Recall

For a grammar *G*, with start symbol *S*, any string α such that $S \Rightarrow^* \alpha$ is called a *sentential form*

- If $\alpha \in V_t^*$, then α is called a *sentence* in L(G)
- Otherwise it is just a sentential form (not a sentence in L(G))

A *left-sentential form* is a sentential form that occurs in the leftmost derivation of some sentence.

A *right-sentential form* is a sentential form that occurs in the rightmost derivation of some sentence.

Goal:

Given an input string *w* and a grammar *G*, construct a parse tree by starting at the leaves and working to the root.

The parser repeatedly matches a *right-sentential* form from the language against the tree's upper frontier.

At each match, it applies a *reduction* to build on the frontier:

- each reduction matches an upper frontier of the partially built tree to the RHS of some production
- each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

Consider the grammar

$$egin{array}{ccccc} 1 & S &
ightarrow \ \mathbf{a}AB\mathbf{e} \ 2 & A &
ightarrow \ A &
ightarrow A\mathbf{b}\mathbf{c} \ 3 & | & \mathbf{b} \ 4 & B &
ightarrow \mathbf{d} \end{array}$$

and the input string abbcde

Prod'n.	Sentential Form		
3	a b bcde		
2	a Abc de		
4	aAde		
1	aABe		
—	\overline{S}		

The trick appears to be scanning the input and finding valid sentential forms.

Handles

What are we trying to find?

A substring $\boldsymbol{\alpha}$ of the tree's upper frontier that

matches some production $A \rightarrow \alpha$ where reducing α to A is one step in the reverse of a rightmost derivation

We call such a string a handle.

Formally:

a *handle* of a right-sentential form γ is a production $A \rightarrow \beta$ and a position in γ where β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ .

i.e., if $S \Rightarrow_{rm}^* \alpha Aw \Rightarrow_{rm} \alpha \beta w$ then $A \to \beta$ in the position following α is a handle of $\alpha \beta w$

Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols.

Theorem:

If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)

1. *G* is unambiguous \Rightarrow rightmost derivation is unique

2. \Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_i

3. \Rightarrow a unique position *k* at which $A \rightarrow \beta$ is applied

4. \Rightarrow a unique handle $A \rightarrow \beta$

Example

The left-recursive expression grammar

(original form)

$$\begin{array}{c|cccc}
1 & \langle \text{goal} \rangle & ::= \langle \text{expr} \rangle \\
2 & \langle \text{expr} \rangle & ::= \langle \text{expr} \rangle + \langle \text{term} \rangle \\
3 & & | & \langle \text{expr} \rangle - \langle \text{term} \rangle \\
4 & & | & \langle \text{term} \rangle \\
4 & & | & \langle \text{term} \rangle \\
5 & \langle \text{term} \rangle & ::= \langle \text{term} \rangle * \langle \text{factor} \rangle \\
6 & & | & \langle \text{term} \rangle / \langle \text{factor} \rangle \\
7 & & | & \langle \text{factor} \rangle \\
8 & \langle \text{factor} \rangle ::= \text{num} \\
9 & & | & \text{id} \\
\end{array}$$

Prod'n. Sentential Form

_	⟨goal⟩
1	$\langle expr \rangle$
3	$\overline{\langle \exp r \rangle} - \langle \operatorname{term} \rangle$
5	$\langle expr \rangle - \langle term \rangle * \langle factor \rangle$
9	$\langle \exp \rangle - \overline{\langle \operatorname{term} \rangle * \operatorname{id}}$
7	$\langle \exp angle - \langle \operatorname{factor} angle * \operatorname{id}$
8	$\langle \exp angle - \overline{\texttt{num} * \texttt{id}}$
4	$\langle ext{term} angle - ext{num} * ext{id}$
7	$\overline{\langle \text{factor}} angle - \texttt{num} * \texttt{id}$
9	$\underline{id} - num * id$

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

 $S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n = w$

we set *i* to *n* and apply the following simple algorithm

for i = n downto 1

1. find the handle $A_i \rightarrow \beta_i$ in γ_i

2. replace β_i with A_i to generate γ_{i-1}

This takes 2n steps, where n is the length of the derivation

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a *shift-reduce* parser.

Shift-reduce parsers use a stack and an input buffer

- 1. initialize stack with \$
- Repeat until the top of the stack is the goal symbol and the input token is \$
 - a) find the handle

if we don't have a handle on top of the stack, *shift* an input symbol onto the stack

b) prune the handle

if we have a handle $A \rightarrow \beta$ on the stack, *reduce*

- i) pop $|\beta|$ symbols off the stack
- ii) push A onto the stack

Example: back to x - 2 * y

	Stack	Input	Action
	\$	id - num * id	shift
1/2 2 21	\$ <u>id</u>	- num * id	reduce 9
$1 \langle \text{goal} \rangle ::= \langle \text{expr} \rangle$	det	- num * id	reduce 7
$2 \langle expr \rangle ::= \langle expr \rangle + \langle term \rangle$	$\overline{\mathrm{term}}$	- num * id	reduce 4
3 $ \langle expr \rangle - \langle term \rangle$	$\overline{\exp}$	- num * id	shift
4 $\langle \text{term} \rangle$	$\langle expr \rangle -$	num * id	shift
$5 \langle \text{term} \rangle ::= \langle \text{term} \rangle * \langle \text{factor} \rangle$	$\operatorname{expr} - \underline{\operatorname{num}}$	* id	reduce 8
	$\operatorname{expr} - \operatorname{factor}$	* id	reduce 7
$6 \qquad \langle \text{term} \rangle / \langle \text{factor} \rangle$	$\operatorname{expr} - \overline{\operatorname{term}}$	* id	shift
7 $ $ $\langle factor \rangle$	$\langle expr \rangle - \langle term \rangle *$	id	shift
$8 \langle factor \rangle ::= num$	$\langle expr \rangle - \langle term \rangle * \underline{id}$		reduce 9
9 ' id	$\langle expr \rangle - \langle term \rangle * \langle factor \rangle$		reduce 5
	$(\exp) - \overline{\langle term \rangle}$		reduce 3
	$\overline{\langle expr \rangle}$		reduce 1
	$\overline{\langle \text{goal} \rangle}$		accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

- 1. *shift* next input symbol is shifted onto the top of the stack
- reduce right end of handle is on top of stack;
 locate left end of handle within the stack;
 pop handle off stack and push appropriate non-terminal LHS
- 3. *accept* terminate parsing and signal success
- 4. *error* call an error recovery routine

Key insight: recognize handles with a DFA.

LR parsing

The skeleton parser:

```
push s_0
token \leftarrow next token()
repeat forever
  s \leftarrow top of stack
  if action[s,token] = "shift s_i" then
    push s_i
    token \leftarrow next_token()
  else if action[s,token] = "reduce A \rightarrow \beta"
    then
    pop |\beta| states
    s' \leftarrow top of stack
    push goto[s', A]
  else if action[s, token] = "accept" then
    return
  else error()
```

This takes k shifts, l reduces, and 1 accept, where k is the length of the input string and l is the length of the reverse rightmost derivation

Example tables

state	ACTION			GOTO			
	id	+	*	\$	$\langle expr \rangle$	〈term〉	$\langle factor \rangle$
0	s4	_	_	_	1	2	3
1	—	_		acc	—	—	-
2	_	s5	—	r3	—	—	_
3	_	r5	s6	r5	—	—	-
4	_	r6	r6	r6	—	—	-
5	s4	_	_	—	7	2	3
6	s4	—	—	—	—	8	3
7	_	—	—	r2	—	—	_
8	_	r4	—	r4	_	—	_

The Grammar

1	⟨goal⟩	::=	〈expr〉
2	$\langle expr \rangle$::=	$\langle \text{term} \rangle + \langle \text{expr} \rangle$
3			⟨term⟩
4	〈term〉	::=	$\langle factor \rangle * \langle term \rangle$
5			<i>(factor)</i>
6	<i>(factor)</i>	::=	id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

Example using the tables

Stack	Input	Action
\$0	id*id+id\$	s4
\$04	* id+ id	r6
\$03	* id + id\$	s6
\$036	$\mathtt{id}+\mathtt{id}$	s4
\$0364	+ id\$	r6
\$0363	+ id\$	r5
\$0368	+ id\$	r4
\$02	+ id\$	s5
\$025	id\$	s4
\$0254	\$	r6
\$0253	\$	r5
\$0252	\$	r3
\$0257	\$	r2
\$01	\$	acc

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost derivation

$$S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = w,$$

we can, for each right-sentential form in the derivation,

- 1. isolate the handle of each right-sentential form, and
- 2. determine the production by which to reduce

by scanning γ_i from left to right, going at most k symbols beyond the right end of the handle of γ_i .

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

- everyone's favorite parser
- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers

Recursive descent

A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).

LL(k)

An LL(k) parser must be able to recognize the use of a production after seeing only the first *k* symbols of its right hand side.

$\mathsf{LR}(k)$

An LR(k) parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.

Facts to remember

LR is more expressive than LL.

LL is more expressive than RE.

A RE can be parsed by a DFA; A CFG can be parsed by DFA+Stack (in LR). Why Stack?

Applications

Machine translation.

Random test generation.

Reverse engineering.