
CS 352 – Spring 2011
Project 1

Handed out: Jan. 17 Due: Feb. 3 (11:30pm)

All projects should be done individually instead of in groups.

In Project 1, you manually implement a lexical analyzer for the MiniJava language
specified in the Appendix of the textbook. As explained in the class, you use a while-loop
to scan the source code. The loop body is mainly a table lookup. The table implements
the finite automata you build for different types of tokens.

You can use some techniques to keep the table small. Here are a few hints. All the key
words can be handled separately by a switch statement without having to loop up the
table. Characters which have the same effect can be lumped together, e.g. all English
letters. Thus you do not need a column in the table for each letter.

1. The output of your code:

(1) First, print out a list of identifiers which appear in the source code. Each identifier
should be printed exactly once, in the first-appearance order. Each identifier should be
followed by the line number(s) in which it appears. The line numbers should be put in
parentheses. For clarity of the result, please start a new line for each identifier printed.

In order to remember the identifiers, you need to implement a symbol table in your
lexical analyzer. Whenever an identifier is recognized, the symbol table is checked to see
whether it is already there. If not, the ID should be inserted. The line numbers are stored
in the symbol table as well. Note that keywords such as "System", "out", and "println"
should NOT be treated as IDs.

(2) Next, print out a list of integer constants found in the source code. Constants of the
same value should be printed once only. You do not need to print out the line numbers for
this. To implement this, you need to maintain a “literal table” similar to the symbol table.

(3) Print the total number of all binary operators appearing in the source code.

(4) Lastly, report invalid tokens in the source code: any use of symbols not included in the
specification (eg:- @ $ % /) should be recognized
as invalid tokens.

(4) Important note about comments: For the form of comments which starts with /* and
Ends with */, we assume the comments are not nested. (Nested comments will need
techniques more powerful than finite automata to process, as will be explained in Chapter
3.)

2. How your code should be organized

(a) Your source code should all be in one file called “Lexer.java”.
(b) Your program should take in one command-line argument that is the name of the
 input text file that you are tokenizing.
(c) Your program should be usable as follows:

TA runs: javac Lexer.java
(this creates “Lexer.class”)

TA runs: java Lexer inputTextFile.txt
(this runs your program on “inputTextFile.txt”)

3. What to submit

Only your “Lexer.java” file

4. How to submit your work

You should turn in the Lexer.java file using the turnin command available on CS Unix
machines.

To submit: turnin -c cs352 -p p1 Lexer.java

To verify: turnin -v -c cs352

5. Grading Criteria:

For this project, we will create a set of test cases and then compare the output of your
solution to the key. Two sets of sample inputs and outputs are provided for your
convenience. No partial credit will be given on failed test-cases. The only exception is if
failure of one test-case triggers failure of other test cases (test-cases can't all be
independent, but we'll try as hard as we can).

Any doubts concerning the project requirements should be raised by sending email to
lib@cs.purdue.edu. The TA may then discuss things with the instructor if necessary.

