

• maps characters into *tokens* – the basic unit of syntax

x = x + y;

becomes

 $<\!i\!d,\,x\!>$ = $<\!i\!d,\,x\!>$ + $<\!i\!d,\,y\!>$;

- character string value for a token is a lexeme
- typical tokens: *number*, *id*, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed
 - \Rightarrow use specialized recognizer (as opposed to lex)

A scanner must recognize the units of syntax Some parts are easy:

keywords and operators

specified as literal patterns: do, end

comments

```
opening and closing delimiters: /* ··· */
```

Specifying patterns

A scanner must recognize the units of syntax Other parts are much harder:

identifiers

```
alphabetic followed by k alphanumerics (-, \$, \&, ...)
```

numbers

```
integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer '. ' digits from 0-9
reals: (integer or decimal) 'E' (+ or -) digits from 0-9
complex: '(' real ', ' real ')'
```

We need a powerful notation to specify these patterns

Operation	Definition
union of L and M	$L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
written $L \cup M$	
concatenation of L and M	$LM = \{st \mid s \in L \text{ and } t \in M\}$
written LM	
Kleene closure of L	$L^* = \bigcup_{i=0}^{\infty} L^i$
written L^*	
positive closure of L	$L^+ = \bigcup_{i=1}^{\infty} L^i$
written L^+	$\iota - 1$

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include both *regular expressions* and *regular grammars*

Regular expressions (*over an alphabet* Σ):

- 1. ε is a RE denoting the set $\{\varepsilon\}$
- 2. if $a \in \Sigma$, then *a* is a RE denoting $\{a\}$
- 3. if *r* and *s* are REs, denoting L(r) and L(s), then:

```
(r) is a RE denoting L(r)
```

```
(r) \mid (s) is a RE denoting L(r) \cup L(s)
```

(r)(s) is a RE denoting L(r)L(s)

 $(r)^*$ is a RE denoting $L(r)^*$

If we adopt a *precedence* for operators, the extra parentheses can go away. We assume *closure*, then *concatenation*, then *alternation* as the order of precedence.

Examples

identifier

```
letter \rightarrow (a \mid b \mid c \mid ... \mid z \mid A \mid B \mid C \mid ... \mid Z)
```

```
digit \to (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)
```

```
\textit{id} \rightarrow \textit{letter} (\textit{ letter} \mid \textit{digit})^*
```

numbers

```
\begin{array}{l} \textit{integer} \rightarrow (+ \mid - \mid \epsilon) \; (0 \mid (1 \mid 2 \mid 3 \mid ... \mid 9) \; \textit{digit}^*) \\ \textit{decimal} \rightarrow \textit{integer} \; . \; ( \; \textit{digit} \; )^* \\ \textit{real} \rightarrow ( \; \textit{integer} \mid \textit{decimal} \; ) \; \texttt{E} \; (+ \mid -) \; \textit{digit}^* \\ \textit{complex} \rightarrow `(` \; \textit{real} \; , \; \textit{real} \; `)` \end{array}
```

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically

Axiom	Description
r s=s r	is commutative
r (s t) = (r s) t	is associative
(rs)t = r(st)	concatenation is associative
r(s t) = rs rt	concatenation distributes over
(s t)r = sr tr	
$\epsilon r = r$	ϵ is the identity for concatenation
$r\epsilon = r$	
$r^* = (r \varepsilon)^*$	relation between * and ϵ
$r^{**} = r^*$	* is idempotent

Examples

Let $\Sigma = \{a, b\}$

- 1. a|b denotes $\{a,b\}$
- 2. (a|b)(a|b) denotes $\{aa, ab, ba, bb\}$ i.e., (a|b)(a|b) = aa|ab|ba|bb
- 3. a^* denotes { $\epsilon, a, aa, aaa, \ldots$ }
- 4. $(a|b)^*$ denotes the set of all strings of *a*'s and *b*'s (including ε) i.e., $(a|b)^* = (a^*b^*)^*$
- 5. $a|a^*b$ denotes $\{a, b, ab, aab, aaab, aaaab, \ldots\}$

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for *identifier*:

identifier

```
\begin{array}{l} \textit{letter} \rightarrow (a \mid b \mid c \mid ... \mid z \mid A \mid B \mid C \mid ... \mid Z) \\ \textit{digit} \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9) \\ \textit{id} \rightarrow \textit{letter} ( \textit{letter} \mid \textit{digit} )^{*} \end{array}
```

```
char \leftarrow next_char();
state \leftarrow 0; /* code for state 0 */
done \leftarrow false;
token_value \leftarrow "" /* empty string */
while( not done ) {
   class \leftarrow char_class[char];
   state \leftarrow next_state[class,state];
   switch(state) {
      case 1: /* building an id */
          token_value \leftarrow token_value + char;
          char \leftarrow next_char();
          break:
      case 2: /* accept state */
          token_type = identifier;
          done = true;
          break;
      case 3: /* error */
          token_type = error;
          done = true;
          break;
   }
return token_type;
```

Two tables control the recognizer

ahar alaga.		$\ a \cdot$	-z	A -	-Z	0-9	other
char_class:	value	letter		letter		digit	other
next_state:	class	0	1	2	3	_	
	letter	1	1				
	digit	3	1				
	other	3	2				

To change languages, we can just change tables

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner (table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token (used in the parser)

Grammars for regular languages

Can we place a restriction on the *form* of a grammar to ensure that it describes a regular language?

Provable fact:

For any RE *r*, \exists a grammar *g* such that L(r) = L(g)

Grammars that generate regular sets are called *regular grammars*:

They have productions in one of 2 forms:

- **1.** $A \rightarrow aA$
- **2.** $A \rightarrow a$

where A is any non-terminal and a is any terminal symbol

These are also called *type 3* grammars (Chomsky)

More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

The RE is $(00 | 11)^*((01 | 10)(00 | 11)^*(01 | 10)(00 | 11)^*)^*$

More regular expressions

What about the RE $(a \mid b)^*abb$?

State s_0 has multiple transitions on a!

 \Rightarrow nondeterministic finite automaton

Finite automata

A non-deterministic finite automaton (NFA) consists of:

- **1.** a set of *states* $S = \{s_0, ..., s_n\}$
- 2. a set of input symbols Σ (the alphabet)
- 3. a transition function *move* mapping state-symbol pairs to sets of states
- 4. a distinguished start state s_0
- 5. a set of distinguished *accepting* or *final* states *F*

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

- 1. no state has a ϵ -transition, and
- 2. for each state *s* and input symbol *a*, there is at most one edge labelled *a* leaving *s*

A DFA accepts x iff. \exists a unique path through the transition graph from s_0 to a final state such that the edges spell x.

- 1. DFAs are clearly a subset of NFAs
- 2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:
 - each DFA state corresponds to a set of NFA states
 - possible exponential blowup

NFA to DFA using the subset construction: example 1

18

Constructing a DFA from a regular expression

- $\begin{array}{l} \text{RE} \rightarrow \text{NFA w/}\epsilon \text{ moves} \\ \text{build NFA for each term} \\ \text{connect them with }\epsilon \text{ moves} \end{array}$
- NFA w/ε moves to DFA construct the simulation the "subset" construction
- $\label{eq:DFA} \begin{array}{l} \mathsf{DFA} \to \mathsf{minimized} \ \mathsf{DFA} \\ \mathsf{merge} \ \mathsf{compatible} \ \mathsf{states} \end{array}$

$$\mathsf{DFA} \to \mathsf{RE}$$

construct $R_{ij}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \bigcup R_{ij}^{k-1}$

RE to NFA

RE to NFA: example

NFA to DFA: the subset construction

Input:NFA NOutput:A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)Method:Let s be a state in N and T be a set of states, and using the following operations:

Operation	Definition		
ϵ -closure(s)	set of NFA states reachable from NFA state s on ϵ -transitions		
	alone		
ϵ -closure (T)	set of NFA states reachable from some NFA state s in T on		
	ε-transitions alone		
move(T,a)	set of NFA states to which there is a transition on input symbol		
	a from some NFA state s in T		
add state $T = \varepsilon$ -closure(s_0) unmarked to Dstates while \exists unmarked state T in Dstates mark T for each input symbol a $U = \varepsilon$ -closure(move(T, a)) if $U \notin$ Dstates then add U to Dstates unmarked Dtrans[T, a] = U endfor endwhile			

 ϵ -closure(s_0) is the start state of DA state of D is final if it contains at least one final state in N

NFA to DFA using subset construction: example 2

Not all languages are regular

One cannot construct DFAs to recognize these languages:

- $L = \{p^k q^k\}$
- $L = \{wcw^r \mid w \in \Sigma^*\}$

Note: neither of these is a regular expression! (DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

- alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- sets of pairs of 0's and 1's $(01 \mid 10)^+$

How does your browser establish a connection with a web server?

- The client sends a SYN message to the server.
- In response, the server replies with a SYN-ACK.
- Finally the client sends an ACK back to the server.

This is done through two DFAs in the client and server, respectively.

Ramification - Intrusion Detection

Code		Operating System
FILE * f;		
<pre>f=fopen("demo", "r");</pre>	>	SYS_OPEN
<pre>strcpy(); //vulnerability</pre>		
if (!f)		
<pre>printf("Fail to open\n");</pre>	>	SYS_WRITE
else		
<pre>fgets(f, buf);</pre>	>	SYS_READ
• • •		

A DFA will be exercised simultaneously with the program on the OS side to detect intrusion.