
NETPLIER: Probabilistic Network Protocol Reverse
Engineering from Message Traces

Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, Dongyan Xu
Department of Computer Science, Purdue University
{ye203, zhan3299, feiwang, xyzhang, dxu}@purdue.edu

Abstract—Network protocol reverse engineering is an impor-
tant challenge with many security applications. A popular kind
of method leverages network message traces. These methods
rely on pair-wise sequence alignment and/or tokenization. They
have various limitations such as difficulties of handling a large
number of messages and dealing with inherent uncertainty. In this
paper, we propose a novel probabilistic method for network trace
based protocol reverse engineering. It first makes use of multiple
sequence alignment to align all messages and then reduces the
problem to identifying the keyword field from the set of aligned
fields. The keyword field determines the type of a message. The
identification is probabilistic, using random variables to indicate
the likelihood of each field (being the true keyword). A joint
distribution is constructed among the random variables and
the observations of the messages. Probabilistic inference is then
performed to determine the most likely keyword field, which
allows messages to be properly clustered by their true types and
enables the recovery of message format and state machine. Our
evaluation on 10 protocols shows that our technique substantially
outperforms the state-of-the-art and our case studies show the
unique advantages of our technique in IoT protocol reverse
engineering and malware analysis.

I. INTRODUCTION

Network protocol reverse engineering is an important
challenge to cyber-security. Many applications that are of
interest for security analysts often have their own undocu-
mented communication protocols. For example, autonomous
vehicles utilize CAN bus and FlexRay, control systems use
Modbus and DNP3, online chatting/conferencing applications
have their customized protocols. Many security analysis such
as static/symbolic vulnerability scanning [40], [24], exploit
generation [79], [19], fuzzing [65], [43], [44], [31], attack
detection [15], [29], and malware behavior analysis [75], [18]
require precise modeling of the network protocol. For instance,
knowing the protocol of a networking application is critical
to seed input generation in fuzzing; malware analysis often
requires composing well-formed messages to the Command
and Control (C&C) server so that hidden behaviors can be
triggered by the appropriate server responses [23], [83]; and
static/symbolic analysis needs to properly model networking
functions otherwise a lot of false positives may be generated.

Existing protocol reverse engineering techniques fall into
a few categories. The first category leverages program anal-

ysis [28], [57], [82], [33], [59], [32]. By analyzing the rich
semantics of the application implementation (e.g., how input
buffer is accessed), these techniques may achieve high accu-
racy in reverse engineering. However, most of these techniques
require access to program binaries, which is often infeasible in
practice. For example, some IoT firmware is not accessible due
to their protection mechanism; it is hard to conduct dynamic
analysis if the binaries are packed or obfuscated. Even if the
binaries for a client application were available, its counterpart
on the server side would be much more difficult to acquire.
Therefore, the other category focuses on using network traces,
which could be acquired by eavesdropping on the network.
There are two main techniques for network trace based reverse
engineering: alignment based (e.g., PIP [22], ScritGen [55],
and Netzob [26]) and token based (e.g., Veritas [81] and
Discoverer [35]). The former leverages various sequence align-
ment algorithms to align message pairs and compute similarity
scores. Messages are clustered based on such scores. Formats
are then derived by analyzing the commonality of messages
within clusters. However, the diversity of message contents
substantially degrades the quality of alignment, causing prob-
lems for downstream analysis. Token based methods propose
to first tokenize the messages (e.g., to textual fields and binary
fields) before alignment to reduce variations. However, these
techniques often require delimiters to identify tokens (which
may not exist for binary protocols) or generate excessive
clusters as tokenization is based on deterministic heuristics.
That is, ad-hoc rules are used to perform tokenization and
these rules may not hold in many cases. Existing techniques
do not model such uncertainty and hence often yield incorrect
results. More discussion of such limitations can be found in
Section II.

We observe that the key to network protocol reverse engi-
neering is to identify the keyword field that determines the type
of a message. While there are many heuristics to help locating
such keywords, these heuristics are largely uncertain. The
reverse engineering of both the client side and the server side
can be coupled to achieve synergy because they have strong
correspondences. Based on these observations, we propose a
novel probabilistic approach to reverse engineering network
protocols. Our technique is completely network trace based and
does not require access to source code or binary code. Specifi-
cally, it leverages multiple sequence alignment (MSA) [39] that
is widely used in biometrics to avoid the expensive pair-wise
alignment in existing work. The alignment is conservative and
initially performed on all the messages. As such, the common
structure shared by all messages can be disclosed and such
structure ought to include the keyword field as the parser needs
to parse the keyword field before it can perform type-specific

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24531
www.ndss-symposium.org

parsing. After the alignment, a probabilistic method is used to
determine which (aligned) field is the keyword. To model the
inherent uncertainty, we introduce a random boolean variable
that predicates if a field is the keyword. We speculatively
classify all the messages based on the values of the tentative
keyword. Observations can be made from the clustering results,
such as if messages within a cluster have similarity and if the
corresponding messages from the client side and the server
side fall into corresponding clusters. Random variables are
introduced to denote the confidence of these observations. A
joint probability distributions is constituted by considering the
correlations between the keyword variable and observation
variables. Posterior marginal probabilities can be computed
for keyword variables to indicate the likelihood of individual
fields being the true keyword. Once the keyword is identified,
messages are clustered based on the keyword values and type
specific structures can be disclosed by aligning and analyzing
messages in clusters.

Our contributions are summarized as follows.

• We address a key challenge in network protocol
reverse engineering – keyword identification, which
allows correctly clustering network messages and en-
ables high precision in downstream analysis such as
field identification and state machine reconstruction.

• We formulate keyword identification as a probabilistic
inference problem, which allows us to naturally model
the inherent uncertainty.

• We build an end-to-end system NETPLIER, which
stands for “Probabilistic NETwork ProtocoL Reverse
EngIneERing”. It takes network traces as input and
produces the final message format.

• We evaluate NETPLIER on 10 protocols commonly
used in competitor projects. Our results show that
NETPLIER can achieve 100% homogeneity and 97.9%
completeness, whereas the state-of-the-art techniques
can only achieve around 92% homogeneity and 52.3%
completeness. To validate generality, we use NET-
PLIER to reverse engineer wireless physical-layer pro-
tocols and multiple unknown protocols used in real
IoT devices. We also perform two case studies: (i)
reverse engineering the protocol for Google Nest, a
real world IoT smart app, allowing us to manipulate
the A/C unit controlled by the app, and (ii) reserve
engineering the C&C protocol for a recent malware,
allowing us to expose its hidden malicious behaviors.
NETPLIER and data are publicly available at [6].

II. MOTIVATION

In this section, we use an example to illustrate the limi-
tations of existing network trace based protocol reverse engi-
neering methods and motivate our technique.

A. Motivation Example

The trace snippet in Figure 1 contains a sequence of
messages of Distributed Network Protocol 3 (DNP3), which is
a communication protocol used in industrial control systems.
The trace records information about sent time, IP addresses and
ports of the source and destination, and data for each message.

The message data includes contents of protocols ranging from
application layer to physical layer. Each protocol’s message
data is composed of several fields. Consider the message
data of DNP3 in Figure 1. The bytes in bold are a specific
field denoting message type. It is also called the keyword.
Each message type has its own format, which defines the
syntax of this type. The sending and receiving of messages are
stateful within a network session. State transitions are usually
described by a state machine. To be specific, when a client
or server receives a new message, it determines its message
type by the keyword, parses the remaining fields following
the format of this type, and then takes actions according to
the state machine. For example in Figure 1, there are four
communication connections, which start with an Unsolicited
Response message mc0 , mc2 , mc3 , and mc4 from the client and
a corresponding Confirm message ms0

, ms2
, ms3

, and ms4

from the server, respectively. After a connection is established,
the server could make requests with different commands, e.g.,
to Write like ms1

, ms5
, and ms6

or to Read like ms7
, and the

client would confirm with the Response messages (e.g., mc1
,

mc5
, mc6

, and mc7
).

The main goal of protocol reverse engineering is to infer
a protocol’s syntax and semantics. The first step of protocol
reverse engineering is to group messages of the same type into
a cluster. Clustering is a crucial step as its results determine
the accuracy of further format and state machine inference.
Existing works usually consider messages from different di-
rections separately. In the following, we use messages from
the client as an example (mc0−mc7) and discuss how existing
techniques and our technique conduct clustering. The ideal
clustering result is to put messages mc0 ; mc2 ; mc3 ; mc4 into
a cluster, and messages mc1 ; mc5 ; mc6 , and mc7 . into another
cluster.

B. Alignment-based Clustering

Sequence alignment algorithms, such as Needleman &
Wunsch [64], are originally used in Biology for the purpose
of arranging DNA, RNA, and protein sequences to identify
regions of similarity. This idea was borrowed by a large body
of existing network trace based protocol reverse engineering
methods, such as PIP [22], ScriptGen [55], and Netzob [26].
They use pairwise sequence alignment algorithms to align
each pair of messages and compute a similarity score by the
alignment results. After constructing a similarity matrix, the
messages/clusters with the highest similarity are recursively
merged by a clustering algorithm, such as UPGMA [74].
Protocol format and state machine are then derived from the
clustering results.

The alignment-based clustering methods work on an as-
sumption that messages are of the same type if they have
similar sequences of values. However, this assumption is not
true all the time. For messages of the same type, they may
have different values for same fields. For messages of different
types, they may share some common fields and have the same
values. Figure 2a shows the alignment results of message pair
〈mc0 ; mc2〉 and 〈mc0 ; mc1〉. The red bytes are the same value
aligned together. We can see that although mc0 and mc2 are
of the same type, their similarity is lower than mc0

and mc1
,

which are of different types (illustrated by the shade). Based on
this weak assumption, the clustering results are problematic.

2

Fig. 1: Motivation example: establishing multiple DNP3 (an industrial control protocol) connections and performing some data
transfer; plain and shaded messages originate from the client and server side, respectively.

(a) Pairwise sequence alignment example

(b) Clustering results

Fig. 2: Clustering by Netzob. Plain-text and shaded messages
belong to two respective types

Figure 2b shows the clustering results by Netzob. It generates
two clusters and both contain messages of different types.
Based on the wrong clustering results, the further format and
state machine inference will also be inaccurate.

Another limitation of alignment-based clustering methods
is that it requires a threshold of similarity score to decide which
clusters should be merged together in the recursive clustering
step when using algorithms such as UPGMA. The clustering
results are sensitive to this threshold and different protocols
should use different thresholds. However, when reverse engi-
neering an unknown protocol, it is hard to compute the optimal
threshold without the ground truth. Normally, we can only use
a general threshold trained from other well studied protocols.
As such, the clustering accuracy likely degenerates.

C. Token-based Clustering

Token-based clustering methods split a message into tokens
and then group messages by speci�c token values or token
types. Most methods in this line, such as ASAP [52], Veri-
tas [81], Prisma [51], and ProDecoder [80], rely on prede�ned
delimiters or n-grams to split messages into tokens, and then
search for the ones with the most frequent values which can
be further used to cluster messages.

Another token-based clustering strategy is to use token
type patterns. Discoverer [35], the state-of-the-art token based

method, uses token type patterns to conduct initial clustering,
followed by a combination of representative token values and
sequence alignment algorithms to improve clustering results.
Figure 3a shows the tokenization results by Discoverer. It
considers consecutive bytes with printable ASCII values as
a text token, leveraging the observation that the same type of
network messages have the same mixture of binary sequences
and textual strings. So the second to the fourth bytes in
mc2 , mc3 , and mc7 are marked as a text tokenT, and the
other individual bytes are marked as binary tokensB. After
tokenization, it observes two different token patterns, sequence
“BBBB ... B ” for mc0 , mc1 , mc4 , etc. and sequence “BTBB
... B ” for mc2 , mc3 , and mc7 . The differences of the two
patterns are highlighted in red. As such, Discoverer produces
two initial clusters as shown in Figure 3b. Then it divides each
cluster into sub-clusters by values ofpotential representative
(PR). Finally, it utilizes message alignment to merge some of
the sub-clusters to a larger cluster to avoid over-partitioning.
For example, in the �rst cluster (mc0 , mc4 , mc1 , mc5 , mc6),
the token in red (`B') contains only two different values (81
and 82), which could be considered as a representative token
and used to obtain new sub-clusters (Cluster 1 and Cluster 2
in Figure 3c).

Finally it produces four clusters as shown in Figure 3c.
Although there is only one type in each cluster, each ground-
truth type (denoted by shade or no-shade) is suboptimally
divided into two smaller types (clusters). There are many
reasons causing this issue. First, there are no clear delimiters
in binary protocols. Hence most bytes are considered as
individual tokens, diminishing the value of tokenization as little
structural information is exposed. Also, the values of binary
tokens sometimes lie in the range of text tokens so that these
binary tokens could be mistaken for text tokens (e.g., the text
tokens in Figure 3a). A text string shorter than the minimum
length (for qualifying as a text token) is also wrongly marked
as binary tokens. Another problem is that there could be
multiple representative tokens found in the recursive clustering
and merging step. All these reasons lead to excessive token
types. In our experiments (Section V), Discoverer always
suffers from redundant clusters, which indicates its clustering
results are not concise.

3

(a) Tokenization

(b) Initial clustering

(c) Clustering results

Fig. 3: Clustering by Discoverer

D. Our Technique

Insights. From the above discussion, we observe that both
alignment-based clustering and token-based clustering rely on
the assumption that messages are of the same type if they
have similar values or patterns. However, in many cases this
assumption does not hold and incurs inaccurate clustering.In
fact when a client or a server receives a message, it determines
the message type only by the keyword. Thus, if we can infer
the �eld denoting the keyword, we would obtain the ideal clus-
tering results. Note that although some token-based clustering
methods use representative tokens for clustering [35], [80],
they only search for such tokens by statistics such as frequency,
which usually generates more than one representative token
and then leads to redundant clustering.

Another insight is to take better advantage of network
traces, which are the only input for trace based methods.
Existing works only analyze message data from one side (the
client side or the server side) to study the aforementioned hints.
However,we could observe more hints if we consider the mes-
sage traces from both sides, especially their correspondence.
For example, in Figure 1 we can see that all theUnsolicited
Responsemessagesmc0 , mc2 , mc3 , andmc4 from the client
side have theCon�rm messagesms0 , ms2 , ms3 , andms4 from
the server as the response (for setting up a new connection).
Also, the Write messagesms1 , ms5 , and ms6 sent by the
server always triggerResponsemessages, i.e.,mc1 , mc5 , and
mc6 from the client. These additional hints could be used to
improve and validate clustering results.

As we already know that all these hints have inherent
uncertainty as arbitrary byte sequences could appear as hints,
the results may be incorrect/contradictory if we only consider
few hints for clustering. For example, alignment-based clus-
tering methods only use the hint that messages with high
similarity are of the same type. Inspired by the application
of probabilistic inferencein speci�cation extraction [60], [34]
and program analysis [84],a more reasonable solution is to

(a) Multiple sequence alignment and keyword inference

(b) Clustering results

Fig. 4: Clustering by NETPLIER

combine various kinds of hints together in a probabilistic
fashion. Speci�cally, a prior probability is assigned to each
hint denoting its uncertainty instead of making a simple deter-
ministic call. Probabilistic inference aggregates these hints and
computes a posterior distribution from which we can derive the
most likelykeywords and clustering.

Our Idea. We usemultiple sequence alignment(MSA) al-
gorithms on messages from both the client and server sides
and partition messages into a list of �elds. MSA tends to
be conservative and only produces a comprehensive list of
�elds, which provides a solid starting point. For each �eld, we
introduce a random variable to denote the probability of being
the keyword. Assume a �eld is the keyword, messages could be
grouped into different clusters by the value of the �eld, and
these clusters would satisfy some constraints, e.g., message
similarity constraints, remote coupling constraints, structure
coherence constraints, and dimension constraints. For each
constraint, We compute probabilities to serve as the degree
of compliance that we observe. With these probabilities, we
then perform probabilistic inference to derive the posterior
probability of random variables that denote our assumption,
i.e., the current �eld is the keyword. After checking all �elds,
we can pick the one with the highest probability as the
keyword, and use it to cluster messages. In the motivation
example, we generate 12 �elds from the MSA results of client
messages, as shown in Figure 4a. After probabilistic inference,
�eld f 7 is chosen as the keyword with the highest posterior
probability. Then we can generate two correct clusters by the
values off 7, which is show in Figure 4b.

III. SYSTEM DESIGN

In this section, we discuss the system design, including
preprocessing, keyword �eld candidate generation, probabilis-
tic keyword identi�cation, iterative alignment and clustering,
and format and state machine inference. Figure 5 shows the
work�ow of N ETPLIER.

A. Preprocessing

The input of NETPLIER is network traces which could be
captured by packet analyzers such astcpdump. The packets in
traces follow the network layer models. The unknown proto-
cols we aim to reverse engineer are usually in the application
layer. Based on the knowledge of other existing protocols,

4

Fig. 5: System design

we can reconstruct messages in these protocols, extract useful
information (e.g., port numbers from the network layer), and
discard data in irrelevant protocols. Finally, we standardize
network messages to include the following information: times-
tamp, IP address(es), port number(s), and data of the target
protocol. An example of such standardized messages can be
found in Figure 1.

By timestamp, IP address, and port number, we can
group messages into communication sessions. For exam-
ple, there are three sessions in the example shown in Fig-
ure 1, wheremc0 ; ms0 ; ms1 ; mc1 belong to the �rst session,
mc2 ; ms2 ; mc3 ; ms3 belong to the second session, and the other
messages belong to the third session. The session information
will be used in the probabilistic inference and state machine
inference stages.

B. Keyword Field Candidate Generation

As mentioned earlier, identifying keywords (in network
messages) is critical. In this stage, we identify a set of �elds
that are candidates for keywords.

Message data is composed of multiple �elds. For the
example in Figure 1, all messages have similar �eld structures
and these �elds are of the same length (except the last �eld).
Hence we can easily acquire the value of a �eld by its
position. However, for complex protocols, messages may have
different structures and some �elds may have a variable length,
which makes a �eld appear at different positions in different
messages. For example, messages in Figure 6a have a �eld
for user name, which has a variable length. Intuitively, the
idea of recognizing such �elds is to identify the �xed length
�elds that bound �elds of a variable length, by message
alignment. We observe that messages tend to share some
common values, especially for �xed length �elds, e.g., “user”
and “age” in Figure 6a. Hence we can align messages to
expose such common sequences across messages, and then
identify the variable-length �eld(s) in between them. If mul-
tiple consecutive variable-length �elds are present in between
two bounding �xed-length �elds, NETPLIER may recognize
these variable-length �elds as one monolithic variable-length
�eld. In practice, we rarely see such cases. Note that this is a
generally hard problem for any trace based revere engineering
techniques to precisely separate them.

As discussed earlier, pairwise alignment algorithms are
widely used by existing methods. However, pairwise alignment
only compares two sequences at one time, which substantially
affects scalability when the number of samples is large. There-
fore, we leveragemultiple sequence alignment[39], which is

(a) Original messages (b) Alignment results

Fig. 6: Examples with variable-length �elds

an extension of pairwise alignment in Bioinformatics and could
align all sequences at a time. There are various strategies used
to reduce computational complexity and improve accuracy for
multiple sequence alignment. Here, we use a combination
of progressive methods [39] and iterative re�nement [62].
Progressive methods align the most similar sequences �rst and
then progressively add other sequences to the alignment re-
sults. Iterative re�nement methods iteratively realign sequence
subsets of initial global alignment results to improve the
accuracy. Figure 6b shows the result after multiple sequence
alignment. Gaps (i.e., `-') are inserted into the variable-length
�elds in order to demonstrate alignment results.

Based on the initial alignment results (on all messages), we
partition message data into �elds. For text data, we can use
prede�ned delimiters, such as a space character, to partition
message data into �elds. However, binary data do not have
speci�c delimiters and its �elds are usually a few bytes long.
We need to use the alignment results in a very conservative
way such that it considers every possible candidate of a �eld.
First, we consider each (aligned) byte as a singleunit �eld. A
unit �eld is marked asstatic if all message data have the same
value for the �eld, otherwisedynamic. Then consecutive static
unit �elds are merged to a larger unit �eld. For example, in
Figure 4a, �eldsf 0, f 2, and f 9 are static unit �elds, and the
others are dynamic (this may not be true as we only show a
short snippet with some �elds elided due to the space limita-
tion). These unit �elds denote a conservative list of candidates
for real �elds, meaning thata �eld in the real speci�cation is
a unit �eld or a concatenation of multiple unit �elds. At the
end of this stage, we generate a list that includes all the unit
�elds and their compositions that are shorter than a threshold
(i.e., 10 bytes in this paper). The compositions are also called
compound �elds. The list denotes candidates for keyword �elds
and is subject to the downstream probabilistic analysis. We
bound the size in order to reduce the number of candidate
�elds to analyze. Note that inf 12 we combine a sequence
of bytes as it is empty for some messages, which means it
could not be the keyword �eld and could be ignored. Although
most protocols use similar formats for both client side and
server side, some protocols may have substantially different
�eld structures. We hence generate �elds for client side and
server side separately (while considering their correspondence
in probabilistic analysis). Note that although �eld candidate
generation is not complex, it ought to be conservative and
include the real (keyword) �elds. NETPLIER relies on the later
probabilistic analysis to recognize the keyword �elds with high
accuracy, which in turn allows identifying the other �elds and
pruning the bogus ones.

5

C. Probabilistic Keyword Identi�cation

Given a list of keyword candidate �elds for both sides,
we use a probabilistic method to infer which �elds are most
likely the keywords. With keyword �elds identi�ed, messages
of the same type (i.e., having the same keyword value) can be
identi�ed and further alignment and analysis can be performed
on these messages.

Let �elds f c and f s be the potential keywords from the
client and the server sides, respectively. Client-side messages
are speculatively grouped into clusters (tc0 ; tc1 ; : : :) by f c and
server-side messages are grouped to (ts0 ; ts1 ; : : :) by f s. In
the example shown in Figure 1, the list of candidate �elds
for client side messages are shown in Figure 4a. The server
side messages have a very similar list. Figure 7a shows the
clustering results of consideringf 1 the keyword for messages
on both the client and the server sides and Figure 7b shows
the results of consideringf 7 the keyword. For example, with
f 1 the keyword,mc0 , mc1 , mc4 , mc5 , and mc6 belong to a
cluster as theirf 1 �elds all have valueA0, whereasms0 , ms2 ,
ms3 , and ms4 belong to a cluster as theirf 1 values are08
(see traces in Figure 1).

If the keyword speculation is true, i.e., the messages in
a cluster (grouped by the keyword values) are indeed of the
same type, we should have the following observations from
the generated clusters.

Observation 1.Messages in the same cluster should be more
similar than messages in different clusters.

Observation 2. Clusters on the client side and the server
side should have correspondence. In other words, messages
belonging to a cluster on one side (e.g., requests from the
client side) very likely have their counterparts on the other
side (e.g., corresponding responses from the server side) in a
cluster too.

Observation 3.Messages in the same cluster follow the same
�eld structure.

Observation 4.There should not be too many clusters. In each
cluster, there should be enough number of messages.

These observations may have uncertainty. In other words,
true clusters may not demonstrate such observations and their
presence does not necessarily imply true clustering either.
Therefore, we introduce a random variable (with boolean
value) to indicate if a candidate is the true keyword. The
variables (for all the candidates from both client and server)
and the observations form a joint probability distribution. We
hence formulate keyword identi�cation as a probabilistic infer-
ence problem computing the marginal posterior probabilities of
keyword random variables given the observations. As we will
explain in Section IV, the inference rules may be directional
(i.e., Bayesian inference [27]) or un-directional (Markov ran-
dom �elds [48]). We leverage a general graph model called
factor graph that supports both types. After inference, the
random variable with the largest posterior probability indicates
the most likely keyword pair.

D. Iterative Alignment and Clustering

MSA may not produce the intended alignment in the �rst
place as it is inherently uncertain as well. As a result, the �eld

(a) Clustering results off 1

(b) Clustering results off 7

Fig. 7: Clustering results of different �elds

separation may be problematic, rendering erroneous down-
stream results. We resort to iterative alignment and clustering
to address the problem. Intuitively, assume MSA does not
align properly and hence the keyword cannot be correctly
identi�ed. Nonetheless, the probabilistic inference and clus-
tering are likely to reduce structural divergence of messages
within clusters. As such, for each cluster, we perform MSA and
the probabilistic keyword identi�cation. We then compare the
resulted keywords with the original ones. If the new keywords
can lead to better global partitioning of all the messages
(evaluated by metrics derived from the aforementioned four
observations), we replace the original keywords with the new
ones. The process repeats until no better keywords can be
identi�ed. As shown in Section V, the strategy is particularly
effective for protocols that have substantial message length
variation such as DHCP.

E. Format and State Machine Inference

As discussed earlier, each message is split into several
aligned �elds after multiple sequence alignment (e.g., Fig-
ure 4a). After iterative alignment and clustering, the format
for each type can be directly recovered by summarizing the
�elds of all messages in the same cluster. The format includes
�elds de�ned with length (L), value (V), and �eld type (S:
static �eld with a speci�c value; 'D ': dynamic �eld with
a list of potential values). For example, in Figure 4a, �eld
f 0 can be denoted asS(V = 0 05040); �eld f 7 can be
D(L = 1 ; V = [0820;0810]), which is a dynamic �eld with
two potential values; and �eldf 12 can beD(L = (0 ; 11)),
which is a variable-length �eld or optional �eld as it is empty
for some messages. New messages could be generated based
on the formats.

In addition, we make use of an existing technique [25] to
infer state machine. The technique works well when message
types are properly de�ned. The basic idea is to derive message
type sequences for each session (in the traces) and aggregate
such sequences to form a state machine. Details are elided as
it is not our contribution.

Note that full format and state machine inference are not
the focus of this paper, which are only provided to evaluate
clustering results (Section V-C and Section V-D). More precise

6

inference could be generated if prior knowledge is used to
detect some common �elds �rst [26], [54], [69], e.g., length
�eld or address �eld. This is beyond the scope of this paper.

IV. PROBABILISTIC KEYWORD IDENTIFICATION

A key step in our technique is to model uncertainty in
keyword identi�cation as a joint distribution of observations
and a set of random variables, each denoting if a candidate
�eld is the keyword of messages. In this section, we discuss
the details of how to model the uncertainty with probabilities
and conduct probabilistic inference with a graphical model.

A. Random Variables and Probabilistic Constraints

The �rst three columns of Table I de�ne the predicates,
their symbols, and descriptions. A predicate has a boolean
value and is associated with a random variable in our system.
In the rest of the paper, we do not distinguish the terms
random variable and predicate. Particularly, the keyword pred-
icate K (f) asserts if �eld f is the keyword �eld. The other
predicates assert the observations.M (f; c) asserts that the
messages in a clusterc by keyword f have higher similar-
ity among themselves than with messages in other clusters;
R(f; c) asserts that for the messages inc, their corresponding
messages on the other side should belong to a same cluster;
S(f; c) asserts that the messages inc should have similar �eld
structure; andD(f) is a global assertion (i.e., not speci�c to
a cluster), asserting that keywordf does not lead to too many
clusters and each cluster shall have suf�cient messages.

The last column in Table I presents the set of constraints
related to the predicates. Intuitively, they denote the correla-
tions of the random variables, which can be considered as
joint distributions of these variables. Each predicate has two
kinds of constraints. The �rst kind is called theobservation
constraint that associates predicates withprior probabilities.
They are sub-scripted with a single symbol denoting the asso-
ciated predicate. For example, constraintCm is the observation
constraint for the message similarity predicateM (f; c). Its
body M (f; c) = 1(pm) means the following “the predicate
M (f; c) has the prior probability ofpm to be true”. The other
observation constraints are similarly de�ned. We will explain
how the prior probabilities are systematically derived later in
this section.

The second kind of constraints is called theinference
constraints. They are sub-scripted with an implication relation.
The implication could proceed in two ways:from an obser-
vation predicate to a keyword predicateor from a keyword
predicate to an observation predicate. They are probabilistic,
regulated by animplication probability. For example,Ck ! m :
K(f)

pm !���! M(f; c) in the third row, fourth column of Table I
denotes that iff is the keyword, there ispm ! chance that the
messages in clusterc (formed usingf as the keyword) have
higher inner-cluster similarity than inter-cluster similarity. The
following constraintCk m represents the opposite direction
of reasoning. Intuitively, the two constraints describe the
uncertainty of the relations betweenK and M . For example,
even if f is the true keyword, it is still possible that messages
of the same type do not have high similarity. Theoretically, the
uncertainty, denoted by the implication probabilities, e.g.,pm !

TABLE I: Predicate/random variable and constraint de�nition

Predicate Symbol De�nition Related Constraints

Keyword K(f) Field f is the keyword.

Message
Similarity

Messages in clusterc have Cm : M(f; c) = 1 (pm)
M(f; c) higher inner similarity than Ck ! m : K(f)

p m !����! M(f; c)
inter similarity. Ck m : K(f)

p m ���� M(f; c)

Remote
Coupling

The corresponding messages C r : R(f; c) = 1 (pr)
R(f; c) of those in clusterc Ck ! r : K(f)

p r !���! R(f; c)
belong to a same cluster. Ck r : K(f)

p r ��� R(f; c)

Structure
Coherence

Messages in clusterc have
similar �eld structure.

Cs : S(f; c) = 1 (ps)
S(f; c) Ck ! s : K(f)

p s !���! S(f; c)
Ck s : K(f)

p s ��� S(f; c)

There are not an excessive numberCd : D(f) = 1 (pd)

Dimension D(f) of clusters and each cluster has Ck ! d : K(f)
p d !���! D(f)

enough number of messages. Ck d : K(f)
p d ��� D(f)

andpm , follow some normal distribution that can be approxi-
mated using prede�ned constants based on domain knowledge.
In practice, existing literature of probability inference typically
makes use of pre-de�ned prior probability values derived from
domain knowledge [84], [45], [36], [58], [21], [60], [50].
Existing studies also show that inference results are usually
not sensitive to these values due to the iterative nature of
inference algorithm. We follow the same practice such as using
0.95 for likely and 0.1 for unlikely, and adjust the implication
probabilities based on these two values according to the level
of uncertainty of individual observations. For example, the
implication probabilitypr ! for the remote coupling constraint
Ck ! r (from the keyword to the coupling predicate) is 0.9 as
there is little uncertainty. That is, the response messages of
the same kind of request messages highly likely belong to the
same kind. However, along the opposite direction,pr = 0 :8
denotes that if corresponding messages on the two sides belong
to two respective clusters, we cannot be so con�dent thatf is
the right keyword, as such perfect coupling could be by chance.
The implication probabilities for message similarity are lower
than those for remote coupling as they are more uncertain.
In NETPLIER, probabilitiesp! are set to be 0.8 for message
similarity constraints and 0.9 for the others. Probabilitiesp
lies in [0.6, 0.8] depending on cluster sizes. In Section V, we
validate these implication probabilities in small datasets (100
messages). We notice that our system is not sensitive to these
parameters, consistent with the literature.

B. Determining Prior Observation Probabilities

In the following, we discuss in details how to compute
the prior probabilities for observation constraintspm , pr , ps
and pd. Different from implication probabilities that denote
reasoning uncertainty and are largely stable, these probabilities
describe observation data and vary a lot with the �eldf we
use to cluster messages.

Message Similarity Constraints.

Based on the MSA results, we can compute the similarity
score of a pair of aligned messages:

s =
Number of identical bytes

Sum of total bytes of the two messages

7

Fig. 8: Example of EER

Fig. 9: Example of Structure Coherence Constraints.m1 and
m2 belong to different message types with different �eld
structure.

After obtaining similarity scores of all message pairs, a simi-
larity score matrix is constructed. For each keyword candidate
�eld f , we can divide all similarity scores into two classes
based on its clustering results: inner scores, where the two
messages are from the same cluster, and inter scores, where
the two messages are from different clusters.

Ideally, message similarity constraints require that all inner
scores are higher than inter scores. If so, this constraint would
be observed with full con�dence, we would hence setpm to 1.
However, the distributions of the two kinds of scores usually
overlap, indicating the errors offalse matchand false non-
match. These terms are drawn from biometrics [68] where
multiple sequence alignment is widely used. Intuitively in our
context, the former indicates messages of different kinds are
undesirably grouped into a cluster, whereas the later indicates
messages of the same kind are undesirably placed in different
clusters. We quantify the overlap by computing the two errors.
Smaller error values lead to a higher prior probability of
message similarity constraints.

Speci�cally, for a thresholdt ranging from 0 to 1, we can
compute theFalse Match Rate(FMR) andFalse Non-Match
Rate(FNMR) as follows.

FMR =
Number of inter scores which are greater thant

Number of inter scores

FNMR =
Number of inner scores which are smaller thant

Number of inner scores
Considering allt in [0; 1], we can draw the curves of FMR and
FNMR, as shown in Figure 8. Observe that whent increases,
FMR decreases and FNMR increases. To describe the similar-
ity constraints, we need to consider both FMR and FNMR at
the same time. Following the practice in biometrics [30], we
choose the intersection of the two curves, which balances both
FMR and FNMR. The error rate value at the intersection is also
called Equal Error Rate(EER), which describes the overall
accuracy of the clustering results and we have the following.

pm = 1 � EER

It means that the lower the EER, the higher con�dence we
have for the message similarity constraintM .

TABLE II: Example of remote coupling constraints. The
arrows “! ” and “ ” denote from client to server and server
to client, respectively

Message pairs Message type
pairs of f 1

Message type
pairs of f 7

Traces Pairs Traces Pairs Traces Pairs

S
es

si
on

1

m c 0 !

m c 0 ; m s 0

� t c 1 !

t c 1 ; t s 1

� t c 1 !

t c 1 ; t s 1

�
 m s 0 t s 1 t s 1
 m s 1

m s 1 ; m c 1

� t s 2

t s 2 ; t c 1

� t s 2

t s 2 ; t c 2

�
m c 1 ! t c 1 ! t c 2 !

S
es

si
on

2

m c 2 !

m c 2 ; m s 2

� t c 2 !

t c 2 ; t s 1

� t c 1 !

t c 1 ; t s 1

�
 m s 2 t s 1 t s 1

m c 3 !

m c 3 ; m s 3

� t c 3 !

t c 3 ; t s 1

� t c 1 !

t c 1 ; t s 1

�
 m s 3 t s 1 t s 1

S
es

si
on

3

m c 4 !

m c 4 ; m s 4

� t c 1 !

t c 1 ; t s 1

� t c 1 !

t c 1 ; t s 1

�
 m s 4 t s 1 t s 1
 m s 5

m s 5 ; m c 5

� t s 2

t s 2 ; t c 1

� t s 2

t s 2 ; t c 2

�
m c 5 ! t c 1 ! t c 2 !

 m s 6

m s 6 ; m c 6

� t s 3

t s 3 ; t c 1

� t s 2

t s 2 ; t c 2

�
m c 6 ! t c 1 ! t c 2 !

 m s 7

m s 6 ; m c 6

� t s 4

t s 4 ; t c 4

� t s 2

t s 2 ; t c 2

�
m c 7 ! t c 4 ! t c 2

As discussed in Section II-B, alignment-based clustering
methods also utilize similarity scores. However, they have to
train a �xed threshold for all protocols, which cannot avoid
errors due to the overlap and different score distributions
of different protocols. In contrast, We use EER to describe
the distribution of similarity scores and do not need a �xed
threshold.

Remote Coupling Constraints. In the preprocessing step,
we split original traces into sessions, in which we can group
messages from client side and server side into pairs by their
timestamps, IP, and port numbers. For example in Figure 1,
we can generate message pairs as shown in Table II. After
clustering by the candidate keywords of both sides, messages
can be replaced with clusters they belong to and message
pairs are transformed to cluster pairs. The right two columns
show the cluster pairs we generate by �eldsf 1 and f 7,
respectively. For a cluster on one side with sizeN , we count
the largest number of corresponding messages on the other
side that belong to a same cluster, denoted byM , and have
the following.

pr =
M
N

For example, for the message type pairs off 1, there are four
clusters (in red) paired up withts1 , two of which aretc1 . As
such, thepr for cluster ts1 is 0.50. In Table II forf 7, there
are only two unique cluster pairs, i.e.,htc1 ; ts1 i andhts2 ; tc2 i .
Therefore, all clusters have theirpr = 1 , suggesting better
clustering quality than usingf 1.

Structure Coherence Constraints.Structure coherence con-
straints state that messages of the same type share similar �eld
structure. For messages of different types, they may share some
common �elds, separated by their unique �elds. When aligning
these messages, alignment gaps are formed due to these type-
speci�c �elds. For example in Figure 9, the two messages
are of different types with different �eld structure. If they are
wrongly put into a cluster, a lot of gaps (`-') will be inserted
to make their common �elds aligned. Although gaps also exist
in the alignment for messages of the same type (due to data
variation), the former case usually results in more gaps. Hence,

8

after clustering with the candidate �eld, we align messages
in the same cluster again and count the average number of
alignment gaps. The proportion of gaps is used as the prior
probability of coherence constraints.

ps = 1 �
Average number of gaps in a message
Total length of an (aligned) message

For example, there are 4 messagesmc0 , mc2 , mc3 , and mc4

in cluster tc1 of �eld f 7 in Figure 7b. Based on the MSA
results shown in Figure 4a, messagesmc0 and mc4 have 11
gaps after alignment, denoted by the symbols `-' inserted at
the tail after alignment. In contrast,mc2 and mc3 have no
gap. After alignment (and gap insertion), all the four messages
have the length of 28. Hence the average number of gaps is
(11 + 0 + 0 + 11) =4 = 5:5 for tc1 and ps for the cluster is
computed as1 � 5:5=28.

Dimension Constraints.We consider two metrics in dimen-
sion constraints: the total number of clusters and the number
of single-message clusters, in which there is only a single
message.

The �rst metric is de�ned as follows.

r distinct value =
Number of distinct �eld values

Number of messages

We compare it with a thresholdtvalue , which is conservatively
set to 0.5 in this paper. If the metric is greater than the
threshold, it means that the candidate �eld generates too many
clusters, which is less likely to be a true keyword. Note that
a true keyword usually has only a small number of distinct
values. Thus 0.5 is a very conservative value to make sure
the true keyword will not be ignored and it doesn't affect the
number of generated clusters.

The second metric is the proportion of single-message
clusters over the total number of clusters.

r single cluster =
Number of single-message clusters

Number of clusters
It is also compared against a thresholdtsingle , which is 0.5
as well in this paper. If both values are smaller than their
thresholds, the dimension constraint is given a high probability,
e.g., 0.95. Otherwise it is set a low probability, e.g., 0.1.

pd =

8
<

:
0:95;

if r distinct value < t value
andr single cluster < t single

0:1; otherwise

From the clustering results shown in Figure 7, we can decide
thatr single cluster for �eld f 1 is 5=8, thus itspd is 0.1, whereas
f 7 satis�es both conditions and itspd is 0.95.

Normalization. As discussed above, the four observation
constraints are represented by different metrics, which do not
mean general probabilities and may have different distribu-
tions. For example, EER is usually in range[0:3; 0:6], while
the computedpr for remote coupling constraints could be as
high as 1. If probabilities of one type of observation constraint
are limited in a small range, this type of observation constraint
may play a less important role compared with others. To
avoid this issue, we normalize probabilities of the same type
of constraints for all candidate �elds to the same range, e.g.,
[0:1; 0:95], before further probabilistic inference.

C. Probabilistic Inference

In this stage, all the constraints are considered together to
form a joint distribution. Let boolean variablek denote the
keyword predicate andx i denote the observation predicates in
Table I. Then all constraints can be represented as probabilistic
functions with boolean variables. Speci�cally, an observation
constraintx i = 1(p) is translated as follows.

f (x i) =
�

p; if x i is true
1 � p; otherwise

And an inference constraintk
p!��! x i is translated as follows.

f (k; x i) =
�

p! ; if k ! x i is true
1 � p! ; otherwise

Inference constraintk
p �� x i is similarly transformed. Then

the conjunction of all the constraints can be denoted as the
product of all the corresponding probabilistic functions:

f (k; x1; x2; : : : ; xn) = f 1 � f 2 � � � � � f m

The joint probability function is de�ned as follows [53].

p(k; x1; x2; : : : ; xn) =
f 1 � f 2 � � � � � f mP

k;x 1 ;:::;x n
(f 1 � f 2 � � � � � f m)

Our interest is the marginal probability of the assumption
k, which is the sum over all observation variables. This
value represents the probability that the candidate �eld is the
keyword.

p(k) =
X

x 1 ;:::;x n

p(k; x1; x2; : : : ; xn)

Factor Graph. Due to the large number of constraints, the
computation of the marginal probability is very expensive.
We use a graphical model,factor graph [86], to represent
all probabilistic functions and conduct ef�cient computation.
A factor graph is a bipartite graph with two kinds of nodes,
i.e., factor nodes and variable nodes. Factor nodes represent
probabilistic functions. Variable nodes represent the variables
used in probabilistic functions with edges connected to the
corresponding factor nodes. Then the sum-product belief
propagation algorithm [53] is used to compute the marginal
probability of a node by iterative message passing in an
ef�cient way. Intuitively, one can consider this as a rumor
spreading procedure. The observations are initial rumors. In
each iteration, each variable (think of it as a person) collects
all the rumors about itself from its neighbors, aggregates them,
and passes the aggregated rumor on to the connected factors.
Each factor (involving multiple variables) collects the rumors
of its variables and computes marginal probabilities based on
the conditional probabilities denoted by the factor and then
propagates the computed probabilities to its variables. The
process repeats until convergence. We are using an off-the-
shelf factor graph engine [17]. The details are hence elided.

V. EVALUATION

A few protocol reverse engineering works have been pro-
posed to cluster messages based on network traces. However,
their evaluation studies are inadequate in a number of places.
Most works only conduct experiments on a small number of

9

protocols with the focus on text protocols. As discussed earlier,
it is usually more dif�cult to cluster binary protocols. Most
works rely on sensitive parameters which need to be adjusted
for different protocols. Hence, they ought to be evaluated
against more protocols to illustrate effectiveness and generality.
Another common issue is that most existing works do not
make their systems publicly available, nor do they use public
datasets. This makes it hard to validate these methods or
conduct comparative studies.

As binary analysis and network trace based techniques have
different application scenarios and none of binary analysis
techniques is publicly available, it is dif�cult to compare NET-
PLIER with binary analysis techniques. Hence, our compara-
tive studies focus on existing network trace based techniques.
In this section, we compare NETPLIER with two state-of-the-
art methods, Netzob and Discoverer, and show the advantage
of NETPLIER with experiments on clustering of different
protocols and datasets of different sizes, format inference, and
state machine inference (Section V-A - Section V-D).

Internet of Things (IoT) devices are increasingly popular
today. The evaluation of existing protocol reverse engineering
works usually focus on well-known application layer protocols,
while IoT devices often have customized or self-de�ned pro-
tocols for wireless communication. To validate the generality
of NETPLIER, we also compare with AWRE [69], a recent
work for the physical layer of proprietary wireless protocols
(Section V-E), and conduct evaluation with multiple unknown
protocols used in real IoT devices (Section V-F).

A. Experiment Setup

Datasets. We construct our datasets from several publicly
available traces [66], [41], [9], [5], [11], [14]. We �lter
messages of 10 common protocols from these traces with focus
on binary protocols. Note that we cover most protocols tested
by existing works, while each existing work usually only tested
a small part of these protocols. For each protocol, we �lter at
least 1000 messages except TFTP due to the lack of enough
messages. Table III shows the statistical information of the
datasets. These protocols represent different categories. FTP is
a common text protocol. DHCP has complex �eld structures
which lead to low message similarities. ICMP and NTP are
simple in structure but may contain broadcast messages, which
leads to fewer coupling constraints. SMB and SMB2 are two
versions with different �eld structures and both have many
message types, as shown in Table III. TFTP is used for �le
transfer and its messages may vary a lot in length. ZeroAccess
is a P2P botnet protocol, which is a representative of command
and control protocols. DNP3 and Modbus are two commonly
used protocols in industrial control systems. The variety of
these protocols shows the generality of our method.

Implementation. In NETPLIER, we use MAFFT [46] for
multiple sequence alignment and pgmpy [17] for probabilistic
inference. As mentioned before, most existing works are not
open-sourced. Hence we re-implement the two representa-
tive clustering methods discussed in Section II, Netzob and
Discoverer, for comparative studies. We implement Netzob
on its underlying framework [7] and implement Discoverer
based on a through study of its paper. The parameters are
chosen following Bossert's work [25] and trained on small

TABLE III: Dataset information

Protocol # Message # Message Types# SessionClient Server Total Client Server

DHCP 523 477 1000 3 2 100
DNP3 460 540 1000 3 3 40
FTP 458 542 1000 14 15 30

ICMP 492 508 1000 1 2 73
Modbus 494 506 1000 4 4 13

NTP 678 322 1000 3 1 83
SMB 454 546 1000 9 10 89
SMB2 510 490 1000 14 15 242
TFTP 225 228 453 4 1 34

ZeroAccess 577 433 1000 1 1 278

datasets with 100 messages. As only partial data of Netzob
are public and Discoverer used proprietary datasets, it is
hard to compare with original works. However, we test our
implementations on the datasets used in Netzob and achieve
similar results, which provides validation of the correctness of
our re-implementation.

B. Evaluation of Clustering

Evaluation Metrics. Some non-keyword �elds may play the
same role as a keyword and also generate correct clusters.
Thus, the evaluation is focused on the clustering results instead
of the keyword identi�cation. Existing works use different
metrics in their experiments to evaluate clustering results and
most of them have similar meanings. In this paper, we use com-
mon objectives for clustering performance evaluation, which
are calledhomogeneityand completeness[71]. Homogeneity
means that each cluster contains only messages of a single
message type, while completeness means all messages of a
given type are assigned to the same cluster. We use two scores
to measure homogeneity and completeness, denoted ash and
c, respectively. The two scores are computed using conditional
entropy analysis. Speci�cally, letn denote the total number of
messages,nt andnc denote the number of messages belonging
to message typet and clusterc, andnt;c denote the number of
messages from typet assigned to clusterc. Then the entropy
of the types (H (T)) is de�ned as:

H (T) = �
jT jX

t =1

nt

n
� log

nt

n

And the conditional entropy of the types given the cluster
assignments is de�ned as:

H (TjC) = �
jT jX

t =1

jC jX

c=1

nt;c

n
� log

nt;c

nc

The entropy of the clusters (H (C)) and the conditional entropy
of clusters given type (H (CjT)) are de�ned in a symmetric
way. Then scoresh andc are computed as:

h = 1 �
H (TjC)
H (T)

c = 1 �
H (CjT)
H (C)

10

(a) Clustering results in homogeneity (b) Clustering results in completeness (c) Clustering results in V-measure

Fig. 10: Clustering result

(a) Clustering results in homogeneity (b) Clustering results in completeness (c) Clustering results in V-measure

Fig. 11: Clustering result on datasets of different sizes

The two scores range from 0 to 1 and the higher the better.
To consider the two metrics together, we also introduce their
harmonic mean, which is calledV-measure. The score of V-
measure (v) can be computed as:

v = 2 �
h � c
h + c

In the following experiments, we will compute the three
metrics to measure the clustering results.

Results of Different Protocols.We compare our method with
Netzob and Discoverer on different protocols. As Netzob and
Discoverer only consider messages from one side, we use them
to cluster messages of the client side and server side separately,
and then compute metrics with all clusters, while NETPLIER
infers the keywords of both sides at the same time and its
results consider all messages already.

NETPLIER identi�es the keyword after two rounds of the
iterative alignment and clustering for DHCP, and uses only
one round for other protocols. This is due to the complex �eld
structures of DHCP, which causes some alignment errors in
the �rst round. The clustering results of different protocols
are shown in Figure 10. NETPLIER substantially outperforms
Netzob and Discoverer for all protocols. Homogeneity and
completeness are determined by correctly recovering message
types. Since NetPlier recognizes keywords correctly, both
metrics are 100%, which is the advantage of NetPlier. The
only exception is NTP, for which NETPLIER generates a few
more clusters and gets a completeness score of 0.788. This
is because NTP uses several bits representing its keyword,
while the minimal keyword candidate generated in NETPLIER
is a byte. Nonetheless, NETPLIER still outperforms Netzob
and Discoverer clearly. Netzob and Discoverer have similar
performance. Although they perform well in homogeneity,
their completeness scores are much lower. As we discussed
before, Netzob and Discoverer are not able to identify the exact
number of clusters. They are sensitive to their parameters and

make deterministic decisions in the presence of uncertainty,
which makes it hard to balance both homogeneity and com-
pleteness. Hence they usually generate more clusters to make
sure the accuracy, which leads to a low completeness score.

Datasets of Different Sizes.Besides different protocol types,
the protocol reverse engineering methods may also be affected
by the data sizes. To show the stability of NETPLIER, we
also compare the results of datasets with different sizes. We
choose �ve common protocols with enough messages and
construct three datasets with different sizes (100, 1000, and
10000 messages) for each protocol. Figure 11 shows the
clustering results on these datasets. We can see that NETPLIER
performs stably on different sizes with most scores being 1.
For DHCP of 10000 messages, NETPLIER's performance on
completeness drops slightly (0.993) due to the complex option
�elds. Note that Netzob could not handle the datasets of 10000
messages due to the exponential complexity and huge memory
consumption of its pair-wise alignment. In general, when the
number of messages increases, the homogeneity of Netzob and
Discoverer stays in the same level or increases slightly, while
the completeness decreases obviously. This shows that Netzob
and Discoverer are not stable for inputs of different sizes even
for the same protocol.

All experiments were conducted on a server equipped with
32-cores CPU (IntelR XeonTM E5-2690 @ 2.90GHz) and
128G main memory. Table IV shows the execution time and
maximum memory on datasets of 1000 messages. NETPLIER
and Discoverer also generate formats of each cluster at the
same time, while Netzob only conducts clustering. NETPLIER
consumes similar memory resource to Discoverer and is much
less than Netzob. Note that Netzob consumes lots of memory
and it stops execution for datasets with 10000 messages as
shown in Figure 11. The bottleneck of NETPLIER lies in
MSA, as we use iterative re�nement in MSA and constraints
generation. The time complexity of MSA could vary a lot for
different protocols. For well-formatted protocols, e.g., DNP3,

11

