Chapter 7
Intermediate Representation

Motivation

e ASTs are too high level and grammar dependent
— Different languages entail different implementations.
— Different machines entail different implementations.

— We need something lower, closer to machine code so
that

 The ASTs from various languages can be translated into this
uniform IR.

* Translations to various machine code can be done with the
IR.

What are the difference between AST
and low level IR

e Conditionals

— If-then-else does not exist in machine level
instructions. Instead, comparisons and conditional
jumps (to only one target).

e Array and field references

— At low level, we need to think about heap/stack, and
decide the corresponding addressing mechanism.

e Method calls

— In AST, we may have various numbers of arguments.
— At low level, we have only one “call” instruction.

Low Level Tree Representations

e Such tree representation is also used in
compilers such as GCC (called RTL and RTX

there).

* Translation to Intermediate Code is indeed a
process of tree rewriting.

IR trees: Expressions

CO'\\IST Integer constant i
i
NA\ME Symbolic constant n [a code label]
n
TEMP Temporary t [one of any number of “registers”]
t
BINAOP Application of binary operator:
e e ADD, SUB, MUL, DIV [arithmetic]
AND, OR, XOR [bitwise logical]
SLL, SRL [logical shifts]
SRA [arithmetic right-shift]
to integer operands e; (evaluated first) and e, (evaluated second)
MI%M Contents of a word of memory starting at address e
e
ALL : :
% Procedure call; expression f is evaluated before arguments ey,... . e,
flen...,en]
ESAEQ Expression sequence; evaluate s for side-effects, then e for result
se
CS352 Translating ASTs to IR trees 2

IR trees: Statements

Move |
TEMP e Evaluate e into temporary t
t
MEM e, Evaluate e, yielding address a, &; into word at a
€
E>\<P Evaluate e and discard result
e
~Jump . .
Transfer control to address g I4,...,l, are all possible values for e
e [Il, ey In]
C%MP Evaluate e; then e, yielding a and b, respectively; compare a with b using
epeptf relational operators:
BEQ, BNE [signed and unsigned integers]
BLT, BGT, BLE, BGE [signed]
jump to t if true, f if false
S/E\Q Statement s; followed by s,
1
LAIT%EL : _
Define constant value of name n as current code address; NAME(n) can be
n used as target of jumps, calls, etc.
CS352 Translating ASTs to IR trees 3

Some Examples

* Ali]=x+y;

o if (x>Vy)
X=2
else
X=3

Things are Not That Easy

 The translations for (x>3) in
— y=x>3
— if (x>3) sl else s2

e The translations for x=3 in
— X=3; ...
— if (x=3)

e Solution:

— Let expressions, statements, and conditionals share
the same base class Translate.exp so that one can be
converted to the other in various contexts.

Kinds of expressions

Expression kinds indicate “how expression might be used”

Ex(exp) expressions that compute a value
Nx(stm) statements: expressions that compute no value

Cx conditionals (jump to true and false destinations)
RelCx.op(left, right) eq, ne, gt, It, ge, le

IfThenElseExp expression or statement, depending on use
Conversion operators allow use of one form in context of another:

UnEx convert to tree expression that computes value of inner tree
unNx convert to tree statement that computes inner tree but returns no value

unCx(t, f) convert to statement that evaluates inner tree and branches to true
destination if non-zero, false destination otherwise

CS352 Translating ASTs to IR trees 4

Translating MiniJava

Local variables: Allocate as a temporary t
TENP
EX(TEMP t)

t
Array elements: Array expression is reference to array in heap.

For exressions e and i, translate €i] as:
Ex(MEM(ADD(e.unEx(), x(i.unEx(), CONST(W)))))

where w is the target machine’s word size: all values are word-sized
(scalar) in MiniJava

Array bounds check: array index | <e.size; runtime will put size in word
preceding array base
Object fields: Object expression is reference to object in heap.
For expression e and field f, translate e.f as:
EX(MEM(ADD(e.unEx(), CONST(0))))
where o is the byte offset of the field £ in the object
Null pointer check: object expression must be non-null (i.e., non-zero)

CS352 Translating ASTs to IR trees

Translating MiniJava

String literals: Allocate statically:
.word 11

label: .ascii "hello world"
Translate as reference to label:
EX(NAME(1abel))

Object creation: Allocate object in heap.

For class T, translate new T() as:

ExX(CALL(NAME('new”), CONST(fields), NAME(label for T'’s vtable)))
Array creation: Allocate array in heap.

For type T, array expression e, translate newT |€| as:

EX(ESEQ(MOVE(TEMP(s), e.unEx()),
CALL(NAME("new”), MUL(TEMP(s), CONST(w)), TEMP(S))))

where sis a fresh temporary, and w is the target machine’s word size.

CS352 Translating ASTs to IR trees

Control structures

Basic blocks:

e a sequence of straight-line code
e if one instruction executes then they all execute
e a maximal sequence of instructions without branches

e a label starts a new basic block
Overview of control structure translation:

e control flow links up the basic blocks

e ideas are simple

Implementation requires bookkeeping

e some care is needed for good code

CS352 Translating ASTs to IR trees

while loops

while (c) s.

. evaluate c
. If false jump to next statement after loop

1
2
3. evaluate loop body s
4. evaluate c

5

. If true jJump back to loop body

e.g.,

If not(c) jJump done
body:

S

If ¢ jJump body
done:

NX(SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), s.unNx())),
SEQ(c.unCx(b, x), LABEL(X))))

CS352 Translating ASTs to IR trees

for loops

for (i,c,u) s

evaluate initialization statement i
evaluate c

If false jump to next statement after loop
evaluate loop body s

evaluate update statement u

R T o

evaluate c
7. if true jJump to loop body

NX(SEQ(i.unNx(),
SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), SEQ(s.unNx(), u.unNx()))),
SEQ(c.unCx(b, x), LABEL(X)))))

For break statements:

e when translating a loop push the done label on some stack
e break simply jumps to label on top of stack
e when done translating loop and its body, pop the label

CS352 Translating ASTs to IR trees

Method calls

€-m(ey, ..., en):

ExX(CALL(MEM(MEM(ep.unEx(), —w), m.index x w), e;.unex(),
... en.unkEx()))

Null pointer check: expression eg must be non-null (i.e., non-zero)

CS352 Translating ASTs to IR trees

10

Comparisons

Translate a op b as:

RelCx.op(a.unEx(), b.unkEx())

When used as a conditional unCx(t, f) yields:

CJUMP(a.unEx(), b.unEx(), t, f)

where t and f are labels.
When used as a value unkx() yields:

ESEQ(SEQ(MOVE(TEMP(r), CONST(1)),
SEQ(unCx(t, f),
SEQ(LABEL(f),
SEQ(MOVE(TEMP(r), CONST(0)), LABEL(t))))),
TEMP(r))

CS352 Translating ASTs to IR trees 11

Conditionals

Translate short-circuiting Boolean operators (&&, | |, !) as if they were
conditionals
e.g., Xx<5&&a>bistreatedas (x<5) 7 (a>bh):0
We translate e; ? e : e3 into IfThenElseExp(e, e, €3)
When used as a value [fThenElseExp.unEx() yields:
ESEQ(SEQ(SEQ(e.unCx(t,),
SEQ(SEQ(LABEL(t),
SEQ(MOVE(TEMP(r), ex.unkx()),
JUMP()))),
SEQ(LABEL(),
SEQ(MOVE(TEMP(r), e3.unkx()),

JUMP()))),
LABEL())),
TEMP(r))

As a conditional IfThenElseExp.unCx(t, f) yields:

SEQ(e1.unCx(tt, ff), SEQ(SEQ(LABEL(tt), e>.unCx(t, f)),
SEQ(LABEL(ff), e3.unCx(t, f))))

CS352 Translating ASTs to IR trees

12

Conditionals: Example

Applying unCx(t, f) to (x<5) ? (a>Db): 0:
SEQ(BLT(x.unEx(), CONST(5), tt, ff),
SEQ(SEQ(LABEL(tt, BGT(a.unkEx(), b.unkEx(), t, f)),
SEQ(LABEL(ff, JUMP(f))))

or more optimally:

SEQ(BLT(x.unEx(), CONST(5), tt, f),
SEQ(LABEL(tt, BGT(a.unkEx(), b.uneX(), t, f)))

CS352 Translating ASTs to IR trees

13

One-dimensional fixed arrays: Pascal/Modula/C/C++

var a: array [2..5] of integer;

ale|

translates to:

MEM(ADD(TEMP(FP), ADD(CONST k— 2w, x(CONST w, e.unEx))))

where k is offset of static array from the frame pointer FP, w is word size

In Pascal, multidimensional arrays are treated as arrays of arrays, so A[i, j] is
equivalent to A[i][j], so this translation works for subarrays. Not so in Fortran.

CS352 Translating ASTs to IR trees 14

Multidimensional arrays

Array allocation:

constant bounds

e allocate in static area, stack, or heap
e NO run-time descriptor is needed

dynamic arrays: bounds fixed at run-time

e allocate in stack or heap
e descriptor is needed

dynamic arrays: bounds can change at run-time

e allocate in heap
e descriptor is needed

CS352 Translating ASTs to IR trees

15

Multidimensional arrays

Array layout:

Contiguous:

1. Row major
Rightmost subscript varies most quickly:

Al1,1], A[1,2],
Al[2,1], A[2,2],

Used in PL/1, Algol, Pascal, C, Ada, Modula, Modula-2, Modula-3

2. Column major
Leftmost subscript varies most quickly:

Al1,1], A[2,1],
Al1,2], A[2,2],

Used in FORTRAN

By vectors
Contiguous vector of pointers to (non-contiguous) subarrays

CS352 Translating ASTs to IR trees

16

Multi-dimensional arrays: row-major layout

array [1..N,1..M] of T
array [1..N] of array [1..M] of T

no. of elt'’s in dimension J: D;j =Uj-Lj+1
position of Aliq, ..., Inl:
(in—Ln)
Jr(!n—l— Lh—1)Dn
+(in—2—Ln—2)DnDn_1
+(i1—L1)Dn---D2

which can be rewritten as

varialg[e part
i1D2---Dn+ioD3---Dn+---+in_1Dn+in
—£L1D2---Dn—|—L2D3~-Dn—|—"'—|—Ln_1Dn—|— an
constant part

Address of Aliq, ..., Inl:
address(A) + ((variable part — constant part) x element size)

CS352 Translating ASTs to IR trees

17

case (switch) statements

case Eof Vi: § ... Vh: Syend

1. evaluate the expression

2. find value in case list equal to value of expression
3. execute statement associated with value found

4. jump to next statement after case

Key issue: finding the right case

e sequence of conditional jumps (small case set)
O(| cases |)

e binary search of an ordered jump table (sparse case set)
O(log, | cases |)

e hash table (dense case set)
O(1)

CS352 Translating ASTs to IR trees

18

case (switch) statements

case Eof Vi: § ... Vh: Syend

One translation approach:

test:

next:

CS352

t ;= expr
jump test
code for §
jump next
code for S
jump next

code for §,
jump next
ift=Vq jump L4
Ift =Vo jJump L»

Ift = Vh jump Ln
code to raise run-time exception

Translating ASTs to IR trees 19

Labels and gotos

A little complicated!

Resolving references to labels multiply-defined in different scopes:

begin
L: begin
goto L;
... { possible definition of L }
end
end

e Scope labels like variables
e On use, label definition is either resolved or unresolved
e On definition, backpatch previous unresolved label uses

Jumping out of blocks or procedures:

1. Pop run-time stack
2. Fix display (if used); static chain needs no fixing
3. Restore registers if jumping out of a procedure

CS352 Translating ASTs to IR trees

20

Parameter passing

Place information in formal parameter location for callee to access actual
parameter:

e Vvalue
e address
e dope vector

Parameter passing modes.

value (copy-in), result (copy-out), value-result
Copy actual into formal on call, formal into actual on return

reference (var), read-only
Copy address of actual into formal

name, formal procedures, label parameters
Name parameters are re-evaluated on every reference

Data objects distinguish:

e values (constants)
e |locations (ordinary variables)

e addresses of locations containing values
(indirect references, var parameters)

CS352 Translating ASTs to IR trees

21

Value, result, value-result parameters

Value:
e treat formal as a local variable initialized with actual
e actual can be any expression of correct type
Result:
e treat formal as uninitialized local variable
e on return formal is copied into actual
e actual must be an l-value
Value-result:
e treat formal as local variable initialized with actual
e on return formal is copied to actual

e actual must be an [-value

CS352 Translating ASTs to IR trees

22

Value, result, value-result parameters

Implementation:

Scalars:

e result/value-result =
pass address of actual, copy value to/from local copy

e value = simply pass value directly

Arrays:
e pass dope vector
e static arrays = pass pointer to base of array
e result/value-result = two local dope vectors
e value = one local dope vector

Records:
e handle as scalar (since fixed in size)

e best to pass address, let callee copy
(more compact calling sequences)

CS352 Translating ASTs to IR trees

23

Reference and read-only parameters

Usually pass address

Scalars:

e reference = pass address of actual

e read-only = pass value (rather than address):

copy actual into read-only local

Arrays: pass dope vector (simple pointer if static)

Records: pass base address

CS352 Translating ASTs to IR trees

24

