
Garbage Collection
Problem: When items are allocated from the heap, how do we know when to
free them?

� Solution 1: The programmer explicitly frees the memory.
� Pros: Easy for compiler
� Cons: Hard for programmer
� Ex: C/C++

� Solution 2: Free any variables that aren't live.
� Actually, use a heuristic of freeing variables that aren't reachable.
� This is garbage collection.

Mark-and-Sweep
� Can represent heap allocated records as a directed graph
� Step 1: Mark records with a DFS
� Step 2: Sweep the heap looking for unmarked nodes
� Garbage is put into the freelist

Algorithm
Mark phase
� For each root x, do DFS(x)

Sweep Phase
� p� First address in heap
� While p < last address in heap

1. If record p is marked, unmark p
2. Else, let f1 be the first field in p

p.f1� freelist
freelist� p

 3. p� p + (size of record p)

Example
Beginning Heap

After mark phase

During Sweep phase

After Sweep phase

Complexity

� R = number of reachable records
� H = size of the heap
� Amortized cost: (C1R + C2H) / (H – R)
� What does this mean?

Implementation Issues

� If we use recursion, the run-time stack could reach a size of H activation
records!

� If we use an explicit stack, we could still have a stack of size H words!
� Pointer Reversal – Use the elements in the heap as the stack itself, reversing

the pointers as you go
� Array of Freelists – freelist[i] stores records of size i
� Fragmentation – Internal and External

Copying Collection

- traverse graph

- need two heaps
� from-space (working heap)
� to-space (heap for garbage collection)

- redirect roots to to-space (new space)

- copy records from old space to new space
� create isomorphic copy in to-space

- after all records moved, swap new and old space

- copy is contiguous – no external fragmentation

Advantage:
- simplicity - no stack or pointer reversal required

- doesn’t move garbage

- makes free space contiguous,
o allocation cheap
o no freelist

Disadvantage:
- half of memory is wasted

- maintain accurate pointer
o heap pointers (next, scan)
o record pointer

Pointer Forwarding

Given pointer p:
Redirect record from from-space to to-space

Case 1:
If p points to already copied record, p.f1 is forwarding pointer that tells where copy is in to-space.
Return forwarding pointer

Case 2:
If p points to record that has not been copied, copy record to the next free location in to-space and
store forwarding pointer into p.f1. Return forwarding pointer

Case 3:
p points outside of from-space (to-space/not garbage collected arena)

Cheney's Algorithm

- Performs a breadth-first copy

1. Scan and Next points to start of to-space
Roots are forwarded
Records reachable from roots copied to to-space
Next pointer incremented accordingly

2. Scan �� Next contain records copied to to-space but fields not yet forwarded (ie
fields point to from-space)
- Scanning a record

Forwards fields of each record not yet in to-space
Both next and scan are incremented
Garbage collection done when scan reaches next

Example
Before

Forward Roots Forward Roots

Scan and Forward Scan and Forward

Scan and Forward Done

Bad locality of reference:
- breadth-first copy

o records end far apart in memory
o bad for virtual memory and caching

Solution:
Hybrid of breadth-first and depth-first
Use breadth-first but forward the child of a node immediately, if
possible

Cost
- breadth-first copying & hybrid

C3R = Total cost of collection based on number of records copied
H/2 – R = heap divided by two – words/records to allocate before next collection
H >>R, cost approaches 0

