
Scanner

code
source tokens

errors

scanner parser IR

• maps characters into tokens – the basic unit of syntax
x = x + y;

becomes
<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end

• eliminates white space (tabs, blanks, comments)

• a key issue is speed
⇒ use specialized recognizer (as opposed to lex)

1

Specifying patterns

A scanner must recognize the units of syntax
Some parts are easy:

white space
<ws> ::= <ws> ’ ’

| <ws> ’\t’

| ’ ’

| ’\t’

keywords and operators
specified as literal patterns: do, end

comments
opening and closing delimiters: /* · · · */

2

Specifying patterns

A scanner must recognize the units of syntax
Other parts are much harder:

identifiers
alphabetic followed by k alphanumerics (, $, &, . . .)

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns

3

Operations on languages

Operation Definition
union of L and M L∪M = {s | s ∈ L or s ∈M}

written L∪M
concatenation of L and M LM = {st | s ∈ L and t ∈M}

written LM
Kleene closure of L L∗ =

S∞
i=0 Li

written L∗

positive closure of L L+ =
S∞

i=1 Li

written L+

4

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set {ε}

2. if a ∈ Σ, then a is a RE denoting {a}

3. if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)

(r) | (s) is a RE denoting L(r)
S

L(s)

(r)(s) is a RE denoting L(r)L(s)

(r)∗ is a RE denoting L(r)∗

If we adopt a precedence for operators, the extra parentheses can go
away. We assume closure, then concatenation, then alternation as the
order of precedence.

5

Examples

identifier
letter → (a | b | c | ... | z | A | B |C | ... | Z)

digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id → letter (letter | digit)∗

numbers
integer → (+ | − | ε) (0 | (1 | 2 | 3 | ... | 9) digit∗)

decimal → integer . (digit)∗

real → (integer | decimal) E (+ | −) digit∗

complex → ’(’ real , real ’)’

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically

6

Algebraic properties of REs

Axiom Description
r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative
(rs)t = r(st) concatenation is associative
r(s|t) = rs|rt concatenation distributes over |
(s|t)r = sr|tr

εr = r ε is the identity for concatenation
rε = r

r∗ = (r|ε)∗ relation between ∗ and ε
r∗∗ = r∗ ∗ is idempotent

7

Examples

Let Σ = {a,b}

1. a|b denotes {a,b}

2. (a|b)(a|b) denotes {aa,ab,ba,bb}

i.e., (a|b)(a|b) = aa|ab|ba|bb

3. a∗ denotes {ε,a,aa,aaa, . . .}

4. (a|b)∗ denotes the set of all strings of a’s and b’s (including ε)
i.e., (a|b)∗ = (a∗b∗)∗

5. a|a∗b denotes {a,b,ab,aab,aaab,aaaab, . . .}

8

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier
letter → (a | b | c | ... | z | A | B |C | ... | Z)

digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id → letter (letter | digit)∗

9

Code for the recognizer

char ← next char();
state ← 0; /* code for state 0 */
done ← false;
token value ← "" /* empty string */
while(not done) {

class ← char class[char];
state ← next state[class,state];
switch(state) {

case 1: /* building an id */
token value ← token value + char;
char ← next char();
break;

case 2: /* accept state */
token type = identifier;
done = true;
break;

case 3: /* error */
token type = error;
done = true;
break;

}
}
return token type;

10

Tables for the recognizer

Two tables control the recognizer

char class:
a− z A−Z 0−9 other

value letter letter digit other

next state:

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

11

Automatic construction

Scanner generators automatically construct code from RE-like
descriptions

• construct a DFA

• use state minimization techniques

• emit code for the scanner
(table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

• emits C code for scanner

• provides macro definitions for each token
(used in the parser)

12

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it
describes a regular language?

Provable fact:

For any RE r, ∃ a grammar g such that L(r) = L(g)

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. A→ aA

2. A→ a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

13

More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is (00 | 11)∗((01 | 10)(00 | 11)∗(01 | 10)(00 | 11)∗)∗

14

More regular expressions

What about the RE (a | b)∗abb ?

s0 s1 s2 s3

ajb
a b b

State s0 has multiple transitions on a!
⇒ nondeterministic finite automaton

a b
s0 {s0,s1} {s0}
s1 – {s2}
s2 – {s3}

15

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S = {s0, . . . ,sn}

2. a set of input symbols Σ (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of
states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s

A DFA accepts x iff. ∃ a unique path through the transition graph from s0 to
a final state such that the edges spell x.

16

DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of
simultaneous states:

• each DFA state corresponds to a set of NFA states

• possible exponential blowup

17

NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

ajb
a b b

a b
{s0} {s0,s1} {s0}
{s0,s1} {s0,s1} {s0,s2}
{s0,s2} {s0,s1} {s0,s3}
{s0,s3} {s0,s1} {s0}

fs0g fs0;s1g fs0;s2g fs0;s3gb

a b b

b

a

a

a

18

Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE→NFA w/ε moves
build NFA for each term
connect them with ε moves

NFA w/ε moves to DFA
construct the simulation
the “subset” construction

DFA→ minimized DFA
merge compatible states

DFA→ RE
construct Rk

i j = Rk−1
ik (Rk−1

kk)∗Rk−1
k j

S

Rk−1
i j

19

RE to NFA

N(ε)
ε

N(a)
a

N(A|B)

AN(A)

N(B) B

ε

εε

ε

N(AB) AN(A) N(B) B

N(A∗)

ε

AN(A)

ε
ε ε

20

RE to NFA: example

a|b

AN(A)

N(B) B

ε

εε

ε

(a|b)∗ 0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb 7 8 9 10
a b b

21

NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)
Method: Let s be a state in N and T be a set of states, and using the following operations:

Operation Definition
ε-closure(s) set of NFA states reachable from NFA state s on ε-transitions

alone
ε-closure(T) set of NFA states reachable from some NFA state s in T on

ε-transitions alone
move(T,a) set of NFA states to which there is a transition on input symbol

a from some NFA state s in T

add state T = ε-closure(s0) unmarked to Dstates
while ∃ unmarked state T in Dstates

mark T
for each input symbol a

U = ε-closure(move(T,a))
if U 6∈ Dstates then add U to Dstates unmarked
Dtrans[T,a] = U

endfor
endwhile

ε-closure(s0) is the start state of D
A state of D is final if it contains at least one final state in N

22

NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A = {0,1,2,4,7} D = {1,2,4,5,6,7,9}
B = {1,2,3,4,6,7,8} E = {1,2,4,5,6,7,10}
C = {1,2,4,5,6,7}

a b
A B C
B B D
C B C
D B E
E B C

A B

C

D E

b

a b b

a

a

a

a

b

b

23

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

• L = {pkqk}

• L = {wcwr | w ∈ Σ∗}

Note: neither of these is a regular expression!
(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

• alternating 0’s and 1’s
(ε | 1)(01)∗(ε | 0)

• sets of pairs of 0’s and 1’s
(01 | 10)+

24

Ramification - Internet Protocol

How does your browser establish a connection with a web server?

• The client sends a SYN message to the server.

• In response, the server replies with a SYN-ACK.

• Finally the client sends an ACK back to the server.

This is done through two DFAs in the client and server, respectively.

25

Ramification - Intrusion Detection
Code Operating System

FILE * f;

f=fopen("demo", "r");

strcpy(...); //vulnerability

if (!f)

printf("Fail to open\n");

else

fgets(f, buf);

...

------>

------>

------>

SYS_OPEN

SYS_WRITE

SYS_READ

A DFA will be exercised simultaneously with the program on the OS side
to detect intrusion.

26

