CS 352 – Compilers: Principles and Practice Mid-term Examination, 10/18/05

Instructions: Read carefully through the whole exam first and plan your time. Note the relative weight of each question and part (as a percentage of the score for the whole exam). The total points is 100 (your grade will be the percentage of your answers that are correct).

This exam is **closed book**, **closed notes**. You may *not* refer to any book or other materials.

You have **75 minutes** to complete both (2) questions. Write your answers on this paper (use both sides if necessary).

Name:

Student Number:

Signature

- 1. [Regular expressions, scanning; 40%]
 - (a) (15%) As described in class, construct an NFA that recognizes the same language as defined by the following regular expression:

(b) (25%) Using the subset construction, convert the NFA into a DFA. Optimize the resulting DFA by merging equivalent states (if any).

Answer:

	0	1		0
$A = \{0, 1, 2, 4, 10, 11, 13\}$	B	С	$ACD = \{0, 1, 2, 3, 4, 9, 10, 11, 12, 13\}$	BE
$B = \{5, 6, 8\}$	D	Ε	$BE = \{5, 6, 7, 8\}$	CD
$C = \{2, 3, 4, 11, 12, 13\}$	B	С	'	
$D = \{1, 2, 4, 9, 10, 11, 13\}$	В	С		
$E = \{6, 7, 8\}$	D	Ε		
	1	1		
1	Y	\sum_{1}		

BE

2. [Context Free Grammars, parsing; 60%] Consider the following simple grammar and the language it describes:

$$S \rightarrow CC$$

 $C \rightarrow Cc$
 $C \rightarrow d$

(a) (5%) In words, what *language* does this grammar describe? **Answer:**

A *d* followed by a sequence of 0 or more *c*s, repeated twice.

(b) (5%) Write a regular expression for this *language*.

Answer:

 dc^*dc^*

(c) (5%) Draw the parse tree for the sentence *dcd* using this grammar.Answer:

(d) (5%) Is this *language* LL(1)? Explain. [There is a simple argument.]Answer:

Yes, the language is regular, and all regular languages are LL(1).

(e) (5%) Is this *grammar* LL(1)? Explain. [There is a simple argument.]Answer:

No, the grammar is not LL(1) by inspection since it is left-recursive.

(f) (5%) Transform the grammar, as necessary, so that it can be parsed predictively by a top-down parser using 1 token of lookahead.Answer:

$$S \rightarrow CC$$

 $C \rightarrow dC'$
 $C' \rightarrow cC'$
 $C' \rightarrow \epsilon$

(g) (10%) Derive an LL(1) parse table to parse this language. **Answer:**

	FIRST	FOLLOW	С	d	\$
S	d	\$		$S \rightarrow CC$	
С	d	d\$		$C \rightarrow dC'$	
C'	CE	d\$	$C' \rightarrow cC'$	$C' ightarrow \epsilon$	$C' \to \varepsilon$

(h) (10%) Show the steps of an LL(1) parser as it parses the input *dcd* using your parse table.

Answer:

(i) (10%) Consider the original grammar, now with numbered productions:

1	$S \rightarrow$	CC
2	$C \rightarrow$	Cc
3	$C \rightarrow$	d

Here is its LR(1) parse table:

Show the steps of an LR parser as it uses this table to parse the input *dcd*. **Answer:**

$$\begin{array}{c|c|c} 0_{\$} & dcd\$ \\ 4_{d} \ 0_{\$} & cd\$ \\ 1_{C} \ 0_{\$} & cd\$ \\ 3_{c} \ 1_{C} \ 0_{\$} & d\$ \\ 1_{C} \ 0_{\$} & d\$ \\ 4_{d} \ 1_{C} \ 0_{\$} & \$ \\ 2_{C} \ 1_{C} \ 0_{\$} & \$ \end{array}$$