Homework 3 -Solution

1. Examine the revised MiniJava grammar posted for Project 2. Find out the non-
terminals which have production rules that will make it impossible to generate
an LL (k) parser.

Solution:
e Nonterminal Type fails test 1.1 as it has a left recursive production rule.
e Nonterminal Expression fails test 1.1 as it has left recursive production rules.
For a rule which 1s left recursive the FIRST sets of it productions will always
overlap no matter how large the lookahead is.

2. Exercise 3.0

Solution:
(a)
nullable FIRST FOLLOW

S No u
B No W VyXZ
D Yes VX z
E Yes v Xz
F Yes X z

XYZHANG
Typewritten Text

XYZHANG
Typewritten Text

XYZHANG
Typewritten Text
2.

XYZHANG
Typewritten Text

(b) Parse Table

U v | W X y Z
S | S—uBDz
B B -W
B —Bv
D D —EF | D—EF | D—EF
E E— E—y E—
F F—x F—

(c) The grammar is left recursive (B—Bv), hence cannot be LL(1) (in general LL(k)).

(d) Replace the left recursive rule (B— Bv) and rule B—w with the following rules:

B — wB'
B'—>VvB'|€
3. Exercise 3.7 (a) and (b) in the rextbool.
Solution:
Consider the following grammar:
S5 — G%
G — P
G — PG
P — iR
R — ¢
H — iR
(a) Left-factor this gramumar.
Answer:
5 — GS
G — P&
G G e
P — i R
R — iR |e

(b) Show that the resulting grammar 15 LL{2). You can do this by constructing FIRST sets
efc. containing 2-symbol strings: but 1t 1s sumpler to construct an LL(1) parsing tabls
and then argue convincingly that any contflicts can be resolved by looking ahead ons
more symbol.

Answer:

Here is the LL{1) parse table:

[[FrsT [ForLow |] i B |

S| 1) (5} S GY
| i} 8} G — PG
G'| 1. ¢) | |5} GG |G e
P} i, &} P—i: R

- Mo j—l’ = £ .
R {i el |14, %} PR R— e

Note that there are two productions predicted for i on lookahead i: A — ¢
and R — K, so the grammar 1s not L1.(1). The conflict arises because £ — ¢
is predicted by

FOLLOW(?) € FOLLOW(P) C FIRST((| € FIRST(F) = |1}

while B — iR is predicted by FIRST(i] = {i}. We cannot tell if the lookahead
i 1s part of a continuing recursion on f or part of what can follow [, in this
case F. Consider what happens if we lookahead one more token and see
this disambiguates the predicted production.

the semicolon (:) instead of
allowing us to decide if the lookahead ¢ 1s part of a continuing recursion on R
or the beginning of a dertvation from . which can legally follow derivations
from K.

a).

Stack Input Action

S 0001115 shift

SO 00111S shift

S00 01118 shift

S000 1118 shift

S0001 118 Reduce S->01
S00S 118 shift

S00S1 18 Reduce S->0S1
S0S 1S shift

S0S1 S Reduce S->0S1
$S S accept

b)

Stack Input Action

S aaa*a++S shift

Sa aa*a++$ Reduce S->a
SS aa*a++$ shift

SSa a*a++$ Reduce S->a
SSS a*a++$ shift

$SSa *3++$ Reduce S->a
SSSS *3++$ Shift

SSSS* a++$ Reduce S->SS*
SSS a++$ shift

SSSa ++S Reduce S->a
SSSS ++S Shift

SSSS+ +$ Reduce S->SS+
SSS +$ shift

SSS+ S Reduce S->SS
$8S S accept

5. Exercise 3.5 in textbook.

Solution:
FIRST and FOLLOW sets.
nullable FIRST FOLLOW
S No $ { WORD begin end \
S Yes { WORD begin end ' $\}
B No { WORD begin end \
E No \ $} { WORD begin end \
X No { WORD begin end \ $} { WORD begin end '
LL(1) Parse table.
$ \ { } Begin WORD end
S’ S—>S$ | S°— S$ S’— S$ S’— S$ S’— S$ S’— S$
S S — S — S — XS S— |S—XS S — XS S — XS
S — XS
B B— \ begin {WORD}
E E — \end (WORD)
X X — BSE X — {S} X— begin | X—>WORD | X —end
X —-\WORD

	2: 2.
	3: 3.

