Homework 7 solution

(30pts) Register Allocation

- b. (20p) Exercise 11.1 in the textbook
- c. (10p) Exercises 11.2 (a) in the textbook

a. 11.1

			Iteration 1		Iteration 2 same as Iteration 1
Line	Use	Def	In	Out	
15	r1,r3		r1,r3		
14	c	r3	c,r1	r1,r3	
13	u	r1	u,c	c , r 1	
12		u	с	u,c	
11			u,c	u,c	
10	s,t	u	s,t,c	u,c	
9	rl	t	rl,s,c	s,t,c	
8	rl	r1,r2	r1,s,c	r1,s,e	
7	р	r1	p,s,c	r1,s,c	
6	rl	s	rl,p,c	p,s,c	
5	rl	r1,r2	rl,p,c	r1,p,c	
4	р	rl	p,c	p,c	
3	р		p,e	p,c	
2	rl	р	rl,c	p,c	
1	r3	c	r3,r1	rl,c	
(13)	4	r1 r2 c		S	p t u

Note that although r2 is not used in the original program. Interference edges about r2 must be inserted as long as it is a caller save register.

Cannot simplify any non-move relevant nodes.

Try to coalesce. According to Briggs, none of the pairs can be coalesced. Consider George, u and r1 can be merged. **Note that when applying George to pairs involving a pre-colored node, always pick the one that is not pre-colored to test the rule**. In this case, considering u, its neighbor c is also the neighbor of r1. So u and r1 can be merged.

Node "r1 & u" is further merged with t according to George.

c and r3 cannot be merged (when applying George on c).

We cannot proceed with the remaining graph, even after freezing the edge c-r3.

We hence look for a node to spill. According to the equation, node c has the lowest spill cost. After removing c, the remaining graph is still not colorable. We further spill s. Finally, p has r3, and u, t having r1.

The final program is

f: M[address for c]<- r3

r3<-r1

if (r3=0) goto L1

r1 < M[r3]

call f

M[address for s]<-r1

r1<-M[r3+4]

call f

r1<-M[address for s]+r1

goto L2

L1: r1<-1

r3<-M[addr of c]

return

c.

Exercise 11.2 (a) Simplify: Remove A Remove B Remove G All the remaining nodes have degree of at least 8. Randomly pick up the node for potential spill. Spill Remove H Simplify Remove D Remove E Remove F Remove C Select: Add C with color 1 Add F with color 5 Add E with color 4 Add D with color 2 Add H with color 3 Add G with color 3

Add B with color 2

Add A with color 7

The nodes are 8 colorable. No actual spill is required.

(30p) Garbage collection.

Apply the Mark-Sweep (10p) and Copying (20p) GC algorithms to the following program at the end of the execution

Mark and Sweep: The plain nodes are garbage collected.

After forwarding all roots

After scanning and forwarding all the pointers in Heap2, the entire Heap1 will be discarded.

