
CS 352 – Spring 2011
Project 3a

Handed out: Mar 1st, 2011
Due: Mar 27th, 2011 @ 11:59pm

Abstract:
In this project, you will create a parser that constructs an abstract syntax tree (AST) while
it parses user input. In order to do this, you will modify the given skeleton code to
correctly represent the given grammar, which is a simplified version of the one in project
two. Then you will add AST building instructions within that parser.

Setting up required tools:
Your setup for this project will be similar to that in project 2.

Setting up your code skeleton:
The code skeleton consists of MiniJavaParser.jj and support directories syntaxtree and
visitor. All are compressed as Project3a.zip file.
(You are required to use this skeleton code as a starting point.)

What you need to do:
In MiniJavaParser.jj you will add functionality to parse tokens according to grammar
specifications. JavaCC will produce the corresponding java code from the .jj file.
Main function will then takes an input file, tokenize it, and parse it based on your parser
specification and print out corresponding AST.
All your work should be done in the MiniJavaParser.jj file. (You should not modify any
other files)

The output of your code:
You are not required to output anything. If your program parses an input file cleanly and
constructs the AST correctly, a call in main function will correctly print out your AST.

Running your code skeleton (how TA will run the code);
TA creates a fresh copy of the code skeleton
TA copies your MiniJavaParser.jj file over the same file in the code skeleton directory
TA goes into the directory containing MiniJavaParser.jj (the code skeleton directory)
TA runs:
javacc MiniJavaParser.jj
javac Parser/*.java
java Parser/MiniJavaParser testInputFile.txt

Turnin:
You should turn in the MiniJavaParser.jj file using the turnin command available on
CS unix machines.
To submit: turnin –c cs352 –p p3a MiniJavaParser.jj
To verify: turnin –v –c cs352
(There will be a penalty for turning in incorrectly)

Any doubts concerning the project requirements should be raised by sending email to
lib@purdue.edu. The TA may then discuss things with the instructor if necessary.

BNF for MiniJava
NON-TERMINALS

Goal ::= MainClass (ClassDeclaration)* <EOF>
MainClass ::= class Identifier "{" public static void main "(" String "[" "]"

Identifier ")" "{" Statement "}" "}"
ClassDeclaration ::= class Identifier (extends Identifier)? "{" (VarDeclaration |

MethodDeclaration)* "}"
VarDeclaration ::= Type Identifier ("," Identifier)* ";"

MethodDeclaration ::= public Type Identifier "(" (Type Identifier ("," Type
Identifier)*)? ")" "{" (VarDeclaration | Statement)* return
Expression ";" "}"

Type ::= NameType

 | Type "[" "]"
NameType ::= int

 | boolean
 | Identifier

Statement ::= "{" (Statement)* "}"
 | if "(" Expression ")" Statement (else Statement)?
 | while "(" Expression ")" Statement
 | System.out.println "(" Expression ")" ";"
 | Identifier "=" Expression ";"
 | Identifier "[" Expression "]" "=" Expression ";"

Expression ::= Expression ("&&" | "||" | "<" | ">" | "+" | "-" | "*" | "/")
Expression

 | Expression "[" Expression "]"
 | Expression "." "length"
 | Expression "." Identifier "(" (Expression ("," Expression)*)? ")"
 | <INTEGER_LITERAL>
 | true
 | false
 | Identifier

 | this
 | new NameType "[" Expression "]" ("[" "]")*
 | new Identifier "(" ")"
 | "!" Expression
 | "(" Expression ")"

Identifier ::= <IDENTIFIER>

