

In Figure 11, we show the percentages of the three types
of instrumented binaries when using the disassembly results
provided by different tools. We can see that rewriting with
D-ARM can generate the most correct binaries (the dark
green bar) and also the fewest execution failures (the light
green bar). Note that IDA and XDA have fewer binaries of
incorrect feedback (the pink bar) because many binaries have
already failed in execution and will not be tested/counted for
incorrect feedback (no feedback at all). In an extreme case,
the superset disassembly will have a 100% false execution
and zero incorrect feedback.

In Table VII, we show the detailed results of a group of
binaries with the compiling options of O3 and mthumb, which
are usually more challenging than other options. We can see
that D-ARM has the highest success rate (i.e., passing both
checks). D-ARM fails in the executions of gcc and eon.
Ghidra and P-Disasm pass the execution checking for the two
binaries as they miss a lot of instructions and only provide
a few block entries for rewriting. With less rewriting, the
binary is highly likely to execute normally, while incorrect
path coverage will be collected. Also, unlike the (good) overall
success rate shown in Fig 11, IDA has a low success rate
in this group of binaries. This is because rewriting is very
sensitive to disassembly errors, and a small number of errors
may cause failures. IDA has good results on ARM instructions
but generates more errors on Thumb, as shown in Fig 8(b).

To better understand the influences of disassembly on

0x10c88: Thumb push {r4,r5,r6,r7,r8,
r9,r10,r11,lr}

0x10c8c: Thumb movw r3, #0xf018
0x10c90: Thumb ldr r4, [pc, #0x114]
0x10c92: Thumb sub.w sp, sp, #0x204

0x10c88: ARM svcmi #0xf0e92d

0x10c8c: ARM tsteq r8, #0xf0000004
0x10c90: DATA
0x10c92: DATA

Ground Truth IDA

(a) A snippet from 186.crafty leads to execution failures
0x16f7e: Thumb movs r0, #0x2
0x16f80: Thumb bl #0x00012a2c
0x16f84: Thumb push { r3, lr }
0x16f86: Thumb movw r4,#0xb330

0x16f7e: Thumb movs r0, #0x2
0x16f80: Thumb bl #0x00012a2c
0x16f84: DATA
0x16f86: DATA

Ground Truth IDA/Ghidra

(b) A snippet from 256.bzip2 leads to incorrect feedback
Fig. 12: Examples of errors in rewriting caused by incorrect
disassembly results

rewriting, we further investigate and show some failure cases
from the binaries in Table VII. Fig 12a shows the start of
the main function which should be four Thumb instructions.
However, IDA mistakes them as two ARM instructions fol-
lowed by data. Given the disassembly results, the trampoline
code patched at address 0x10c88 contains ARM instructions.
Then the binary fails in execution due to the wrong execution
mode. In Fig 12b, both IDA and Ghidra miss the function entry
at the address 0x16f84, which is only reached by indirect
branches. Then during rewriting, 0x16f84 is not considered
as the block entry and no instrumentation is conducted.
Although the execution is successful, the path coverage is
incorrect. Note that for both examples, crafty and bzip2, the
instrumented binaries based on D-ARM are correct.
Android Daemons. Besides SPEC, we also study a set of
Android daemons, as these real-world ARM binaries may
contain more instruction set interleavings and inlined data.

Unlike SPEC programs, Android daemons usually do not
have standard input or output, and many of them usually work
as background processes, which makes it hard to automatically
test them. Thus, we randomly select 10 well-known daemons
whose execution status could be observed directly or probed
by executing some applications, which require the service
provided by the daemons. The daemons we test are listed in
the first column in Table VIII.

In this evaluation, we use a rooted Nexus-6p with Android
9. After rewriting a daemon, we replace the original one
in the phone with the generated binary, reboot, and then
run the daemon or its corresponding applications. Specifi-
cally, audioserver, cameraserver, and mediaserver are started
automatically during the boot process. As such, an invalid
audioserver makes the boot process failed. Systems can boot
correctly with an invalid cameraserver or mediaserver, while
opening the corresponding applications, e.g., the camera app,
can trigger a crash. Other daemons could be executed directly
and their execution status can be observed.

As shown in Table VIII, except screenrecord and sqlite3,
which are challenging for all disassemblers, the instrumented
daemons based on D-ARM do not report any error, while
Ghidra, P-Disasm, and XDA fail for all daemons. This proves
that, compared with other disassemblers, D-ARM provides
much more accurate disassembly results for downstream ap-

TABLE VIII: Results of rewriting Android daemons

Binary Ghidra IDA P-Disasm XDA D-ARM

atrace ✗ ✗ ✗ ✗ ✓
dumsys ✗ ✓ ✗ ✗ ✓
bootanimation ✗ ✗ ✗ ✗ ✓
reboot ✗ ✓ ✗ ✗ ✓
ping ✗ ✓ ✗ ✗ ✓
screenrecord ✗ ✗ ✗ ✗ ✗
sqlite3 ✗ ✗ ✗ ✗ ✗
audioserver ✗ ✗ ✗ ✗ ✓
cameraserver ✗ ✓ ✗ ✗ ✓
mediaserver ✗ ✓ ✗ ✗ ✓

plications such as rewriting even on real-world binaries.

VII. RELATED WORK

Disassembly is a critical step for understanding closed-
source code and can be done via static [15], [13], [14]
and dynamic [41] techniques. Besides the state-of-the-art
disassemblers [13], [14], [11], [12], [18] we have exten-
sively discussed in Section III-B, there are also some other
tools studied in previous works. Objdump [16], PSI [42],
and Uroboros [43] use linear sweep for disassembly, while
Dyninst [44], Angr [45], BAP [46], and Radare2 [35] are
based on recursive traversal disassembly. Besides the two basic
disassembly strategies, different tools usually adopt different
sets of algorithms or heuristics to improve the results. There
have been a lot of systematization studies qualitatively or/and
quantitatively evaluating these tools [21], [47], [48], [49], [50].
However, most previous works on disassembly focus on x86
binaries [15], [13], [14]. M. Jiang et al. [27] empirically
investigated existing disassemblers for ARM binaries. The
study demonstrates that recent works often cannot address
ARM-specific challenges induced by substantial inlined data
and ARM/Thumb interleavings. Our work takes the first step
to address both challenges and the evaluation results are
promising.

VIII. CONCLUSION

We propose a novel method for ARM disassembly. It lever-
ages a lightweight static analysis that interprets all the superset
instructions, i.e., all the possible instructions (in different
modes) for each address and generates initial information for
instruction modes. It then models the program with a graph
and reduces the disassembly problem to a maximum weight
independent set problem, which can be solved using an exist-
ing approximate algorithm. Our system D-ARM substantially
outperforms six state-of-the-art disassemblers.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments and suggestions. This research was supported, in
part by DARPA VSPELLS - HR001120S0058, NSF1901242
and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions in
this paper are those of the authors only and do not necessarily
reflect the views of our sponsors.

REFERENCES

[1] “Smartphone processors,” https://www.arm.com/solutions/mobile-
computing/smartphones.

[2] “Fugaku,” https://tinyurl.com/3sy8hus3.
[3] A. Darki, M. Faloutsos, N. Abu-Ghazaleh, M. Sridharan et al., “Idapro

for iot malware analysis?” in 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19), 2019.

[4] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debug-
ging on arm,” in 26th USENIX Security Symposium (USENIX Security
17), 2017.

[5] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” arXiv preprint arXiv:2105.05445, 2021.

[6] C. Zhang, Y. Wang, and L. Wang, “Firmware fuzzing: The state of the
art,” in 12th Asia-Pacific Symposium on Internetware, 2020.

[7] L. Di Bartolomeo, “Armwrestling: efficient binary rewriting for arm,”
Master’s thesis, ETH Zurich, 2021.

[8] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great
again.” in NDSS, 2017.

[9] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “Razor:
A framework for post-deployment software debloating,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019.

[10] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis, “Nibbler: debloating binary shared libraries,” in Proceedings of the
35th Annual Computer Security Applications Conference, 2019.

[11] “Ida pro,” https://hex-rays.com/ida-pro/.
[12] “Ghidra,” https://ghidra-sre.org/.
[13] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “Xda: Accurate,

robust disassembly with transfer learning,” in 28th Annual Network and
Distributed System Security Symposium, NDSS 2021, virtually, February
21-25, 2021. The Internet Society, 2021.

[14] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Proba-
bilistic disassembly,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019.

[15] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[16] “The gnu binary utilities - objdump,” https://web.mit.edu/gnu/doc/html/
binutils 5.html.

[17] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms
for the maximum weighted independent set problem,” Discrete applied
mathematics, vol. 126, no. 2-3, 2003.

[18] M. A. B. Khadra, D. Stoffel, and W. Kunz, “Speculative disassembly of
binary code,” in 2016 International Conference on Compliers, Architec-
tures, and Sythesis of Embedded Systems (CASES). IEEE, 2016.

[19] “D-arm,” https://github.com/yapengye/D-ARM.
[20] “Armv4t,” http://ww1.microchip.com/downloads/en/DeviceDoc/

DDI0029G 7TDMI R3 trm.pdf.
[21] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos,

“An in-depth analysis of disassembly on full-scale x86/x64 binaries,” in
25th USENIX Security Symposium (USENIX Security 16), 2016.

[22] E. Bauman, Z. Lin, K. W. Hamlen et al., “Superset disassembly:
Statically rewriting x86 binaries without heuristics.” in NDSS, 2018.

[23] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 1977.

[24] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in International conference on compiler construction.
Springer, 2004.

[25] A. Kako, T. Ono, T. Hirata, and M. M. Halldórsson, “Approximation
algorithms for the weighted independent set problem,” in International
Workshop on Graph-Theoretic Concepts in Computer Science. Springer,
2005.

[26] S. Lamm, C. Schulz, D. Strash, R. Williger, and H. Zhang, “Exactly
solving the maximum weight independent set problem on large real-
world graphs,” in 2019 Proceedings of the Twenty-First Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 2019.

[27] M. Jiang, Y. Zhou, X. Luo, R. Wang, Y. Liu, and K. Ren, “An empirical
study on arm disassembly tools,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2020.

[28] J. L. Henning, “Spec cpu2000: Measuring cpu performance in the new
millennium,” Computer, vol. 33, no. 7, 2000.

[29] ——, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH Com-
puter Architecture News, vol. 34, no. 4, 2006.

[30] “Probabilistic disassembly,” https://github.com/KennethAdamMiller/
superset disassembler.

[31] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and communications security, 2003.

[32] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–
software protection for the masses,” in 2015 IEEE/ACM 1st International
Workshop on Software Protection. IEEE, 2015.

[33] “Android open source project,” https://source.android.com/.
[34] “The ultimate disassembler,” https://www.capstone-engine.org/.
[35] “Radare2,” https://github.com/radareorg/radare2.
[36] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,

“Breaking through binaries: Compiler-quality instrumentation for better
binary-only fuzzing,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[37] S. Chen, Z. Lin, and Y. Zhang, “Selectivetaint: Efficient data flow track-
ing with static binary rewriting,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[38] P. Kiaei, C.-B. Breunesse, M. Ahmadi, P. Schaumont, and
J. Van Woudenberg, “Rewrite to reinforce: Rewriting the binary
to apply countermeasures against fault injection,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.

[39] “patcherex,” https://github.com/angr/patcherex.
[40] “2016 cyber grand challenge,” https://en.wikipedia.org/wiki/2016

Cyber Grand Challenge.
[41] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “Stochfuzz:

Sound and cost-effective fuzzing of stripped binaries by incremental and
stochastic rewriting,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021.

[42] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform for
secure static binary instrumentation,” in Proceedings of the 10th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, 2014.

[43] S. Wang, P. Wang, and D. Wu, “Uroboros: Instrumenting stripped
binaries with static reassembling,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1. IEEE, 2016.

[44] “Dyninst,” https://www.dyninst.org/.
[45] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[46] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011.

[47] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021.

[48] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016.

[49] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From hack to
elaborate technique—a survey on binary rewriting,” ACM Computing
Surveys (CSUR), vol. 52, no. 3, 2019.

[50] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-version
disassembly: differential testing of x86 disassemblers,” in Proceedings
of the 19th international symposium on Software testing and analysis,
2010.

[51] Y. Smaragdakis and M. Bravenboer, “Using datalog for fast and easy
program analysis,” in International Datalog 2.0 Workshop. Springer,
2010.

https://www.arm.com/solutions/mobile-computing/smartphones
https://www.arm.com/solutions/mobile-computing/smartphones
https://tinyurl.com/3sy8hus3
https://hex-rays.com/ida-pro/
https://ghidra-sre.org/
https://web.mit.edu/gnu/doc/html/binutils_5.html
https://web.mit.edu/gnu/doc/html/binutils_5.html
https://github.com/yapengye/D-ARM
http://ww1.microchip.com/downloads/en/DeviceDoc/DDI0029G_7TDMI_R3_trm.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DDI0029G_7TDMI_R3_trm.pdf
https://github.com/KennethAdamMiller/superset_disassembler
https://github.com/KennethAdamMiller/superset_disassembler
https://source.android.com/
https://www.capstone-engine.org/
https://github.com/radareorg/radare2
https://github.com/angr/patcherex
https://en.wikipedia.org/wiki/2016_Cyber_Grand_Challenge
https://en.wikipedia.org/wiki/2016_Cyber_Grand_Challenge
https://www.dyninst.org/

TABLE IX: Instruction interpretation example

Step pc Assembly Code Trace
Actions

RS MS Jump Target

1 ⟨0x2dbfc, 0⟩ add r5, r7, r8 r5:=r7+r8 [r5]=AD⟨0x2dbfc,0⟩ - -

2 ⟨0x2db00, 0⟩ movw r6, #0xdc25
r6:=0x2dc25 [r6]=0x2dc25 - -⟨0x2db04, 0⟩ movt r6, #0x2

3 ⟨0x2db08, 0⟩ mov r1, r5 r1:=r5 [r1]=AD⟨0x2dbfc,0⟩ - -
4 ⟨0x2db0c, 0⟩ str r6, [r1] W(r1, r6) - [AD⟨0x2dbfc,0⟩] :=0x2dc25 -
5 ⟨0x2db10, 0⟩ sub r6, #5 r6:=r6−5 [r6] = 0x2dc20 - -
6 ⟨0x2db14, 0⟩ ldr r6, [r6] r6:=R(r6) [r6] = 0xf898681b - -
7 ⟨0x2db18, 0⟩ ldr r0, [r5] r0:=R(r5) [r0] = 0x2dc25 - -
8 ⟨0x2db1c, 0⟩ bx r0 i-goto(r0) - - ⟨0x2db24, 1⟩
9 ⟨0x2db24, 1⟩ push {r3, lr} - - - -

APPENDIX

A. Running Example of the Superset Instruction Interpretation

Consider the example in Table IX which is derived from
the code snippet in Figure 1(a) with all conditional suffixes
removed. The interpretation step, pc, assembly code, trace in
our language, and the interpretation actions are shown in the
columns from left to right, respectively. Since registers r7 and
r8 hold an unknown value, a symbolic value AD⟨0x2dbfc,0⟩ is
assigned to RS[r5]. In the second step, a constant 0x2dc25
is assigned to RS[r6]. Register r1 inherits the abstract value
AD⟨0x2dbfc,0⟩ from r5 in the next step. The fourth step
stores the value in register r6 into the memory denoted
by [r1]. Specifically, 0x2dc25 is written to the memory
MS[AD⟨0x2dbfc,0⟩]. At step 5, register r6 is updated to
0x2dc20 and a pointer dereference of it then takes place at
step 6. Note that the abstract value of register r6 is a constant
so that D-ARM reads the data bytes from the corresponding
virtual address. As shown in Figure 1(a), MS[0x2dc20] =
0xf898681b. Step 7 sets the value of r0 to the data in
[r5]. Observe that the value of r5 is AD⟨0x2dbfc,0⟩ which
matches a preceding memory store at step 4, and r0 is hence
set accordingly. At step 8, the interpreter determines that the
indirect jump target r0 holds a constant 0x2db25 with a least
significant bit 1, and hence switches the instruction mode to
Thumb and jumps to 0x2db24.

B. Proof of Theorem V.1

First, we give a detailed definition of the transformation
from AD to MWIS by replacing directed edges EI with
undirected edges EI→C .

Predicate A.1 (R). R(ni, nj) denotes if nj is reachable from
ni by EI . An inductive definition of predicate R is as follows,

1) ∀ni ∈ N,R(ni, ni).
2) ∀ni, nj , nk ∈ N , R(ni, nj)∧⟨nj , nk⟩ ∈ EI → R(ni, nk)

Predicate R is reflexive and transitive by its definition. That
is, ∀ni, nj , nk ∈ N it must satisfy:

• Reflexivity: R(ni, ni), i.e., every node is reachable from
itself.

• Transitivity: if R(ni, nj) ∧R(nj , nk), then R(ni, nk).

Definition A.1 (T). T : GAD → GMWIS, denoting the
transformation from GAD = (N,EI , EC) to GMWIS =

(N,∅, EC ∪ EI→C) by replacing directed edges EI with
undirected edges EI→C . Specifically, ∀nas

, nat
, nbs , nbt ∈ N ,

s.t. (nat
, nbt) ∈ EC ∧R(nas

, nat
)∧R(nbs , nbt), (nas

, nbs) ∈
EI→C .

Then Theorem V.1 can also be defined as follows.

Theorem A.1. Assuming the optimal solution of AD in GAD
is N ′

AD
, and the one of MWIS in GMWIS = T (GAD) is N ′

MWIS
,

N ′
AD

= N ′
MWIS

.

The proof of Theorem A.1 is given as follows.

Proof.

1) First, we prove N ′
AD

is also an independent set of GMWIS.
∀ni, nj ∈ N ′

AD
,

a) According to the definition of AD, as ni, nj ∈ N ′
AD

, we
have (ni, nj) /∈ EC .

b) Assume (ni, nj) ∈ EI→C . According to the definition
of T , ∃nat , nbt , s.t. (nat , nbt) ∈ EC ∧ R(ni, nat) ∧
R(nj , nbt).
As ni ∈ N ′

AD
and R(ni, nat

), nat
must be in N ′

AD
.

Similarly, nbt is also in N ′
AD

.
Thus, both nat

and nbt are in N ′
AD

. We can have
(nat , nbt) /∈ EC . Contradiction.
Therefore, (ni, nj) /∈ EI→C

c) According to a) and b), ∀ni, nj ∈ N ′
AD

, (ni, nj) /∈ EC

and (ni, nj) /∈ EI→C . Thus, N ′
AD

is also an independent
set of GMWIS.

2) Second, we prove N ′
MWIS

is also a solution of AD in GAD.

a) ∀ni, nj ∈ N ′
MWIS

, according to the definition of MWIS,
(ni, nj) /∈ EC .

b) ∀ni ∈ N ′
MWIS

, we are going to prove that ∀nj ∈ N s.t.
⟨ni, nj⟩ ∈ EI , nj ∈ N ′

MWIS
by contradiction. We assume

∃nj s.t. ⟨ni, nj⟩ ∈ EI and nj /∈ N ′
MWIS

.
i) ∀nk s.t. (nj , nk) ∈ EC , as R(ni, nj) and R(nk, nk),

according to the definition of T , we can have
(ni, nk) ∈ EI→C . Thus, nk /∈ N ′

MWIS
.

ii) ∀nk s.t. (nj , nk) ∈ EI→C , according to the defini-
tion of T , ∃njt , nkt

∈ N , s.t. (njt , nkt
) ∈ EC ∧

R(nj , njt)∧R(nk, nkt
). As R(ni, nj)∧R(nj , njt),

we can also have R(ni, njt) (i.e., transitivity of R),
which implies ∃njt , nkt ∈ N , s.t. (njt , nkt) ∈ EC ∧

1
2
4
8

16
32
64

128
256

[0, 0.09]

(0.09, 0.18]

(0.18, 0.27]

(0.27, 0.36]

(0.36, 0.45]

(0.45, 0.54]

(0.54, 0.63]

(0.63, 0.72]

(0.72, 0.81]

(0.81, 0.90]

(0.90, 0.99]

Fig. 13: Distribution of the percentage of Thumb instructions
of Android libraries: the number of Android binaries (Y-axis
in log scale) with certain percentage (X-axis) of the Thumb
instructions.

TABLE X: Comparing D-ARM with D-Disasm in Precision
(P), Recall (R), and F1 scores (%) over the 64-bit binaries

Instructions

Dataset D-Disasm D-ARM
P R F1 P R F1

AArch64 SPEC2000 100.00 93.16 96.50 100.00 100.00 100.00
SPEC2006 100.00 95.12 97.50 100.00 100.00 100.00

Reachable Blocks

Dataset D-Disasm D-ARM
P R F1 P R F1

AArch64 SPEC2000 99.80 88.88 94.00 99.98 99.99 99.99
SPEC2006 99.57 86.70 92.70 99.91 99.96 99.93

R(ni, njt)∧R(nk, nkt). Thus, (ni, nk) ∈ EI→C by
the definition of T , and nk /∈ N ′

MWIS
.

Therefore, ∀nk s.t. (nj , nk) ∈ EC∪EI→C , nk /∈ N ′
MWIS

.
N ′′

MWIS
= N ′

MWIS
+ {nj} is also an independent set.

As w : N → R≥0, w(N ′′
MWIS

) ≥ w(N ′
MWIS

), N ′
MWIS

is
not guaranteed to be the optimal solution. Contradiction.
Therefore, ∀ni ∈ N ′

MWIS
, if ⟨ni, nj⟩ ∈ EI , we must have

nj ∈ N ′
MWIS

.
c) According to a) and b) and the definition of AD, N ′

MWIS
is also a solution of AD in GAD.

3) According to 1) and 2), we can have N ′
AD

= N ′
MWIS

.

C. Comparison with D-Disasm and Spedi

D-Disasm [15] is a disassembly framework which imple-
ments static analysis and heuristics in Datalog [51]. It features
the capability of providing reassembleable assembly. As D-
Disasm is originally designed for x86/x64 binaries and only
supports 64-bit ARM instructions (A64), we only compare
it with D-Disasm on the SPEC-AArch64 dataset. Table X
shows the results of comparing D-ARM to D-Disasm on
disassembling the AArch64 binaries. The results demonstrate
that our approach achieves nearly 100% F1 scores at both the
instruction and block granularities. As mentioned in Section II,
although 64-bit ARM binaries do not use Thumb instructions,
they still have many inlined data, which are difficult for

TABLE XI: Comparing D-ARM with Spedi in Precision (P),
Recall (R), and F1 scores (%) over Thumb-only binaries

Instructions

Dataset Spedi D-ARM
P R F1 P R F1

Basic SPEC2000 99.59 96.60 97.97 99.99 99.94 99.97
SPEC2006 99.49 95.69 97.41 99.86 99.66 99.76

Data SPEC2000 85.71 95.52 90.18 98.59 98.34 98.45
SPEC2006 85.42 94.93 89.28 98.04 98.28 98.13

r = 0
SPEC2000 85.17 39.49 52.23 99.99 98.64 99.31
SPEC2006 85.58 43.89 56.93 99.96 98.11 99.01

r = 50
SPEC2000 77.25 15.39 24.49 99.96 98.34 99.14
SPEC2006 77.55 21.41 32.32 99.94 97.78 98.82

r = 100
SPEC2000 76.74 12.85 21.09 99.94 98.08 99.00
SPEC2006 67.20 11.49 19.13 99.93 97.55 98.69

Reachable Blocks

Dataset Spedi D-ARM
P R F1 P R F1

Basic SPEC2000 94.83 82.69 87.64 98.91 99.69 99.29
SPEC2006 94.46 84.67 88.91 96.62 98.77 97.65

Data SPEC2000 89.21 79.35 83.36 88.91 96.37 92.32
SPEC2006 89.27 82.97 85.59 85.70 95.88 89.89

r = 0
SPEC2000 26.20 44.36 32.13 94.90 96.08 95.48
SPEC2006 29.03 49.18 35.26 94.76 95.76 95.25

r = 50
SPEC2000 32.89 26.74 27.05 93.30 94.50 93.88
SPEC2006 30.20 32.48 29.67 93.77 94.99 94.35

r = 100
SPEC2000 38.93 27.67 30.88 91.65 92.60 92.10
SPEC2006 30.38 19.77 22.36 93.22 94.38 93.78

disassembly. D-Disasm generates a lot of false instructions
due to failure in recognizing inlined data.

Spedi [18] is a speculative disassembler specifically de-
signed for ARM binaries. It first speculatively recovers all
possible basic blocks and then refines them using a con-
flict analysis. However, Spedi only targets the variable-sized
Thumb instructions (16-bit and 32-bit T32, as mentioned
in Section II-A). It does not support ARM instructions, let
alone the interleaving of mixed instruction sets. For binaries
compiled with ARM instructions, Spedi simply decodes the
code section as Thumb instructions. Thus, we only evaluate
and compare with Spedi on binaries compiled with Thumb
instructions, i.e., the half of SPEC-Basic, SPEC-Data, and
the binaries built with obfuscation. The results are shown in
Table XI. We can observe that, even for the binaries with
only Thumb instructions, D-ARM still outperforms Spedi. Al-
though Spedi has good results on SPEC-Basic, its performance
degrades a lot on SPEC-Data and the obfuscated binaries. This
is because the conflict analysis used by Spedi does not take
the inlined data into consideration and is less accurate than
our method of maximizing the semantic relations. The results
of reachable blocks also show that Spedi misses many code
blocks. Spedi also has issues with some large binaries and
fails to disassemble them. The failure rates are shown in the
supplementary material [19].

	Introduction
	Background
	Multiple Instruction Sets
	ARM/Thumb Interworking
	Inlined Data

	Motivation
	Motivating Example
	Limitation of Existing Techniques
	Our Technique

	Superset Instruction Interpretation
	Language and Abstract Domain
	Overall Procedure
	Abstract Semantics

	Graph Analysis
	Nodes
	Edges
	Node Weights
	Graph Problem and Solution

	Evaluation
	Experiment Setup
	RQ1: Accuracy and Efficiency
	Comparing D-ARM with Ghidra, IDA, P-Disasm, and XDA
	Comparing D-ARM with D-Disasm and Spedi
	Efficiency

	RQ2: Effectiveness of the Static Analysis
	RQ3: Effectiveness on Obfuscated Code
	RQ4: A Case Study on Binary Rewriting

	Related Work
	Conclusion
	References
	Appendix
	Running Example of the Superset Instruction Interpretation
	Proof of Theorem V.1
	Comparison with D-Disasm and Spedi

