Homework 7 solution

(30pts) Register Allocation

b. (20p) Exercise 11.1 in the textbook
c. (10p) Exercises 11.2 (a) in the textbook

a. 11.1
Iteration 1 [teration 2 same as Iteration 1

Line Use Del In Out
15 rl, 3 rl.3
14 c 3 c,rl rl,r3
13 u rl u.c c.rl
12 u C TS
11 u.c u.c
10 s,t u s,t,c u.c
9 rl t rl.s,c s,0,C
8 rl rl,r2 rl.s,c rl.s.c
7 P rl p.s.c rl.s.c
(§) rl S rl.p.c P.s.C
5 ri i, 2 ri.p.c ri,p.c
4 P rl p.c p.c
3 P p.c p.c
2 rl P rl.c p.c
1 r3 c r3.rl rl,c

Note that although r2 is not used in the original program. Interference edges about r2
must be inserted as long as it is a caller save register.

Cannot simplify any non-move relevant nodes.

Try to coalesce. According to Briggs, none of the pairs can be coalesced.
Consider George, u and rl can be merged. Note that when applying George to
pairs involving a pre-colored node, always pick the one that is not pre-
colored to test the rule. In this case, considering u, its neighbor c is also the
neighbor of rl1. So u and rl1 can be merged.

Node “r1 & u” is further merged with t according to George.

¢ and r3 cannot be merged (when applying George on c).

We cannot proceed with the remaining graph, even after freezing the edge c-r3.

We hence look for a node to spill. According to the equation, node ¢ has the
lowest spill cost. After removing c, the remaining graph is still not colorable. We further
spill s. Finally, p has r3, and u, t having r1.

The final program is

f: M[address for c]<- r3
r3<-rl
if (r3=0) goto L1
ri<- M[r3]
call f

M[address for s]<-rl1

ri<-M[r3+4]
call f
ri<-MJ[address for s]+rl
goto L2
L1 ric-1
r3<-M[addr of c]

return

Exercise 11.2 (a)
Simplify:

Remove A
Remove B
Remove G

All the remaining nodes have degree of at least 8.
Randomly pick up the node for potential spill.
Spill

Remove H
Simplify

Remove D
Remove E

Remove F

Remove C

Select:

Add C with color 1
Add F with color 5
Add E with color 4
Add D with color 2
Add H with color 3
Add G with color 3

Add B with color 2
Add A with color 7

The nodes are 8 colorable. No actual spill is required.

(30p) Garbage collection.

Apply the Mark-Sweep (10p) and Copying (20p) GC algorithms to the following
program at the end of the execution

class B{
int val;
B next;
static B gp;

head ap tail

}

ot OESDESOESDERE

B head= new B(0, nil);

B tail = head,;

for (int i=1; i< 5; i++) {
tail.next=new B(i, nil); Mark and Sweep: The plain nodes are garbage collected.
tail=tail.next;

}

head=head->next->next;

gp=head;

head=head->next;

Heap 1

DEDEREDESD

|head| | tail | | ep |

Heap 2

After forwarding all roots

Heap 1

|0|+>|1|Jr>|2|| ||3 | 4] /]

\

\
Heap 2 Y

After scanning and forwarding all the pointers in Heap2, the entire Heap1 will be discarded.

Heap 1
|0|+>|1|+>|2|| | 3L [l
——————————— /‘—’
// I/ :
([head] [Tl] 1 [e | |
\ / i
Heap 2 Y ! |
T

