Scanner

- maps characters into *tokens* – the basic unit of syntax

 \[x = x + y; \]

 becomes

 \[<\text{id}, x> = <\text{id}, x> + <\text{id}, y> ; \]

- character string value for a *token* is a *lexeme*

- typical tokens: *number, id, +, -, *, /, do, end*

- eliminates white space (*tabs, blanks, comments*)

- a key issue is speed

 \[\Rightarrow \text{use specialized recognizer (as opposed to lex)} \]
Specifying patterns

A scanner must recognize the units of syntax
Some parts are easy:

white space
 \(\langle \text{ws} \rangle \) ::= \(\langle \text{ws} \rangle \) \ ' ' |
 \(\langle \text{ws} \rangle \) \ 't'
 ' ' |
 '\t'

keywords and operators
 specified as literal patterns: do, end

comments
 opening and closing delimiters: /* ⋮ */
Specifying patterns

A scanner must recognize the units of syntax
Other parts are much harder:

identifiers
 alphabetic followed by \(k \) alphanumerics (\(-, $, \&\), \ldots\)

numbers
 integers: 0 or digit from 1-9 followed by digits from 0-9
 decimals: integer \(\cdot \) digits from 0-9
 reals: (integer or decimal) \(\cdot E \) (+ or -) digits from 0-9
 complex: \('(\cdot \text{real} \cdot, \cdot \text{real} \cdot)' \)

We need a powerful notation to specify these patterns
Operations on languages

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>union of L and M</td>
<td>$L \cup M = { s \mid s \in L \text{ or } s \in M }$</td>
</tr>
<tr>
<td>written $L \cup M$</td>
<td></td>
</tr>
<tr>
<td>concatenation of L and M</td>
<td>$LM = { st \mid s \in L \text{ and } t \in M }$</td>
</tr>
<tr>
<td>written LM</td>
<td></td>
</tr>
<tr>
<td>Kleene closure of L</td>
<td>$L^* = \bigcup_{i=0}^{\infty} L^i$</td>
</tr>
<tr>
<td>written L^*</td>
<td></td>
</tr>
<tr>
<td>positive closure of L</td>
<td>$L^+ = \bigcup_{i=1}^{\infty} L^i$</td>
</tr>
<tr>
<td>written L^+</td>
<td></td>
</tr>
</tbody>
</table>
Regular expressions

Patterns are often specified as *regular languages*

Notations used to describe a regular language (or a regular set) include both *regular expressions* and *regular grammars*

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set {ε}
2. if \(a \in \Sigma \), then \(a \) is a RE denoting \(\{a\} \)
3. if \(r \) and \(s \) are REs, denoting \(L(r) \) and \(L(s) \), then:

 \((r) \) is a RE denoting \(L(r) \)

 \((r) \mid (s) \) is a RE denoting \(L(r) \cup L(s) \)

 \((r)(s) \) is a RE denoting \(L(r)L(s) \)

 \((r)^* \) is a RE denoting \(L(r)^* \)

If we adopt a *precedence* for operators, the extra parentheses can go away. We assume *closure*, then *concatenation*, then *alternation* as the order of precedence.
Examples

identifier
\[
\text{letter} \rightarrow (a \mid b \mid c \mid \ldots \mid z \mid A \mid B \mid C \mid \ldots \mid Z)
\]
\[
\text{digit} \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)
\]
\[
\text{id} \rightarrow \text{letter} \ (\text{letter} \mid \text{digit})^*
\]

numbers
\[
\text{integer} \rightarrow (+ \mid − \mid \varepsilon) \ (0 \mid (1 \mid 2 \mid 3 \mid \ldots \mid 9) \ \text{digit}^*)
\]
\[
\text{decimal} \rightarrow \text{integer} \ (\text{digit}^*)
\]
\[
\text{real} \rightarrow (\text{integer} \mid \text{decimal}) \ \varepsilon \ (\pm \mid −) \ \text{digit}^*
\]
\[
\text{complex} \rightarrow '(' \ \text{real} \ , \ \text{real} \ ')'
\]

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically
Algebraic properties of REs

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r</td>
<td>s = s</td>
</tr>
<tr>
<td>$r</td>
<td>(s</td>
</tr>
<tr>
<td>$(rs)t = r(st)$</td>
<td>concatenation is associative</td>
</tr>
<tr>
<td>$r(s</td>
<td>t) = rs</td>
</tr>
<tr>
<td>$(s</td>
<td>t)r = sr</td>
</tr>
<tr>
<td>$\varepsilon r = r$</td>
<td>ε is the identity for concatenation</td>
</tr>
<tr>
<td>$r\varepsilon = r$</td>
<td></td>
</tr>
<tr>
<td>$r^* = (r</td>
<td>\varepsilon)^*$</td>
</tr>
<tr>
<td>$r^{**} = r^*$</td>
<td>$*$ is idempotent</td>
</tr>
</tbody>
</table>
Examples

Let $\Sigma = \{a, b\}$

1. $a|b$ denotes $\{a, b\}$

2. $(a|b)(a|b)$ denotes $\{aa, ab, ba, bb\}$
 i.e., $(a|b)(a|b) = aa|ab|ba|bb$

3. a^* denotes $\{\varepsilon, a, aa, aaa, \ldots\}$

4. $(a|b)^*$ denotes the set of all strings of a's and b's (including ε)
 i.e., $(a|b)^* = (a^*b^*)^*$

5. $a|a^*b$ denotes $\{a, b, ab, aab, aaab, aaaaab, \ldots\}$
Recognizers

From a regular expression we can construct a
deterministic finite automaton (DFA)

Recognizer for identifier:

\[
\text{identifier} \\
\text{letter} \rightarrow (a \mid b \mid c \mid \ldots \mid z \mid A \mid B \mid C \mid \ldots \mid Z) \\
\text{digit} \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9) \\
\text{id} \rightarrow \text{letter} (\text{letter} \mid \text{digit})^*
\]
Code for the recognizer

```c
char ← next_char();
state ← 0; /* code for state 0 */
done ← false;
token_value ← "" /* empty string */
while( not done ) {
    class ← char_class[char];
    state ← next_state[class,state];
    switch(state) {
        case 1: /* building an id */
            token_value ← token_value + char;
            char ← next_char();
            break;
        case 2: /* accept state */
            token_type = identifier;
            done = true;
            break;
        case 3: /* error */
            token_type = error;
            done = true;
            break;
    }
}
return token_type;
```
Tables for the recognizer

Two tables control the recognizer

<table>
<thead>
<tr>
<th>char_class:</th>
<th>$a-z$</th>
<th>$A-Z$</th>
<th>$0-9$</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>letter</td>
<td>letter</td>
<td>digit</td>
<td>other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>digit</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To change languages, we can just change tables
Automatic construction

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner
 (table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token
 (used in the parser)
Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a regular language?

Provable fact:

For any RE r, \exists a grammar g such that $L(r) = L(g)$

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. $A \rightarrow aA$
2. $A \rightarrow a$

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)
More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

\[
\begin{align*}
S_0 & \xrightarrow{0} S_0 & \xrightarrow{1} S_1 \\
S_1 & \xrightarrow{1} S_1 & \xrightarrow{0} S_2 \\
S_2 & \xrightarrow{0} S_2 & \xrightarrow{1} S_3 \\
S_3 & \xrightarrow{0} S_3 & \xrightarrow{0} S_0
\end{align*}
\]

The RE is \((00 | 11)^*(01 | 10)(00 | 11)^*(01 | 10)(00 | 11)^*)^*\)
More regular expressions

What about the RE \((a \mid b)^*abb\) ?

State \(s_0\) has multiple transitions on \(a\)!
\[\Rightarrow \text{nondeterministic finite automaton} \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>({s_0, s_1})</td>
<td>({s_0})</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(_)</td>
<td>({s_2})</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(_)</td>
<td>({s_3})</td>
</tr>
</tbody>
</table>
Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states \(S = \{s_0, \ldots, s_n\} \)
2. a set of input symbols \(\Sigma \) (the alphabet)
3. a transition function \(\text{move} \) mapping state-symbol pairs to sets of states
4. a distinguished start state \(s_0 \)
5. a set of distinguished accepting or final states \(F \)

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a \(\varepsilon \)-transition, and
2. for each state \(s \) and input symbol \(a \), there is at most one edge labelled \(a \) leaving \(s \)

A DFA accepts \(x \) iff. \(\exists \) a unique path through the transition graph from \(s_0 \) to a final state such that the edges spell \(x \).
DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:
 - each DFA state corresponds to a set of NFA states
 - possible exponential blowup
NFA to DFA using the subset construction: example 1

The given NFA transitions are:

- From s_0, on a go to s_1.
- From s_1, on b go to s_2.
- From s_2, on b go to s_3.

Using the subset construction, the DFA transitions are:

- From $\{s_0\}$, on a go to $\{s_0, s_1\}$.
- From $\{s_0, s_1\}$, on b go to $\{s_0, s_2\}$.
- From $\{s_0, s_2\}$, on b go to $\{s_0, s_3\}$.
- From $\{s_0\}$, on b go to $\{s_0\}$.

The DFA is as follows:

- States: $\{s_0\}, \{s_0, s_1\}, \{s_0, s_2\}, \{s_0, s_3\}$.
- Transitions: a: from $\{s_0\}$ to $\{s_0, s_1\}$; from $\{s_0, s_1\}$ to $\{s_0, s_2\}$; from $\{s_0, s_2\}$ to $\{s_0, s_3\}$.
- Transitions: b: from $\{s_0\}$ to $\{s_0\}$; from $\{s_0, s_1\}$ to $\{s_0, s_2\}$; from $\{s_0, s_2\}$ to $\{s_0, s_3\}$.
Constructing a DFA from a regular expression

RE → NFA w/ε moves
 build NFA for each term
 connect them with ε moves

NFA w/ε moves to DFA
 construct the simulation
 the “subset” construction

DFA → minimized DFA
 merge compatible states

DFA → RE
 construct $R^k_{ij} = R^k_{ik}(R^{k-1}_{kk})^* R^{k-1}_{kj} \cup R^{k-1}_{ij}$
RE to NFA

\[N(\varepsilon) \]

\[N(a) \]

\[N(A|B) \]

\[N(AB) \]

\[N(A^*) \]
RE to NFA: example

\[a | b \]

\[(a | b)^* \]

\[abb \]
NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states $Dstates$ and transitions $Dtrans$ such that $L(D) = L(N)$
Method: Let s be a state in N and T be a set of states, and using the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>set of NFA states reachable from NFA state s on ε-transitions alone</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>set of NFA states reachable from some NFA state s in T on ε-transitions alone</td>
</tr>
<tr>
<td>move(T, a)</td>
<td>set of NFA states to which there is a transition on input symbol a from some NFA state s in T</td>
</tr>
</tbody>
</table>

add state $T = \varepsilon$-closure(s_0) unmarked to $Dstates$

while \exists unmarked state T in $Dstates$

mark T

for each input symbol a

$U = \varepsilon$-closure(move(T, a))

if $U \notin Dstates$ then add U to $Dstates$ unmarked

$Dtrans[T, a] = U$

endfor

endwhile

ε-closure(s_0) is the start state of D
A state of D is final if it contains at least one final state in N
NFA to DFA using subset construction: example 2

\[
\begin{align*}
A &= \{0, 1, 2, 4, 7\} & D &= \{1, 2, 4, 5, 6, 7, 9\} \\
B &= \{1, 2, 3, 4, 6, 7, 8\} & E &= \{1, 2, 4, 5, 6, 7, 10\} \\
C &= \{1, 2, 4, 5, 6, 7\}
\end{align*}
\]
Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

- \(L = \{p^k q^k\} \)
- \(L = \{wcw^r \mid w \in \Sigma^*\} \)

Note: neither of these is a regular expression! (DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

- alternating 0’s and 1’s
 \((\varepsilon \mid 1)(01)^*(\varepsilon \mid 0)\)

- sets of pairs of 0’s and 1’s
 \((01 \mid 10)^+\)
Ramification - Internet Protocol

How does your browser establish a connection with a web server?

- The client sends a SYN message to the server.
- In response, the server replies with a SYN-ACK.
- Finally the client sends an ACK back to the server.

This is done through two DFAs in the client and server, respectively.
Ramification - Intrusion Detection

<table>
<thead>
<tr>
<th>Code</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FILE * f;</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>f=fopen("demo", "r");</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>strcpy(...); //vulnerability</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>if (!f)</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>printf("Fail to open\n");</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>else</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>fgets(f, buf);</code></td>
<td><code>------></code></td>
</tr>
<tr>
<td><code>...</code></td>
<td><code>------></code></td>
</tr>
</tbody>
</table>

A DFA will be exercised simultaneously with the program on the OS side to detect intrusion.