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Abstract—Network protocol reverse engineering is an impor-
tant challenge with many security applications. A popular kind
of method leverages network message traces. These methods
rely on pair-wise sequence alignment and/or tokenization. They
have various limitations such as difficulties of handling a large
number of messages and dealing with inherent uncertainty. In this
paper, we propose a novel probabilistic method for network trace
based protocol reverse engineering. It first makes use of multiple
sequence alignment to align all messages and then reduces the
problem to identifying the keyword field from the set of aligned
fields. The keyword field determines the type of a message. The
identification is probabilistic, using random variables to indicate
the likelihood of each field (being the true keyword). A joint
distribution is constructed among the random variables and
the observations of the messages. Probabilistic inference is then
performed to determine the most likely keyword field, which
allows messages to be properly clustered by their true types and
enables the recovery of message format and state machine. Our
evaluation on 10 protocols shows that our technique substantially
outperforms the state-of-the-art and our case studies show the
unique advantages of our technique in IoT protocol reverse
engineering and malware analysis.

I. INTRODUCTION

Network protocol reverse engineering is an important
challenge to cyber-security. Many applications that are of
interest for security analysts often have their own undocu-
mented communication protocols. For example, autonomous
vehicles utilize CAN bus and FlexRay, control systems use
Modbus and DNP3, online chatting/conferencing applications
have their customized protocols. Many security analysis such
as static/symbolic vulnerability scanning [40], [24], exploit
generation [79], [19], fuzzing [65], [43], [44], [31], attack
detection [15], [29], and malware behavior analysis [75], [18]
require precise modeling of the network protocol. For instance,
knowing the protocol of a networking application is critical
to seed input generation in fuzzing; malware analysis often
requires composing well-formed messages to the Command
and Control (C&C) server so that hidden behaviors can be
triggered by the appropriate server responses [23], [83]; and
static/symbolic analysis needs to properly model networking
functions otherwise a lot of false positives may be generated.

Existing protocol reverse engineering techniques fall into
a few categories. The first category leverages program anal-
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ysis [28], [57], [82], [33], [59], [32]. By analyzing the rich
semantics of the application implementation (e.g., how input
buffer is accessed), these techniques may achieve high accu-
racy in reverse engineering. However, most of these techniques
require access to program binaries, which is often infeasible in
practice. For example, some [oT firmware is not accessible due
to their protection mechanism; it is hard to conduct dynamic
analysis if the binaries are packed or obfuscated. Even if the
binaries for a client application were available, its counterpart
on the server side would be much more difficult to acquire.
Therefore, the other category focuses on using network traces,
which could be acquired by eavesdropping on the network.
There are two main techniques for network trace based reverse
engineering: alignment based (e.g., PIP [22], ScritGen [55],
and Netzob [26]) and token based (e.g., Veritas [81] and
Discoverer [35]). The former leverages various sequence align-
ment algorithms to align message pairs and compute similarity
scores. Messages are clustered based on such scores. Formats
are then derived by analyzing the commonality of messages
within clusters. However, the diversity of message contents
substantially degrades the quality of alignment, causing prob-
lems for downstream analysis. Token based methods propose
to first tokenize the messages (e.g., to textual fields and binary
fields) before alignment to reduce variations. However, these
techniques often require delimiters to identify tokens (which
may not exist for binary protocols) or generate excessive
clusters as tokenization is based on deterministic heuristics.
That is, ad-hoc rules are used to perform tokenization and
these rules may not hold in many cases. Existing techniques
do not model such uncertainty and hence often yield incorrect
results. More discussion of such limitations can be found in
Section II.

We observe that the key to network protocol reverse engi-
neering is to identify the keyword field that determines the type
of a message. While there are many heuristics to help locating
such keywords, these heuristics are largely uncertain. The
reverse engineering of both the client side and the server side
can be coupled to achieve synergy because they have strong
correspondences. Based on these observations, we propose a
novel probabilistic approach to reverse engineering network
protocols. Our technique is completely network trace based and
does not require access to source code or binary code. Specifi-
cally, it leverages multiple sequence alignment (MSA) [39] that
is widely used in biometrics to avoid the expensive pair-wise
alignment in existing work. The alignment is conservative and
initially performed on all the messages. As such, the common
structure shared by all messages can be disclosed and such
structure ought to include the keyword field as the parser needs
to parse the keyword field before it can perform type-specific



parsing. After the alignment, a probabilistic method is used to
determine which (aligned) field is the keyword. To model the
inherent uncertainty, we introduce a random boolean variable
that predicates if a field is the keyword. We speculatively
classify all the messages based on the values of the tentative
keyword. Observations can be made from the clustering results,
such as if messages within a cluster have similarity and if the
corresponding messages from the client side and the server
side fall into corresponding clusters. Random variables are
introduced to denote the confidence of these observations. A
joint probability distributions is constituted by considering the
correlations between the keyword variable and observation
variables. Posterior marginal probabilities can be computed
for keyword variables to indicate the likelihood of individual
fields being the true keyword. Once the keyword is identified,
messages are clustered based on the keyword values and type
specific structures can be disclosed by aligning and analyzing
messages in clusters.

Our contributions are summarized as follows.

e We address a key challenge in network protocol
reverse engineering — keyword identification, which
allows correctly clustering network messages and en-
ables high precision in downstream analysis such as
field identification and state machine reconstruction.

e  We formulate keyword identification as a probabilistic
inference problem, which allows us to naturally model
the inherent uncertainty.

e We build an end-to-end system NETPLIER, which
stands for “Probabilistic NETwork ProtocoL Reverse
EnglneERing”. It takes network traces as input and
produces the final message format.

e  We evaluate NETPLIER on 10 protocols commonly
used in competitor projects. Our results show that
NETPLIER can achieve 100% homogeneity and 97.9%
completeness, whereas the state-of-the-art techniques
can only achieve around 92% homogeneity and 52.3%
completeness. To validate generality, we use NET-
PLIER to reverse engineer wireless physical-layer pro-
tocols and multiple unknown protocols used in real
IoT devices. We also perform two case studies: (i)
reverse engineering the protocol for Google Nest, a
real world IoT smart app, allowing us to manipulate
the A/C unit controlled by the app, and (ii) reserve
engineering the C&C protocol for a recent malware,
allowing us to expose its hidden malicious behaviors.
NETPLIER and data are publicly available at [6].

II. MOTIVATION

In this section, we use an example to illustrate the limi-
tations of existing network trace based protocol reverse engi-
neering methods and motivate our technique.

A. Motivation Example

The trace snippet in Figure 1 contains a sequence of
messages of Distributed Network Protocol 3 (DNP3), which is
a communication protocol used in industrial control systems.
The trace records information about sent time, IP addresses and
ports of the source and destination, and data for each message.

The message data includes contents of protocols ranging from
application layer to physical layer. Each protocol’s message
data is composed of several fields. Consider the message
data of DNP3 in Figure 1. The bytes in bold are a specific
field denoting message type. It is also called the keyword.
Each message type has its own format, which defines the
syntax of this type. The sending and receiving of messages are
stateful within a network session. State transitions are usually
described by a state machine. To be specific, when a client
or server receives a new message, it determines its message
type by the keyword, parses the remaining fields following
the format of this type, and then takes actions according to
the state machine. For example in Figure 1, there are four
communication connections, which start with an Unsolicited
Response message Mc,, Mc,, Mc,, and M, from the client and
a corresponding Confirm message Ms,, Ms,, Ms,, and Mg,
from the server, respectively. After a connection is established,
the server could make requests with different commands, e.g.,
to Write like ms,, Mg, and Mg, or to Read like Mg, and the
client would confirm with the Response messages (e.g., Mc,,
Mcg, Meg, and Me,).

The main goal of protocol reverse engineering is to infer
a protocol’s syntax and semantics. The first step of protocol
reverse engineering is to group messages of the same type into
a cluster. Clustering is a crucial step as its results determine
the accuracy of further format and state machine inference.
Existing works usually consider messages from different di-
rections separately. In the following, we use messages from
the client as an example (M¢, —M¢,) and discuss how existing
techniques and our technique conduct clustering. The ideal
clustering result is to put messages Mc,; Mc,; Mc,; Me, into
a cluster, and messages M, ; Mc¢,; Mc,, and M, . into another
cluster.

B. Alignment-based Clustering

Sequence alignment algorithms, such as Needleman &
Waunsch [64], are originally used in Biology for the purpose
of arranging DNA, RNA, and protein sequences to identify
regions of similarity. This idea was borrowed by a large body
of existing network trace based protocol reverse engineering
methods, such as PIP [22], ScriptGen [55], and Netzob [26].
They use pairwise sequence alignment algorithms to align
each pair of messages and compute a similarity score by the
alignment results. After constructing a similarity matrix, the
messages/clusters with the highest similarity are recursively
merged by a clustering algorithm, such as UPGMA [74].
Protocol format and state machine are then derived from the
clustering results.

The alignment-based clustering methods work on an as-
sumption that messages are of the same type if they have
similar sequences of values. However, this assumption is not
true all the time. For messages of the same type, they may
have different values for same fields. For messages of different
types, they may share some common fields and have the same
values. Figure 2a shows the alignment results of message pair
(Me,; Me,) and (Mc,; Mc, ). The red bytes are the same value
aligned together. We can see that although m¢, and mc, are
of the same type, their similarity is lower than m¢, and mg,,
which are of different types (illustrated by the shade). Based on
this weak assumption, the clustering results are problematic.



Fig. 1: Motivation example: establishing multiple DNP3 (an industrial control protocol) connections and performing some data
transfer; plain and shaded messages originate from the client and server side, respectively.

method, uses token type patterns to conduct initial clustering,
followed by a combination of representative token values and
sequence alignment algorithms to improve clustering results.
Figure 3a shows the tokenization results by Discoverer. It
. . considers consecutive bytes with printable ASCII values as
(a) Pairwise sequence alignment example a text token, leveraging the observation that the same type of
network messages have the same mixture of binary sequences
and textual strings. So the second to the fourth bytes in
Me,, M¢,, and m¢, are marked as a text tokeR and the
other individual bytes are marked as binary tokéhsAfter
tokenization, it observes two different token patterns, sequence
] ) ] “BBBB ... B "for me,, me,, Mg,, etc. and sequenc&8TBB
Fig. 2: Clustering by Netzob. Plain-text and shaded messages B for m,, m.,, andmc,. The differences of the two
belong to two respective types patterns are highlighted in red. As such, Discoverer produces
two initial clusters as shown in Figure 3b. Then it divides each

Figure 2b shows the clustering results by Netzob. It generate@uster into sub-clusters by values pbtential representative
two clusters and both contain messages of different typedPR). Finally, it utilizes message alignment to merge some of
Based on the wrong clustering results, the further format anée sub-clusters to a larger cluster to avoid over-partitioning.

state machine inference will also be inaccurate. For example, in the rst clustemfc,, Mc,, Mc,, Mcg, Me;),
the token in red ('B’) contains only two different values (81

Another limitation of alignment-based clustering methodsang 82), which could be considered as a representative token
is that it requires a threshold of similarity score to decide whichang used to obtain new sub-clusters (Cluster 1 and Cluster 2
clusters should be merged together in the recursive clustering Figure 3c).
step when using algorithms such as UPGMA. The clustering
results are sensitive to this threshold and different protocols

should use different thresholds. However, when reverse eng"lthough there is only one type in each cluster, each ground-

neering an unknown protocol, it is hard to compute the optima . .
. ruth type (denoted by shade or no-shade) is suboptimally
threshold without the ground truth. Normally, we can only USE . ided into two smaller types (clusters). There are many

a general threshold trained from other well studied IorotOCOISfeasons causing this issue. First, there are no clear delimiters
As such, the clustering accuracy likely degenerates. 9 : ’

in binary protocols. Hence most bytes are considered as
) individual tokens, diminishing the value of tokenization as little
C. Token-based Clustering structural information is exposed. Also, the values of binary

Token-based clustering methods split a message into tokerigkens sometimes lie in the range of text tokens so that these

and then group messages by specic token values or tokepInary tokens could be mistaken for text tokens (e.g., the text
types. Most methods in this line, such as ASAP [52], Veri- okens in Figure 3a). A text string shorter than the minimum

tas [81], Prisma [51], and ProDecoder [80], rely on prede nedlengg.h (for ?ukalifyin%astﬁ text tot;en) i_s a:ﬁotV\/trhongly malrdkeg
delimiters or n-grams to split messages into tokens, and thef> P'Nary tOKens. Another problém IS that theré could be

search for the ones with the most frequent values which Ca}:pultiple representative tokens found in the recursive clustering
be further used to cluster messages and merging step. All these reasons lead to excessive token

types. In our experiments (Section V), Discoverer always
Another token-based clustering strategy is to use tokesuffers from redundant clusters, which indicates its clustering
type patterns. Discoverer [35], the state-of-the-art token basesults are not concise.

(b) Clustering results

Finally it produces four clusters as shown in Figure 3c.



(a) Multiple sequence alignment and keyword inference

(a) Tokenization

(b) Clustering results

(b) Initial clustering Fig. 4: Clustering by MTPLIER

combine various kinds of hints together in a probabilistic

fashion Speci cally, a prior probability is assigned to each
. hint denoting its uncertainty instead of making a simple deter-
(c) Clustering results ministic call. Probabilistic inference aggregates these hints and
computes a posterior distribution from which we can derive the

Fig. 3: Clustering by Discoverer most likelykeywords and clustering.

Our Idea. We usemultiple sequence alignmeiiiSA) al-
gorithms on messages from both the client and server sides

Insights. From the above discussion, we observe that botffnd partition messages into a list of elds. MSA tends to
alignment-based clustering and token-based clustering rely dpf conservative and only produces a comprehensive list of
the assumption that messages are of the same type if the§lds, which provides a solid starting point. For each eld, we
have similar values or patterns. However, in many cases thi§troduce a random variable to denote the probability of being
assumption does not hold and incurs inaccurate clusteing. the keyword. Assume a eld is the keyword, messages could be
fact when a client or a server receives a message, it determinggouped into different clusters by the value of the eld, and
the message type only by the keywortus, if we can infer these _clusters unld satisfy some constraints, e.g., message
the eld denoting the keyword, we would obtain the ideal clus-Similarity constraints, remote coupling constraints, structure
tering results. Note that although some token-based clusterirgPherence constraints, and dimension constraints. For each
methods use representative tokens for clustering [35], [8ojconstraint, We compute probabilities to serve as the degree
they only search for such tokens by statistics such as frequenc§f compliance that we observe. With these probabilities, we

which usually generates more than one representative tokéR€n perform probabilistic inference to derive the posterior
and then leads to redundant clustering. probability of random variables that denote our assumption,

i.e., the current eld is the keyword. After checking all elds,

Another insight is to take better advantage of networkwe can pick the one with the highest probability as the
traces, which are the only input for trace based methodskeyword, and use it to cluster messages. In the motivation
Existing works only analyze message data from one side (thexample, we generate 12 elds from the MSA results of client
client side or the server side) to study the aforementioned hintsnessages, as shown in Figure 4a. After probabilistic inference,
However,we could observe more hints if we consider the mes-eld f; is chosen as the keyword with the highest posterior
sage traces from both sides, especially their correspondenc@robability. Then we can generate two correct clusters by the
For example, in Figure 1 we can see that all thesolicited  values off 7, which is show in Figure 4b.
Responsenessagesn,, Mc¢,, Me,, andme, from the client

D. Our Technique

side have th€on rm messagems,, Ms,, Ms,, andms, from . SYSTEM DESIGN
the server as the response (for setting up a new connection). _ . . S _
Also, the Write messagesns,, ms,, and ms, sent by the In this section, we discuss the system design, including

server always triggeResponsenessages, i.emc,, me,, and  preprocessing, keyword eld candidate generation, probabilis-
me, from the client. These additional hints could be used tdtic keyword identi cation, iterative alignment and clustering,
improve and validate clustering results. and format and state machine inference. Figure 5 shows the

) ) work ow of N ETPLIER.
As we already know that all these hints have inherent

uncertainty as arbltrary byte sequences cquld appear as _hlng?_, Preprocessing
the results may be incorrect/contradictory if we only consider
few hints for clustering. For example, alignment-based clus- The input of NETPLIER is network traces which could be

tering methods only use the hint that messages with higleaptured by packet analyzers suchi@gsdump The packets in

similarity are of the same type. Inspired by the applicationtraces follow the network layer models. The unknown proto-
of probabilistic inferencan speci cation extraction [60], [34] cols we aim to reverse engineer are usually in the application
and program analysis [84h more reasonable solution is to layer. Based on the knowledge of other existing protocols,

4



(a) Original messages (b) Alignment results

Fig. 6: Examples with variable-length elds

Fig. 5: System design

an extension of pairwise alignment in Bioinformatics and could

we can reconstruct messages in these protocols, extract useflign all sequences at a time. There are various strategies used
information (e.g., port numbers from the network layer), andto reduce computational complexity and improve accuracy for
discard data in irrelevant protocols. Finally, we standardizemultiple sequence alignment. Here, we use a combination
network messages to include the following information: times-of progressive methods [39] and iterative re nement [62].
tamp, IP address(es), port number(s), and data of the targBrogressive methods align the most similar sequences rst and
protocol. An example of such standardized messages can ltleen progressively add other sequences to the alignment re-
found in Figure 1. sults. Iterative re nement methods iteratively realign sequence
. subsets of initial global alignment results to improve the

By timestamp, IP address, and port number, we can . racy. Figure 6b shows the result after multiple sequence
group messages into communication sessions. FOr examMjonment Gaps (i.e., *-') are inserted into the variable-length
ple, there are three sessions in the example shown in Fidg|is in order to demonstrate alignment results.
ure 1, wheremg,; mg,; mg,; me, belong to the rst session,
Mc,; Ms,; Me,; Mg, belong to the second session, and the other
messages belong to the third session. The session information

will be used in the probabilistic inference and state machine Based on the initial alignment results (on all messages), we
inference stages. partition message data into elds. For text data, we can use

prede ned delimiters, such as a space character, to partition
message data into elds. However, binary data do not have
speci ¢ delimiters and its elds are usually a few bytes long.
As mentioned earlier, identifying keywords (in network We need to use the alignment results in a very conservative
messages) is critical. In this stage, we identify a set of eldsway such that it considers every possible candidate of a eld.
that are candidates for keywords. First, we consider each (aligned) byte as a singli# eld. A
Message data is composed of multiple elds. For theunit eld is marked asstaticif all message data have the same

example in Figure 1, all messages have similar eld structure¥2/4e fI(()jr the eld, oth(cjermse:llynamm T_henlgor;secunve sltat|_c
and these elds are of the same length (except the last eld)g.nlt e 43 areldmferg? to 3farger utm;g € .'t olrdexamg ?h n
Hence we can easily acquire the value of a eld by its lﬁure a,de sto, 2,h_an o are sba ic Unit e'Cs, aln he
position. However, for complex protocols, messages may hav thers are dynamic (this may not be true as we only show a

different structures and some elds may have a variable lengt short snippet with some elds elided due to the space limita-
which makes a eld appear at different positions in different on). These unit elds denote a conservative list of candidates

messages. For example, messages in Figure 6a have a eﬁar real elds, meaning that eld in the real speci cation is

for user name, which has a variable length. Intuitively, thegnléngf frll?sc;t[;ggonwceatgegﬁégt‘eog rlliqsl{[ntlﬁlaet ililrztll'[uc?eisgltl tt?\i unit
idea of recognizing such elds is to identify the xed length elds and their compositions that are shorter than a threshold

elds that bound elds of a variable length, by message T .
alignment. We observe that messages tend to share so £ 10 bytes in this paper). The compositions are also called

common values, especially for xed length elds, e.g., “user” compound eldsThe list denotes candidates for keyword elds
and “age” in Figure 6a. Hence we can align messages tﬁ

expose such common sequences across messages, and
identify the variable-length eld(s) in between them. If mul-
tiple consecutive variable-length elds are present in betwee

B. Keyword Field Candidate Generation

nd is subject to the downstream probabilistic analysis. We
% nd the size in order to reduce the number of candidate
ds to analyze. Note that irf ;, we combine a sequence
r?f bytes as it is empty for some messages, which means it
two bounding xed-length elds, NNTPLIER may recoghize could not be the keywerq eld and could be |gn0(ed. Al'though
these variable-length elds as one monolithic variable-lengthMoSt Protocols use similar formats for both client side and
eld. In practice, we rarely see such cases. Note that this is gekr_jver side, sor\r}\e phrotocols may havedSL:(bsta;jually.g|ffere(rj1t
generally hard problem for any trace based revere engineerinsge structures. We hence generate elds for client side an
techniques to precisely separate them. server 5|de_ s_eparately_(whlle considering their correspondence
in probabilistic analysis). Note that although eld candidate

As discussed earlier, pairwise alignment algorithms aregeneration is not complex, it ought to be conservative and
widely used by existing methods. However, pairwise alignmeninclude the real (keyword) elds. ETPLIER relies on the later
only compares two sequences at one time, which substantiallyrobabilistic analysis to recognize the keyword elds with high
affects scalability when the number of samples is large. Thereaccuracy, which in turn allows identifying the other elds and
fore, we leveragemultiple sequence alignmeff9], which is  pruning the bogus ones.



C. Probabilistic Keyword Identi cation

Given a list of keyword candidate elds for both sides,
we use a probabilistic method to infer which elds are most
likely the keywords. With keyword elds identi ed, messages
of the same type (i.e., having the same keyword value) can be
identi ed and further alignment and analysis can be performed

on these messages. _
. (a) Clustering results df;
Let elds f. andfs be the potential keywords from the

client and the server sides, respectively. Client-side messages
are speculatively grouped into clustets, (tc,;:::) by f¢ and
server-side messages are groupedtip;{s,;:::) by fs. In

the example shown in Figure 1, the list of candidate elds
for client side messages are shown in Figure 4a. The server
side messages have a very similar list. Figure 7a shows the

clustering results of considerirfg the keyword for messages (b) Clustering results of ;
on both the client and the server sides and Figure 7b shows
the results of considerinfy; the keyword. For example, with Fig. 7: Clustering results of different elds

f1 the keyword,m¢,, m¢,, m¢,, M¢,, and meg, belong to a

cluster as theif , elds all have valueAO, whereasns,, Ms,,  gseparation may be problematic, rendering erroneous down-
Ms,, andms, belong to a cluster as thefr, values are8  gyream results. We resort to iterative alignment and clustering
(see traces in Figure 1). to address the problem. Intuitively, assume MSA does not

If the keyword speculation is true, i.e., the messages irlign properly and hence the keyword cannot be correctly
a cluster (grouped by the keyword values) are indeed of thiglenti ed. Nonetheless, the probabilistic inference and clus-

same type, we should have the following observations fronfering are likely to reduce structural divergence of messages
the generated clusters. within clusters. As such, for each cluster, we perform MSA and

the probabilistic keyword identi cation. We then compare the
Observation 1. Messages in the same cluster should be moreesulted keywords with the original ones. If the new keywords
similar than messages in different clusters. can lead to better global partitioning of all the messages
(evaluated by metrics derived from the aforementioned four

Observation 2. Clusters on the client side and the server . S .
side should have correspondence. In other words, messagREServations), we replace the original keywords with the new

belonging to a cluster on one side (e.g., requests from thanes. The process repeats until no better keywords can be

client side) very likely have their counterparts on the othe|Jderltl ed. As shown in Section V, the strategy is particularly

side (e.g., corresponding responses from the server side) inea(fe.Ct!Ve for protocols that have substantial message length
cluster too. variation such as DHCP.

Observation 3. Messages in the same cluster follow the sameg. Format and State Machine Inference

eld structure. . . . o
As discussed earlier, each message is split into several

Observation 4.There should not be too many clusters. In eachgligned elds after multiple sequence alignment (e.g., Fig-
cluster, there should be enough number of messages. ure 4a). After iterative alignment and clustering, the format
for each type can be directly recovered by summarizing the

These observations may have uncertainty. In other wordsg s of o' messages in the same cluster. The format includes
true clusters may not demonstrate such observations and the Ids de ned with length (), value ¥), and eld type G:

presence does not necessarily imply true clustering Eitheétatic eld with a specic value; D" dynamic eld with

Therefore, we introduce a random variable (with boolean, |ist of potential val F le. in Fi 4 |
value) to indicate if a candidate is the true keyword. Thﬁa Iiar? bpeo 32*%@\/(? L;ess()v groe)é%r&%?' é?d |f97ur§ana,beed

variables (for all the candidates from both client and server O(L = 1;V = [®82819), which is a dynamic eld with

and the observations forrr_l a joint probablhty dlstrlb_ut!on. WetWO potential values: and eld s, can beD(L = (0:11)),

hence formulate keyword identi cation as a probabilistic infer- e is 5 variable-length eld or optional eld as it is empty

ence problem computing the_marglnal posterior probabilities % or some messages. New messages could be generated based

keyword random variables given the observations. As we W|IIOn the formats

explain in Section IV, the inference rules may be directional '

(i.e., Bayesian inference [27]) or un-directional (Markov ran-  In addition, we make use of an existing technique [25] to

dom elds [48]). We leverage a general graph model calledinfer state machine. The technique works well when message

factor graph that supports both types. After inference, thetypes are properly de ned. The basic idea is to derive message

random variable with the largest posterior probability indicatedype sequences for each session (in the traces) and aggregate

the most likely keyword pair. such sequences to form a state machine. Details are elided as
it is not our contribution.

D. Iterative Alignment and Clustering Note that full format and state machine inference are not

MSA may not produce the intended alignment in the rstthe focus of this paper, which are only provided to evaluate
place as it is inherently uncertain as well. As a result, the eldclustering results (Section V-C and Section V-D). More precise



inference could be generated if prior knowledge is used t . ; ; ; i
detect some common elds rst [26], [54], [69], e.g.. length FABLE I: Predicate/random variable and constraint de nition

eld or address eld. This is beyond the scope of this paper. 5.gicate symbol

De nition Related Constraints

Keyword K(f) Fieldf is the keyword. |

IV. PROBABILISTIC KEYWORD IDENTIFICATION " Messages in cluster have Cm :M(fic)=1( pm)
essage M(f; ¢ ) higher inner similarity than Cii CK(F) pm ! M(f;c)
A key step in our technique is to model uncertainty in Smiaity inter similarity. Co m iKY P M(fo)

keyword identi cation as a joint distribution of observations ™ - ——
. . . . e corresponding messages |C, : R(f;c)=1( pr)
and a set of random variables, each denoting if a candidateremote (. ) ocioce in cluster Ca v (KE)P™ R(fic)
eld is the keyword of messages. In this section, we di§_c_ussC°“p"”9 belong to a same cluster. Ce +:K(f) " R(fc)
the details of how to model the uncertainty with probabilities ——
e . . Cs 1 gfic)=1(ps)
and conduct probabilistic inference with a graphical model.  structure ..

Messages in cluster have

. Ps! .
Coherenc SULY similar eld structure. Cir s < K(F)! ps Sfic)
Ck s 1K(f) S(fic)
A. Random Variables and Probabilistic Constraints There are not an excessive numiy : D(f) =1 ( pa)
. Dimension D(f ) of clusters and each cluster has|Cx: ¢ : K(f)  Pat D(f)
The rst three columns of Table | de ne the predicates, enough number of messages. |Cx ¢ : K(f) "¢  D(f)

their symbols, and descriptions. A predicate has a boolearm
value and is associated with a random variable in our system.ndpm  follow some normal distribution that can be approxi-

In the rest of the paper, we do not distinguish the term mated using prede ned constants based on domain knowledge
random variable and predicate. Particularly, the keyword pred- gp ge.

: ; ; In practice, existing literature of probability inference typically
icate K (f ) asserts if eldf is the keyword eld. The other : o .
predicaEe.Z, assert the observatioM(}?;Nc) asserts that the makes use of pre-de ned prior probability values derived from
messages in a cluster by keywordf have higher similar- domain knowledge [84], [45], [36], [58], [21], [60], [50].

ity among themselves than with messages in other clustergx'snng studies also show that inference results are usually

R(1c) assns that for e messageaher coresponding 15 STSINE [0 ese oS e o e leatve et o
messages on the other side should belong to a same clust J . P 9

S(f; ¢) asserts that the message<ishould have similar eld 95 fo_r_Ii_ker and 0.1 for unlikely, and adjust th_e implication
strdcture' and (f) is a global assertion (i.e., not speci ¢ to probabilities based on these two values according to the level

a cluster), asserting that keywokddoes not lead to too many of uncertainty of individual observations. For example, the
clusters and each cluster shall have suf cient messages. implication probabilitypy, - for the remate coupling consiraint
Ck:  (from the keyword to the coupling predicate) is 0.9 as
The last column in Table | presents the set of constraintghere is little uncertainty. That is, the response messages of
related to the predicates. Intuitively, they denote the correlathe same kind of request messages highly likely belong to the
tions of the random variables, which can be considered asame kind. However, along the opposite directipn, =0:8
joint distributions of these variables. Each predicate has twelenotes that if corresponding messages on the two sides belong
kinds of constraints. The rst kind is called thabservation to two respective clusters, we cannot be so con dent that
constraintthat associates predicates withior probabilities ~ the right keyword, as such perfect coupling could be by chance.
They are sub-scripted with a single symbol denoting the assoFhe implication probabilities for message similarity are lower
ciated predicate. For example, constraipt is the observation than those for remote coupling as they are more uncertain.
constraint for the message similarity predicate(f;c). Its  In NETPLIER, probabilitiesp, are set to be 0.8 for message
body M (f;c) = 1(pm) means the following the predicate similarity constraints and 0.9 for the others. Probabilifees
M (f; ¢) has the prior probability opy, to be trué. The other  lies in [0.6, 0.8] depending on cluster sizes. In Section V, we
observation constraints are similarly de ned. We will explain validate these implication probabilities in small datasets (100

how the prior probabilities are systematically derived later inmessages). We notice that our system is not sensitive to these
this section. parameters, consistent with the literature.

The second kind of constraints is called th#erence
constraints They are sub-scripted with an implication relation. B. Determining Prior Observation Probabilities
The implication could proceed in two wayfom an obser-
vation predicate to a keyword predicate from a keyword
predicate to an observation predicatéhey are probabilistic,
regulated by ammplication probability For exampleCy; n, :
K(f)!"™'  M(f;c) in the third row, fourth column of Table |
denotes that if is the keyword, there ip,,; chance that the
messages in cluster (formed usingf as the keyword) have
higher inner-cluster similarity than inter-cluster similarity. The
following constraintCy ., represents the opposite direction
of reasoning. |ntuitive|y, the two constraints describe the Based on the MSA results, we can compute the S|m||ar|ty
uncertainty of the relations betwe¢h andM . For example, score of a pair of aligned messages:
even iff is the true keyword, it is still possible that messages
of the same type do not have high similarity. Theoretically, the _ Number of identical bytes

uncertainty, denoted by the implication probabilities, gg., " Sum of total bytes of the two messages

In the following, we discuss in details how to compute
the prior probabilities for observation constraimg, pr, ps
and pqy. Different from implication probabilities that denote
reasoning uncertainty and are largely stable, these probabilities
describe observation data and vary a lot with the éldve
use to cluster messages.

Message Similarity Constraints.




TABLE II: Example of remote coupling constraints. The
arrows 1 " and “ " denote from client to server and server
to client, respectively

Message type Message type
pairs of f 1 pairs of f 7
Traces Pairs Traces Pairs Traces Pairs

Message pairs

Me, ! te, ! te, !
‘o m MecyiMsg €1 tegitsy 1
S0

Ms,

ts, tsy

ts ts
Msy 2 2

Mecy

Fig. 8: Example of EER

Me,;
ms, 2’ ts, ts,

Session 2| Session 1

MeyiMsy

Ms, ts,

ts,

Mo -
Ms, cq

Msg

ts; tsy

. ts . ts .
Msg Mg te, ! 2 tszatcl te, ! 2 tszytcz

Fig. 9: Example of Structure Coherence Constraintg.and me
m, belong to different message types with different eld Meg ! ° MsgiMos |y, 1

structure. Ms7 me.
me, ! 6’

tss q,. ts,

Session 3

tes ts,ite ts2 tsy;

After obtaining similarity scores of all message pairs, a simi-
larity score matrix is constructed. For each keyword candidat?n e

eld f, we can divide all similarity scores into two classes. _: . .
based on its clustering results: inner scores, where the twtraln a xed threshold for all protocols, which cannot avoid

messages are from the same cluster, and inter scores, wh%rgngfe?;ri t?o'tggoIzvel::acl?or?tr:gstdlf\sséeztsesclzoé?? ?(')Stggggﬁg:
the two messages are from different clusters. P : ’

the distribution of similarity scores and do not need a xed
Ideally, message similarity constraints require that all innethreshold.
scores are higher than inter scores. If so, this constraint would ] ) ]
be observed with full con dence, we would hence pgtto 1.  Remote Coupling Constraints. In the preprocessing step,
However, the distributions of the two kinds of scores usuallywe split original traces into sessions, in which we can group
overlap, indicating the errors dhlse matchand false non- ~Messages from client side and server side into pairs by their
match These terms are drawn from biometrics [68] wheretimestamps, IP, and port numbers. For example in Figure 1,
multiple sequence alignment is widely used. Intuitively in ourWe can generate message pairs as shown in Table II. After
context, the former indicates messages of different kinds arélustering by the candidate keywords of both sides, messages
undesirably grouped into a cluster, whereas the later indicatez®n be replaced with clusters they belong to and message
messages of the same kind are undesirably placed in differeRgirs are transformed to cluster pairs. The right two columns
clusters. We quantify the overlap by computing the two errorsshow the cluster pairs we generate by elds and f7,

Smaller error values lead to a higher prior probability of fespectively. For a cluster on one side with shtewe count
message similarity constraints. the largest number of corresponding messages on the other

) ) side that belong to a same cluster, denotedvby and have
Speci cally, for a threshold ranging from 0 to 1, we can  the following.

As discussed in Section II-B, alignment-based clustering
thods also utilize similarity scores. However, they have to

compute theFalse Match RatdFMR) and False Non-Match M
Rate (FNMR) as follows. =N
EMR = Number of inter scores which are greater than  For example, for the message type pairs of there are four
Number of inter scores clusters (in red) paired up witty,, two of which aretc, . As
Number of inner scores which are smaller than SUCh, thepr for Clustertsl is 0.50. In Table Il fOI’f7, there
FNMR = NUMber of INner Scores are only two unique cluster pairs, i.étc, ;ts,i andHs,;tc,i.

. ) Therefore, all clusters have thgix = 1, suggesting better
Considering alt in [0; 1], we can draw the curves of FMR and ¢|ystering quality than using;.

FNMR, as shown in Figure 8. Observe that wheincreases,
FMR decreases and FNMR increases. To describe the similagtructure Coherence Constraints.Structure coherence con-
ity constraints, we need to consider both FMR and FNMR atraints state that messages of the same type share similar eld
the same time. Following the practice in biometrics [30], westructure. For messages of different types, they may share some
choose the intersection of the two curves, which balances boidtommon elds, separated by their unique elds. When aligning
FMR and FNMR. The error rate value at the intersection is alsehese messages, alignment gaps are formed due to these type-
called Equal Error Rate(EER), which describes the overall specic elds. For example in Figure 9, the two messages
accuracy of the clustering results and we have the following.are of different types with different eld structure. If they are

bm =1 EER wrongly put_into a cluster, a I(_)t of gaps (*-") will be inserte_d

to make their common elds aligned. Although gaps also exist

It means that the lower the EER, the higher con dence wein the alignment for messages of the same type (due to data
have for the message similarity constraliht variation), the former case usually results in more gaps. Hence,



after clustering with the candidate eld, we align message<C. Probabilistic Inference
in the same cluster again and count the average number of
alignment gaps. The proportion of gaps is used as the priofror
probability of coherence constraints.

In this stage, all the constraints are considered together to
m a joint distribution. Let boolean variable denote the
keyword predicate ang; denote the observation predicates in

_ Average number of gaps in a message Table 1. Then all constraints can be represented as probabilistic
Ps = Total length of an (aligned) message functions with boolean variables. Speci cally, an observation
constraintx; = 1(p) is translated as follows.

For example, there are 4 messages, Mc,, Mc,, andme,

in clustert,, of eld f7 in Figure 7b. Based on the MSA
results shown in Figure 4a, messageg and m¢, have 11
gaps after alignment, denoted by the symbols *-' inserted at

the tail after alignment. In contrastn,, and m¢, have no  And an inference constraikt *  x; is translated as follows.
gap. After alignment (and gap insertion), all the four messages _ i )

have the length of 28. Hence the average number of gaps is f(k;xi) = P if k! Xi Is true
(11+0+0+11) =4 = 5:5 for t;, andps for the cluster is 1 p ; otherwise

computed ad  5:5=28.

p; if x; is true

0= 1 p; otherwise

Inference constraink " Xj is similarly transformed. Then
Dimension Constraints. We consider two metrics in dimen- the conjunction of all the constraints can be denoted as the
sion constraints: the total number of clusters and the numbegroduct of all the corresponding probabilistic functions:

of single-message clustersn which there is only a single

message. Flkixaixaiiiiixn) = f1 o o fm
The rst metric is de ned as follows The joint probability function is de ned as follows [53].

N _ Number of distinct eld values Kx iy oxy= p 11 f2 fm
Fdistinct _value = Number of messages Pllxaie ) ko o (1 2 fm)

We compare it with a thresholgae , Which is conservatively Our interest is the marginal probability of the assumption
set to 0.5 in this paper. If the metric is greater than thek, which is the sum over all observation variables. This
threshold, it means that the candidate eld generates too marialue represents the probability that the candidate eld is the
clusters, which is less likely to be a true keyword. Note thatkeyword.

a true keyword usually has only a small number of distinct _ o

values. Thus 0.5 is a very conservative value to make sure p(k) = P(Ki X17X2;2 25 Xn)

the true keyword will not be ignored and it doesn't affect the XX

number of generated clusters. .
Factor Graph. Due to the large number of constraints, the

The second metric is the proportion of single-messaggomputation of the marginal probability is very expensive.
clusters over the total number of clusters. We use a graphical modefactor graph [86], to represent
Number of single-message clusters all probabilistic functions and conduct ef cient computation.

Number of clusters A factor graph is a bipartite graph with two kinds of nodes,
i.e., factor nodes and variable nodes. Factor nodes represent
as well in this paper. If both values are smaller than theirprobabilistic functions. Variable nodes represent the variables

thresholds, the dimension constraint is given a high probabilit)/JseOI in pr(_)babilistic functions with edges connected to the
e.g., 0.95. Otherwise it is set a low probability, e.g., 0.1. torresponding factor nodes. Then the sum-product belief
8

rsingle _cluster

It is also compared against a thresholgge , which is 0.5

propagation algorithm [53] is used to compute the marginal

< 0:95: if Faistinet _vaue < tvalue prot_)ability of a npde by iterative message passing in an
Pg= andrsingle cluster < 1single ef cient way. Intuitively, one can consider this as a rumor
© 0:1; otherwise spreading procedure. The observations are initial rumors. In

each iteration, each variable (think of it as a person) collects
From the clustering results shown in Figure 7, we can decidg|| the rumors about itself from its neighbors, aggregates them,
thatrsingle _cluster for eld f, is 5=8, thus itspq is 0.1, whereas  and passes the aggregated rumor on to the connected factors.
f7 satis es both conditions and itsy is 0.95. Each factor (involving multiple variables) collects the rumors
o . . _of its variables and computes marginal probabilities based on
Normalization. ~As discussed above, the four observationy,e congitional probabilities denoted by the factor and then
constraints are represented by different metrics, which do nqf;shagates the computed probabilities to its variables. The
mean general probabilities and may have different d'St”bubrocess repeats until convergence. We are using an off-the-

tions. For example, EER is usually in ranffe3; 0:6], while  ghef factor graph engine [17]. The details are hence elided.
the computedp, for remote coupling constraints could be as

high as 1. If probabilities of one type of observation constraint
are limited in a small range, this type of observation constraint
may play a less important role compared with others. To A few protocol reverse engineering works have been pro-
avoid this issue, we normalize probabilities of the same typgosed to cluster messages based on network traces. However,
of constraints for all candidate elds to the same range, e.g.their evaluation studies are inadequate in a number of places.
[0:1; 0:95], before further probabilistic inference. Most works only conduct experiments on a small number of

V. EVALUATION



protocols with the focus on text protocols. As discussed earlier,
it is usually more dif cult to cluster binary protocols. Most
works rely on sensitive parameters which need to be adjusted

TABLE IlI: Dataset information

for different protocols. Hence, they ought to be evaluated Protocol C,ienf‘“s”gff;ﬁ’?ma, #Cll\illeenstsTgSeeTrzgreT# Session
against more protocols to illustrate effectiveness and generality-
Another common issue is that most existing works do not DHCP 523 | 477 11000] 3 2 100
make their systems publicly available, nor do they use public DNP3 460 | 540 11000 3 3 40
. . . FTP 458 542 | 1000 14 15 30
datasets. This makes it hard to validate these methods or ~\p 292 | 508 |1000] 1 5 73
conduct comparative studies. Modbus | 494 | 506 |1000| 4 4 13
As binary analysis and network trace based techniques have g‘,\;g 2;2 gié 1888 g 110 gg
different application scenarios and none of binary analysis SMB2 510 | 490 | 1000| 14 15 242
techniques is publicly available, it is dif cult to compareen TETP 225 | 228 | 453 4 1 34
PLIER with binary analysis techniques. Hence, our compara-zeroaccess 577 | 433 | 1000| 1 1 278

tive studies focus on existing network trace based techniques:
In this section, we compare BNPLIER with two state-of-the-

art methods, Netzob and Discoverer, and show the advanta
of NETPLIER with experiments on clustering of different

tasets with 100 messages. As only partial data of Netzob
re public and Discoverer used proprietary datasets, it is
mgrd to compare with original works. However, we test our
implementations on the datasets used in Netzob and achieve
similar results, which provides validation of the correctness of
Internet of Things (loT) devices are increasingly popularour re-implementation.

today. The evaluation of existing protocol reverse engineering
works usually focus on well-known application layer protocols, . .
while 10T de)\//ices often have custor%?zed or sel)li-depned pro-B' Evaluation of Clustering
tocols for wireless communication. To validate the generalityE
of NETPLIER, we also compare with AWRE [69], a recent
work for the physical layer of proprietary wireless protocols
(Section V-E), and conduct evaluation with multiple unknown
protocols used in real 10T devices (Section V-F).

state machine inference (Section V-A - Section V-D).

valuation Metrics. Some non-keyword elds may play the
same role as a keyword and also generate correct clusters.
Thus, the evaluation is focused on the clustering results instead
of the keyword identi cation. Existing works use different
metrics in their experiments to evaluate clustering results and
most of them have similar meanings. In this paper, we use com-
A. Experiment Setup mon objectives for clustering performance evaluation, which
are calledhomogeneityand completenes$§r/1]. Homogeneity
means that each cluster contains only messages of a single
message type, while completeness means all messages of a
ven type are assigned to the same cluster. We use two scores

Datasets. We construct our datasets from several publicly
available traces [66], [41], [9], [5], [11], [14]. We lter
messages of 10 common protocols from these traces with foc

on binary protocols. Note that we cover most protocols teste b measure homogeneity and completeness, denotadaas

gysfr)](f”t |ngr\t/vgfrlii,e\;vgllerggiggx”s:tcl)r:ge\évgr:k 1:(3);1 Oﬂlgl O\;'/'g tﬁ;’:e;c, respectively. The two scores are computed using conditional
b P i b ' tropy analysis. Speci cally, lat denote the total number of

n
least 1000 messages except TFTP due to the lack of enou ;
messages. Table Il shows the statistical information of thgerr]‘essages;t andn, denote the number of messages belonging

datasets. These protocols represent different categories. FTPrﬁsergsezsggigr?ﬁag ;lslé?t?‘g’da{:)dglﬁsfaern.?_theetnh?hgu;]tt’g of
a common text protocol. DHCP has complex eld structures g Y 9 ' Py

which lead to low message similarities. ICMP and NTP areOf the types ki (T)) is de ned as:

simple in structure but may contain broadcast messages, which b
leads to fewer coupling constraints. SMB and SMB2 are two H(T) = Dt gt
versions with different eld structures and both have many =g N n

message types, as shown in Table Ill. TFTP is used for le N ]

transfer and its messages may vary a lot in length. ZeroAccend the conditional entropy of the types given the cluster
is a P2P botnet protocol, which is a representative of comman@ssignments is de ned as:

and control protocols. DNP3 and Modbus are two commonly i 5€i

used protocols in industrial control systems. The variety of H(TC) = Nic. o Nic.

these protocols shows the generality of our method. I1~)= ey N 9 Ne

Implementation. In NETPLIER, we use MAFFT [46] for The entropy of the cluster$i((C)) and the conditional entropy

multiple sequence alignment and pgmpy [17] for probabilisticof clusters given typeH (CjT)) are de ned in a symmetric
inference. As mentioned before, most existing works are nofyay. Then scoreh andc are computed as:

open-sourced. Hence we re-implement the two representa-

tive clustering methods discussed in Section I, Netzob and h=q1 HC)
Discoverer, for comparative studies. We implement Netzob H(T)
on its underlying framework [7] and implement Discoverer

based on a through study of its paper. The parameters are c=1 H(CjT)
chosen following Bossert's work [25] and trained on small B H(C)
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(a) Clustering results in homogeneity (b) Clustering results in completeness (c) Clustering results in V-measure
Fig. 10: Clustering result

(a) Clustering results in homogeneity (b) Clustering results in completeness (c) Clustering results in V-measure
Fig. 11: Clustering result on datasets of different sizes

The two scores range from 0 to 1 and the higher the bettemake deterministic decisions in the presence of uncertainty,
To consider the two metrics together, we also introduce theiwhich makes it hard to balance both homogeneity and com-
harmonic mean, which is called-measure The score of V- pleteness. Hence they usually generate more clusters to make

measure\() can be computed as: sure the accuracy, which leads to a low completeness score.
v=2 h c Datasets of Different SizesBesides different protocol types,
h+c the protocol reverse engineering methods may also be affected
In the following experiments, we will compute the three by the data sizes. To show the stability oENPLIER, we
metrics to measure the clustering results. also compare the results of datasets with different sizes. We

choose ve common protocols with enough messages and

Results of Different Protocols.We compare our method with construct three datasets with different sizes (100, 1000, and
Netzob and Discoverer on different protocols. As Netzob andl0000 messages) for each protocol. Figure 11 shows the
Discoverer only consider messages from one side, we use thectustering results on these datasets. We can see #HEPINER
to cluster messages of the client side and server side separatghgrforms stably on different sizes with most scores being 1.
and then compute metrics with all clusters, whilEPLIER For DHCP of 10000 messagesgNPLIER's performance on
infers the keywords of both sides at the same time and itsompleteness drops slightly (0.993) due to the complex option
results consider all messages already. elds. Note that Netzob could not handle the datasets of 10000
. . messages due to the exponential complexity and huge memory
iterytiflgpgllzirf:r?gl aer? dthcﬁuzfgmoédfgﬁg;gg rgﬁgdjscen;tgilyconsumptlon of its pair-wise alignment. In gen_e-ral, when the
one round for other protocols. This is due to t,he complex eldm-meer of messages Increases, the ho_mogene|ty O-f Netzob _and
structures of DHGP. which c'auses some alignment errors iDlscoverer stays in the same Iev_el or increases slightly, while

’ the completeness decreases obviously. This shows that Netzob

the rst round. The clustering resuits of different protocols , .y riscoverer are not stable for inputs of different sizes even
are shown in Figure 10. BNrPLIER substantially outperforms for the same protocol

Netzob and Discoverer for all protocols. Homogeneity and
completeness are determined by correctly recovering message All experiments were conducted on a server equipped with
types. Since NetPlier recognizes keywords correctly, bott82-cores CPU (Intet Xeon™ E5-2690 @ 2.90GHz) and
metrics are 100%, which is the advantage of NetPlier. Thei28G main memory. Table IV shows the execution time and
only exception is NTP, for which EITPLIER generates a few maximum memory on datasets of 1000 messagesPNIER

more clusters and gets a completeness score of 0.788. Thasmd Discoverer also generate formats of each cluster at the
is because NTP uses several bits representing its keywordame time, while Netzob only conducts clusteringTRLIER
while the minimal keyword candidate generated iBTRLIER ~ consumes similar memory resource to Discoverer and is much
is a byte. Nonetheless, ENPLIER still outperforms Netzob less than Netzob. Note that Netzob consumes lots of memory
and Discoverer clearly. Netzob and Discoverer have similaand it stops execution for datasets with 10000 messages as
performance. Although they perform well in homogeneity,shown in Figure 11. The bottleneck ofENPLIER lies in

their completeness scores are much lower. As we discuss@dSA, as we use iterative re nement in MSA and constraints
before, Netzob and Discoverer are not able to identify the exaaeneration. The time complexity of MSA could vary a lot for
number of clusters. They are sensitive to their parameters antifferent protocols. For well-formatted protocols, e.g., DNP3,
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